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ABSTRACT

Si, Mengwei PhD, Purdue University, August 2018. III-V and 2D Devices: from
MOSFETs to Steep-Slope Transistors. Major Professor: Peide D. Ye.

With silicon CMOS technology approaching the scaling limit, alternating channel

materials and novel device structures have been extensively studied and attracted a

lot of attention in solid-state device research. In this dissertation, solid-state electron

devices for post-Si CMOS applications are explored including both new materials

such as III-V and 2D materials and new device structures such as tunneling field-

effect transistors and negative capacitance field-effect transistors. Multiple critical

challenges in applying such new materials and new device structures are addressed

and the key achievements in this dissertation are summarized as follows: 1) De-

velopment of fabrication process technology for ultra-scaled planar and 3D InGaAs

MOSFETs. 2) Interface passivation by forming gas anneal on InGaAs gate-all-around

MOSFETs. 3) Characterization methods for ultra-scaled MOSFETs, including a cor-

rection to subthreshold method and low frequency noise characterization in short

channel devices. 4) Development of short channel InGaAs planar and 3D gate-all-

around tunneling field-effect transistors. 5) Negative capacitance field-effect transis-

tors with hysteresis-free and bi-directional sub-thermionic subthreshold slope and the

integration with various channel materials such as InGaAs and MoS2.
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1. INTRODUCTION

1.1 Computer and Binary Logic

The digital revolution, known as the ”Third Industrial Revolution”, origins from

the invention of modern computers. Modern computers are digital machines using

binary logic with “1” and “0” only in the Boolean algebra. Computing machines with

continuous values are the analog computers. They used machinery that represented

continuous numeric quantities such as angle of shark rotation or electrical potential.

However, digital computers have shown their superior over analogy ones in terms of

robustness, complexity and speed.

Binary logic is the logic system used in modern digital computers, in which “1”

represents by a electrical potential, usually a high supply voltage, and “0” represents

by a different electrical potential, usually a ground potential. The formal theory

of binary computing dates back to 18th century, when G. W. Leibnitz invented the

binary number system. The binary logic was proved by G. Boole to be a complete

system that allows computational processes to be mathematically modeled [1].

There are three basic logic gates, NOR, AND and OR with logic “1” and logic

“0” as inputs and outputs. All other logics can be obtained from these three simple

logics. They are the building blocks of the arithmetic logic unit (ALU) of the central

process unit (CPU). Mathematically, with the three basic logic gates, any complicated

arithmetic process can be achieved. Therefore, to build up a computer system, a

major task is to found physical states to represent the logic “0” and logic “1”, and

find the physical method to do all the three basic operations. The logic “0” and logic

“1” can be different in different type of computers. For example, in the old mechanical

computer, the position of an object or the angle of rotation can be used for different
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logic levels. In more advanced computing concepts, electrons with quantized spin

state, spin up and spin down can be used for logic levels, so-called spin transistors [2].

1.2 Charge Based Logic and High Performance Computing

In current silicon based complementary metal-oxide-semiconductor (CMOS) tech-

nology, the logic “1” and logic “0” are represented by a high voltage and a low voltage.

The NOR, AND and OR operations are achieved through the proper connection of a

set of metal-oxide-semiconductor field-effect transistors (MOSFETs). Traditionally,

supply voltage (VDD) is used as high voltage for logic “1” and ground (GND) is used

as low voltage for logic “0”. The pMOSFETs are used to drive the output voltage

from GND to VDD through current flow from VDD to the output capacitor and the

nMOSFETs are used to drive the output voltage from VDD to GND through cur-

rent flow from the output capacitor to GND. The time to complete this single logic

operation can be estimated as

t =
CLVDD
ION

(1.1)

where t is time consumed in a single logic operation, CL is the load capacitance

and ION is the drive current of the MOSFET. Therefore, the requirements for high

performance MOSFETs are divided into three parts if the three items are independent

of each other.

• small load capacitance CL

• small supply VDD

• large on-current ION

According to the square law of current-voltage characteristics of a MOSFET [3],

explicitly

IDS =
WµCox
L

[(VGS − VT )VDS − V 2
DS] for VDS < VGS − VT , (1.2a)
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and

IDS =
WµCox
L

(VGS − VT )2 for VDS ≥ VGS − VT (1.2b)

where

Cox =
εox
Tox

(1.2c)

and IDS is drain-to-source current, W is channel width, L is channel length, µ is

the mobility, VGS is gate-to-source voltage , VDS is drain-to-source voltage and VT

is threshold voltage. Meanwhile, ION is defined as IDS at VGS=VDS=VDD, which is

given by

ION ∼
WµCox
L

V 2
DD. (1.3)

Considering both eq. (1.1) and (1.3), we can get the conclusion that reducing VDD is

not a good idea as VDD and ION are correlated. Therefore, the criteria for high speed

integrated circuits (ICs) should be modified as following

• small load capacitance CL

• large on current ION

As a result, by reducing L, ION becomes larger while CL becomes smaller as

part of CL is the gate capacitance which is proportional to L. So the time per logic

operation will be reduced so that the speed of the ICs can be improved. Therefore,

for transistors and ICs, it is always said,“Smaller is better”.

1.3 The Moore’s Law and Power-constraint Scaling

Then it comes to the famous ”Moore’s Law”, which originated from 1965 by G.

E. Moore, states that the number of transistors per unit area has doubled and will

double approximately every 18 months. Moore observed and predicted the revolution

of semiconductor industry which last even until the author writes this thesis at 2018.

However, although transistor number per unit area keeps increasing and transistor
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too much heat generation to dissipate. The power density of an IC can be expressed

as,

P = PS + PD (1.4)

where P is power, PS is static power when the circuits are in off-state and PD is the

dynamic power which represents the power consumption during a logic operation.

The dynamic power is mainly due to the charging or discharging to the load capac-

itor when the logic level is changed. The static power is mainly caused by off-state

leakage current, such as subthreshold current, junction leakage and tunneling leakage

current. Here we assume subthreshold current dominate the off-current (IOFF ), which

is the general case in ICs. The dynamic power and static power can be expressed

approximately as

PD ∼ NTCLV
2
DDf, (1.5)

and

PS ∼ NT IOFFVDD (1.6)

where NT is transistor density and f is the clock frequency or clock rate. If we

reduced the size of the transistor by a factor of α (α < 1) so that L→ αL, W → αW

, Tox → αTox. Thus, NT → 1
α2NT and CL → αCL for a simple gate capacitor

approximation. The actual CL is larger than this approximation due to other parasitic

effects. Therefore, if f and VDD keep unchanged, the dynamic power density of the

IC will increase by at least 1/α and the static power of the IC will increase by 1/α2,

which will make the chip too hot to work. The clock frequency should not be reduced

because reducing clock frequency means the reduction of CPU performance. Thus,

the only way to keep the CMOS scaling trend is to reduce VDD.

However, to reduce VDD is not as simple as just reduce the supply voltage. Firstly,

simply reduce VDD without doing anything will result in ION reduction so that device

performance will degrade, according to eq. (1.2b). Second, if ION is kept unchanged
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channel material so that ION will increase so that a lower VDD can be applied, as

shown in Fig. 1.2(b). No IOFF increase will happen if VT and subthreshold slope

(SS) are the same. The other way is to reduce SS or use steep-slope transistors. SS

reduction in traditional MOSFETs can be achieved using advanced 3-dimensional

(3D) structure or thin-body semiconductor on insulator (SOI) structure in terms of

short channel effects (SCEs) reduction but it has a thermionic limit of ∼ 60 mV/dec

at room temperature. Steep-slope transistor are transistors with SS less than the

thermionic limit of MOSFETs. As a result, steep-slope transistors can work at a

lower VDD comparing with MOSFETs without decrease of ION or increase of IOFF ,

as shown in Fig. 1.2(c). Both MOSFETs with high mobility channel materials and

steep-slope transistors will be discussed further in the following sections.

1.4 MOSFETs with High Moblity Channel Materials

Silicon has many unique advantages so that it is the channel material in semicon-

ductor industry for logic applications in the past decades.

• Only homogeneous oxide, SiO2, is formed during thermal oxidation while never

happens on compound semiconductors or even on Ge.

• Low interface trap density (Dit) on SiO2/Si interface.

• Suitable bandgap (EG)

• Balanced mobility for both electrons and holes

However, silicon has little advantage in electron and hole mobilities over other

high mobility III-V materials and Ge. Fig. 1.3 shows the electron and hole mo-

bilities comparison among group IV and III-V semiconductor materials. The first

thing to consider is that which material is the most suitable for transistors other than

silicon. Here, the concept of fermi level pinning is introduced before the study of

Ge and III-V materials. The fermi level pinning problem is mainly caused by the
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Fig. 1.4. Charge neutral level alignments over selected semiconductor
materials.

interface traps such that fermi level (EF ) at the oxide/semiconductor interface are

pinned to a certain energy level, as shown in the charge neutral level (CNL) align-

ments over selected semiconductor materials in Fig. 1.4. For III-V materials, the

EF at the oxide/semiconductor interface is difficult to move too far from the CNL

due to the relatively high and U-shape Dit [6]. As a result, if the CNL aligns to

near the conduction band (EC), it is easier to have electrons accumulated in the ox-

ide/semiconductor interface while if the CNL aligns to near the valence band (EV ), it

is easier to have holes accumulated in the oxide/semiconductor interface. Therefore,

by selecting semiconductors with proper CNL, the fermi level pinning problem can

be reduced.

Other than interface quality, bandgap of semiconductor is also an important char-

acter for solid state devices. For MOSFETs targeting on high speed and low power

applications, too small bandgap will result in high thermal emission leakage current,

large tunneling leakage current and high impact ionization current. Meanwhile, too
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wide bandgap causes difficulties in channel inversion at same Dit level. Table 1.1

summaries the bandgap of common semiconductor materials at room temperature.

Table 1.1.
Bandgap of common semiconductors at 300 K

Semiconductor EG (eV)

Si 1.12

Ge 0.661

GaAs 1.424

InAs 0.354

In0.53Ga0.47As 0.74

InP 1.344

GaSb 0.726

InSb 0.17

GaN (Wurtzite) 3.39

GaN (Zinc Blende) 3.2

AlN 6.2

InN 1.9-2.05

SiC 2.36

GaP 2.26

*Data source from [7]

Summarizing the above discussion, to apply high mobility channel materials into

CMOS ICs, here are the requirements which have to be considered.

• Higher electron or hole mobility comparing with silicon.

• Relative low Dit. CNL aligns near EC for nMOSFETs while CNL aligns near

EV for pMOSFETs.
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• Suitable bandgap (EG)

• Ability to co-integrate onto same wafer for both nMOSFETs and pMOSFETs.

Therefore, considering both Fig. 1.3, Fig. 1.4 and Table 1.1, InGaAs has the

most potential for nMOSFETs because its high electron mobility, CNL aligns near EC

and reasonable bandgap (0.74 eV in In0.53Ga0.47As). Although it has lower mobility

comparing with InAs and InSb, but InAs and InSb have too small EG. In the same

way, Ge is considered to be a potential channel material for pMOSFETs because its

high hole mobility, CNL aligns near EV and reasonable bandgap (0.661 eV).

1.5 SS Reduction in MOSFETs and Steep-slope Transistors

1.5.1 Device Scaling and Short Channel Effects

As discussed in chapter 1.3, scaling is one of the major driven force in semicon-

ductor industry. Currently, silicon CMOS technology has entered 10 nm technology

node. SS has a thermionic limit of 60 mV/dec for MOSFETs. However, at short

channel devices, it becomes more difficult to approach this limit due to SCEs be-

cause SS becomes larger when SCEs become stronger. The key to reduce the SCEs

in MOSFETs is to make the distance between channel area and gate electrode as

close as possible, in other words, to improve the gate control ability. To achieve this

goal, there are several methods that can be applied in MOSFET engineering [8–12].

Firstly, reducing the equivalent oxide thickness (EOT) in gate dielectric to improve

the gate control. Second, increasing the channel doping so that the depletion width

can be reduced. Thus, channel area is closer to the gate. But to increase channel

doping means to reduce carrier mobility. Halo technology is to increase channel dop-

ing only near the source and drain which has the same mechanism as increase channel

doping uniformly but it has other benefits such as lower doping channel for higher

carrier mobility. These two methods are applied for decades before 22 nm technol-

ogy node was introduced to replace planar bulk silicon CMOS technology. Third,
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by introducing thin body SOI structure, depletion width is limited by the thickness

of the semiconductor so that channel is more close the gate electrode. Note that

2-dimensional (2D) materials play the same role as SOI structure in terms of SCEs

control. Forth, applying 3D structure, such as FinFET structure or gate-all-around

(GAA) structure to improve the channel control ability. FinFET was introduced in

22 nm node by Intel. The GAA structure has stronger immunity to SCEs than Fin-

FET structure so that it might be applied in future CMOS technology nodes. Here

the methods to reduce SCEs in MOSFETs are summarized.

• Reducing EOT.

• Increasing channel doping, uniformly or halo.

• Applying thin body SOI structure or 2D materials.

• Applying 3D structures such as FinFET or GAA.

Although it seems that there are many methods to further scale the devices, people

are really approaching the physical limit of MOSFETs. Now in the smallest device,

there are only less than 100 silicon atoms between source and drain. Quantum effects

might destroy the MOSFET operation once the device is further scaled to ten silicon

atoms or less.

1.5.2 Steep-slope Transistors

The motivation of steep-slope transistors has already been discussed in chapter

1.3. Many device concepts have been proposed to surpass this limitation such as the

Tunneling FET (TFET) [13, 14], negative-capacitance FET (NC-FET) [15–17] and

microelectromechanical (MEMS) switch [18,19]. The SS of traditional MOSFET can

be expressed as

SS = ln(10)
kT

q
(1 +

Cit + CS
Cox

) (1.7)



13

where k is Boltzmann constant, T is temperature, q is elementary charge, Cit is

interface trap capacitance and CS is the semiconductor capacitance. In most cases,

CS can approximately equal to depletion capacitance (CD). For transistor with ideal

interface (Cit=0) and CS � Cox, eq. 1.7 becomes

SS = ln(10)
kT

q
. (1.8)

It is also known as the thermionic limit of SS for MOSFET (∼ 60 mV/dec at room

temperature) because thermal emission over the channel barrier dominates the sub-

threshold current, which is a temperature dependent process.

Currently there are two popular ways to overcome this limit, tunneling field-effect

transistor and negative capacitance field-effect transistor. Both of the above device

concepts can be CMOS compatible and are explored in this thesis.

Tunneling field-effect transistors

TFET is basically a gated p-i-n diode. Such structure was proposed back to 1970s

[20,21] with surface tunneling as carrier transport mechanism. The first TFET with

sub-60 mV/dec at room temperature was demonstrated at 2004 [13] which attracted

a lot of attention and extensively studied as a steep-slope transistor since then. In the

operation mode, the p-i-n diode is reversely biased so that the main current transport

mechanism from source to drain is the Zener band-to-band tunneling (BTBT). With

a gate voltage on the intrinsic region to control the band bending, such device can

be abruptly switched on and off. Moreover, as BTBT isn’t a temperature dependent

process and subtreshold current in a normal MOSFET induced by thermal emission

is blocked due to the existence of the bandgap (no barrier modulation), the SS of a

TFET can break the thermionic limit of the subtreshold slope.
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Negative capacitance field-effect transistors

Salahuddin and Datta [15] proposed the negative capacitance field-effect transistor

by inserting a ferroelectric insulator into the gate stack the MOSFET. By replacing

oxide capacitance to the capacitance of ferroelectric insulator (CFE) in eq. 1.7 as

SS = ln(10)
kT

q
(1 +

Cit + CS
CFE

) (1.9)

where CFE can be negative so that the overall SS can be less than the thermionic

limit ln(10)kT/q. The real negative capacitance in ferroelectric insulators cannot be

directly measured by capacitance-voltage (C-V) or polarization-voltage (P-V) mea-

surement because it is unstable. However, the negative capacitance effect can exist

when it is in series with a positive capacitor, so that the total capacitance can be

larger than the positive capacitor. Therefore, the negative capacitance in the ferro-

electric insulator can provide a overall internal amplification to break the thermionic

limit of MOSFET at 60 mV/dec at room temperature.

1.6 Thesis Outline

This thesis mainly pursues the potential channel materials and novel device struc-

tures and innovations, targeting on high speed and low power device applications

at the end of silicon CMOS scaling. Chapter 2 mainly discusses nMOSFETs made

of high mobility III-V material, InGaAs. InGaAs MOSFETs are studied in terms

of device scaling, 3D structure and interface trap reduction. Chapter 3 studies the

advanced electrical characterization in MOSFETs with small channel lengths. Chap-

ter 4 discusses the fabrication and characterization of planar and 3D III-V TFETs.

Chapter 5 discusses the fabrication and characterization of NC-FET made of III-V

and 2D materials. Chapter 6 summaries the thesis and presents a outlook to the

development of post-CMOS electron devices.
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2. III-V MOSFETS FOR LOW POWER AND HIGH

PERFORMANCE CMOS LOGIC APPLICATIONS

2.1 Introduction

In 2002, Ye and Wilk started to deposit Al2O3 on GaAs [22], which later was

proved to have the ability to effectly remove the native oxide of GaAs due to the

reaction between Trimethyl Aluminum (TMA) and the native oxide of GaAs [23–25].

This work opens a hot research on MOSFETs with high mobility III-V materials

[11, 12, 26–45]. Currently, InGaAs has been considered as one of the most promising

channel materials for future CMOS logic circuits because of its high electron injection

velocity, properly aligned CNL and suitable bandgap [46]. People have spent a lot

of efforts on fabricating InGaAs MOSFETs with short channel length and high ION

and many works have been done on improving the oxide/InGaAs interface.

In this chapter, section 2.2 studies a novel dry etching method to obtain sub-

10 nm Lch beyond the lithography resolution limit and this type of MOSFET with

Lch down to ∼3 nm are demonstrated on both planar devices and FinFETs. To

further improve the immunity to short channel effects, in section 2.3, the InGaAs

GAA MOSFETs with raised S/D and ultrathin body structures are studied and

performance improvement with thinner body are demonstrated. In section 2.4, the

effect of forming gas anneal (FGA) on Al2O3/InGaAs interface are studied and it is

found that FGA can significantly improve the quaility of Al2O3/InGaAs interface.

2.2 Ultimately Scaled Sub-10 nm V-Gate InGaAs MOSFETs

There has been several works focusing on the scaling of InGaAs transistors. In-

GaAs MOSFETs with implanted source and drain (S/D) have already been demon-
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strated with channel length down to 20 nm [11,12,29]. However, InGaAs MOSFETs

with implanted S/D structure suffer from large series resistance due to solid solubility

limit and source starvation [47, 48]. Meanwhile, InGaAs MOSFETs with n+ (highly

n-doped) raised S/D structure have been reported by regrowth method [30–33,37,49]

or wet etching related methods [34, 35] with high on-current. InGaAs MOSFETs

with sub-7 nm was also demonstrated by anisotropic wet etching method [36]. In this

work, by fully using the anisotropic dry etching properties of III-V, using anisotropic

dry etching process is proposed to fabricate the V-Gate InGaAs MOSFETs, featured

with n+ reaised S/D and extremely short channel. Lithography etch window length

modulation technique is applied to push the Lch down to sub-10 nm (minimum Lch ∼

3 nm) beyond the lithography resolution limit. Ultimately scaled InGaAs FinFETs

and planar MOSFETs with channel length down to sub-10 nm are demonstrated.

InGaAs FinFETs with sub-10 nm Lch shows better immunity to SCEs than planar

MOSFETs which is promising for CMOS logic circuits beyond 10 nm technology node.

Fig. 2.1(a) shows the schematic diagram of a sub-10 nm InGaAs V-Gate FinFET

and a Planar MOSFET. The top-down fabrication process is shown in Fig. 2.1(b).

The starting material was a 2 inch semi-insulating InP substrate. 100 nm undoped

In0.52Al0.48As etch stop layer, 80 nm undoped InP layer, 10 nm undoped In0.65Al0.35As

channel layer, 2 nm undoped InP etch stop layer, 45 nm n+ (1× 1019 cm−3 silicon

doping in this work) In0.53Ga0.47As and 10 nm n+ In0.7Ga0.3As layer were sequentially

grown by molecular beam epitaxy (MBE). The V-Gate structure was formed by

anisotropic dry etching process with BCl3/Ar reactive ion etching. The actual Lch

is 70-90 nm smaller than etch window length defined by electron beam lithography

(Lmask) which means we can fabricate InGaAs MOSFET with sub-10 nm channel

length with 90 nm lithography resolution limit. Then, fin structure was formed using

BCl3/Ar reactive ion etching while in the control group sample surface was protected

by photoresist, there are four fins with 100 nm fin width (WFin) in parallel in each

device. After 10 min 10% (NH4)2S passivation, 8 nm Al2O3 was grown by atomic

layer deposition (ALD) at 300 ◦C as gate dielectric with EOT=3.5 nm. The S/D
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Fig. 2.1. (a) Schematic diagram of a sub-10 nm V-Gate FinFET and a
planar MOSFET. (b) Fabrication process flow of V-Gate FinFETs and
planar MOSFETs.

ohmic contacts were made with Au/Ge/Ni alloy and followed by a 350 ◦C 15 s rapid

thermal annealing (RTA) process in N2. All patterns were defined by a Vistec UHR

electron beam lithography system.

Fig. 2.2(a)-(e) show the SEM images of V-Gate structure for InGaAs MOSFET

fabricated by anisotropic dry etching. Fig. 2.2(a) shows the Lch modulation effect

by Lmask modulation. As the SEM cross section is rotated by 45◦, Lch=66 nm, 30 nm

and 11 nm were obtained with Lmask=150 nm, 100 nm and 95 nm. With Lmask less

than 90 nm, we can have Lch less than 10 nm. Sub-10 nm Lch was obtained as shown

in Fig. 2.2(c) and the inset. The actual channel length is smaller than the Lmask

because of the anisotropic property of dry etching process. Fig. 2.2(b) shows the etch
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Fig. 2.2. (a) Channel length shrinking by etch window length modulation.
(b) Channel thickness modulation by lithography window length modula-
tion. (c) Illustration of sub-10 nm V-Gate channel. (d) Device structure
illustration based on (c). (e) SEM image for a sub-10 nm InGaAs V-Gate
MOSFET.

depth modulation by Lmask. Etch depth begins to be modulated after Lch shrink into

sub-10 nm region. By depth modulation, dry etch process can stop exactly on the

InGaAs channel. Fig. 2.2(d) and 2.2(e) show the device structure with a sub-10 nm

V-Gate.

Fig. 2.3(a) and 2.3(b) show the typical transfer and output I − V characteristics

of a planar sub-10 nm V-Gate device and a sub-10 nm V-Gate FinFET. At VGS-

VT=1 V and VDS=1 V, the measured ION for sub-10 nm FinFET device is 838 mA/mm

while ION for planar sub-10 nm devices is 721 mA/mm. The maximum extrinsic

transconductances (gm) are 916 mS/mm and 565 mS/mm for the same FinFET device

and planar device, respectively. The better on-state performance for the sub-10 nm

V-Gate FinFET is ascribed to the quantum confinement in fin structure. The sub-
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Fig. 2.5. (a) Schematic diagram, (b) cross sectional view and (c) fabrica-
tion process flow of n+ raised source and drain InGaAs gate-all-around
MOSFETs.

Fig. 2.5(a) and 2.5(b) show the schematic diagram and cross sectional view of the

n+ raised S/D InGaAs GAA MOSFET. The top-down fabrication process is shown in

Fig. 2.5(c). The starting material was a 2 inch semi-insulating InP substrate. 100 nm

undoped In0.52Al0.48As etch stop layer, 80 nm undoped InP layer, 10 nm or 20 nm

undoped In0.65Al0.35As channel layer, 2 nm undoped InP etch stop layer, 45 nm n+

In0.53Ga0.47As and 10 nm n+ In0.7Ga0.3As layer were sequentially grown by molecular

beam epitaxy (MBE). n+ raised S/D structure was formed by citric acid and H2O2

based selective wet etching and device isolation was also done in the same process.

400 nm gap between n+ raised S/D was obtained. The wet etching stopped just on

the 2 nm InP etch stop layer due to the strong etch selectivity between InGaAs and

InP. Nanowire fins were defined by BCl3/Ar reactive ion etching. HCl based release

process was then performed to create free standing 200 nm long InGaAs nanowires.

After 10 min 10% (NH4)2S passivation, 8 nm Al2O3 and 40 nm tungsten nitride (WN)
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20 nm thick nanowire devices show an average SS of 158 mV/dec, DIBL of 117 mV/V,

ION/IOFF ratio of 7× 103 at VDS=0.05 V. The average VT of 10 nm nanowire devices

is −0.25 V while the average VT of 20 nm nanowire devices is −0.45 V. VT shows a

positive shift with nanowire dimension shrinking. The slightly better on-state perfor-

mance of devices with 20 nm thick nanowire is mainly ascribed to three reasons. First,

the ultrathin nanowire structure suffers more mobility degradation because ultrathin

nanowires are more sensitive to surface roughness. Second, the impact of quantum

capacitance is stronger in thinner nanowires so that carrier concentration in the chan-

nel is reduced. Third, S/D series resistance (RSD) increases as nanowire dimension

shrinking. The RSD of devices with different nanowire thickness are extracted using

the method described in Ref. [51] and the average RSD, normalized by the perimeter

of the devices, for 10 nm thick nanowire is 0.61 Ω mm while the average RSD for 20 nm

thick devices is 0.42 Ω mm. Comparing to devices with implanted S/D and ultrathin

structure [29], the n+ raised S/D ones have a larger saturation current and low RSD.

RSD of both devices with implanted S/D (average RSD=1.3 Ω mm) [11] and devices

with n+ raised S/D are extracted. It is understood that the MBE grown n+ S/D

has a much higher carrier density, thus a lower contact resistance with Au/Ge/Ni

metal contacts. At the same time, the high carrier density and low defects in MBE

materials also reduces the resistivity of the semiconductor. Therefore, n+ raised S/D

structure is a preferable structure for high-performance InGaAs GAA MOSFETs.

Another performance improvement induced by n+ raised S/D InGaAs GAA MOS-

FETs with ultrathin nanowire is the reduction of off-state leakage current because

of the ultrathin body structure, as shown in Fig. 2.6(a) and Fig. 2.7. The average

IOFF decreases by about one order of magnitude at VDS=1 V and by 30 times at

VDS =50 mV when TNW decrease from 20 nm to 10 nm. The prominent difference in

off-state performance is attributed to the quantum confinement effect so that both

tunneling leakage and thermal emission leakage can be suppressed.
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FGA on planar devices shows that on state performances such as ION and gm are

improved after FGA [59]. However, the impacts of FGA have not been studied in

short channel devices with GAA structure. The compatibility between FGA and

other passivation methods have not been studied either.

20-80 nm Lch short channel In0.65Ga0.35As GAA MOSFETs with 6 nm TNW and

30 nm WNW have been fabricated with or without FGA treatment. FGA offers im-

provement in the on-state and off-state performance of the devices. The reduction of

SS and the increase of gm and ION verify the improvement of the interface quality. The

average interface trap density drops by 40% on average after FGA. Moreover, SS and

DIBL do not increase when Lch scales from 80 nm down to 20 nm, demonstrating the

excellent scalability of InGaAs GAA MOSFET with sub-10 nm nanowire dimension.

It is also found that the 30 min 400 ◦C FGA passivation is fully compatible with the

(NH4)2S passivation. The interface trap density is significantly improved in devices

with (NH4)2S passivation and FGA together than those with (NH4)2S passivation

only.

Fig. 2.8(a) shows the schematic diagram of the InGaAs GAA MOSFET fabri-

cated in this work and the cross sectional TEM image of an InGaAs nanowire with

6 nm TNW . The fabrication process flow of the devices is shown in Fig. 2.8(b). The

top-down fabrication process is similar to that demonstrated in [12]. The starting

material is a 2 inch semi-insulating InP substrate. 100 nm undoped In0.52Al0.48As

etch stop layer, 80 nm undoped InP layer, 10 nm undoped In0.65Al0.35As channel layer

and 2 nm undoped InP layer were sequentially grown by MBE. Source/drain implan-

tation was performed at an energy of 20 keV and a dose of 1× 1014 cm−2, followed by

dopant activation at 600 ◦C for 15 s in nitrogen ambient. After fabricating nanowire

fins using BCl3/Ar reactive ion etching, HCl based release process was performed to

create the free-standing InGaAs nanowires. Before the gate stack deposition, 10%

(NH4)2S passivation was performed. The gate dielectric is 5 nm ALD Al2O3 to study

the effect of FGA on Al2O3/InGaAs interface while maintaining a low gate leakage

current. Following ALD WN gate metallization process, the devices are divided into
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SS and DIBL are observed in this work, as opposed to the InGaAs GAA MOSFETs

with larger TNW [12]. The results show that the InGaAs GAA MOSFETs with

extremely thin TNW offer better immunity to SCE and improved scalability which

can be further improved by EOT scaling.

In conclusion, InGaAs GAA MOSFETs with 6 nm TNW have been fabricated.

The effects of FGA on the performance of the devices are systematically studied. It is

found that the 30 min 400 ◦C forming gas anneal results in a improved Al2O3/InGaAs

interface and is also fully compatible with the (NH4)2S passivation. A scaling metrics

study of the InGaAs GAA MOSFETs has also been carried out. The extremely thin

nanowire structure has been shown to improve SCE immunity and it is very promising

for future logic applications.

.



33

3. CHARACTERIZATION OF ULTRA-SCALED III-V

MOSFETS

3.1 Introduction

To accurately evaluate the performance of a MOSFET is important. Accurate and

reliable characterization techniques enable device researchers and engineers to locate

the problems with the MOSFETs and to further improve the device performance.

Meanwhile, interface and contact qualities have the most importance to device per-

formance. However, as MOSFETs have been scaling down to 14 nm technology node

currently, the most classic characterization techniques become difficult to characterize

such small devices.

Interface quality is one of the major determinants of the performance for MOS-

FETs. Relatively high Dit is the main issue to prevent using MOSFETs made of

high mobility materials beyond silicon [6,46,62]. Tremendous efforts have been spent

to minimize the Dit on III-V and Ge with different dielectric techniques in the past

decades, making high-mobility ultra-scaled MOSFETs a reality [63–66]. Therefore,

how to correctly evaluate Dit on nanoscale MOSFETs becomes very important. How-

ever, the first problem is, Lch of MOSFETs are rapidly decreasing to deep sub-100 nm

region, the conventional Dit extraction methods, such as C-V, charge pumping and

DC-IV methods, becomes difficult due to the very small gate area. Meanwhile, a sec-

ond problem is that the subthreshold method becomes more inaccurate at smaller

channel length, because SS increases as Lch scaling down due to SCEs but not

Dit [8, 9, 67–73].

In this chapter, a new and simple method to solve the SCE problem is proposed in

section 3.2, which demonstrates a correction to the conventional subthreshold method

in Dit extraction. Section 3.3 utilizes low frequency noise (LFN) and random tele-
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graph noise (RTN) as probes to analyze the interface quality using the advantage

that noise signals are stronger in smaller devices.

3.2 On the Interface Trap Density Extraction of Ultra-scaled MOSFETs:

A Correction to Subthreshold Method

The subthreshold method of Dit using eq. (1.7) becomes more inaccurate at

smaller channel length, because SS increases as Lch scaling down due to SCEs but

not Dit. Without eliminating the impact of SCEs from SS, SS method is less accurate

at shorter Lch. As a result, comparing interface quality of short channel MOSFETs

between different works becomes difficult. In this work, an analytic model on DIBL-

SS relation is first derived. Then, a simple Dit extraction method on ultra-scaled

MOSFETs is introduced, in which the impact of SCEs on SS is eliminated by a

simple linear fitting of SS with respect to DIBL. Finally, experimental and simulation

results are provided to verify the DIBL-SS relation and the Dit extraction method.

Fig. 3.1 shows the capacitor model of 2D electrostatics of a four-terminal MOS-

FETs. The surface potential of the top barrier (ΨS) is calculated as [67]

ΨS =
CGB
CΣ

VG +
CDB
CΣ

VD +
CSB
CΣ

VS +
CD + Cit
CΣ

VB +
Q

CΣ

(3.1)

where Q is the charge density at the top barrier when all terminals are grounded in the

capacitor model, CΣ is the parallel combination of all the five capacitors, explicitly,

CΣ = CGB + CDB + CSB + CD + Cit (3.2)

Eq. (3.1) explains the impact of SCEs on DIBL and SS. At short Lch, CDB and

CSB are comparable with CGB so that VD and VS can also affect the charge in the

channel. As Lch decreases, CGB becomes smaller so that CDB/CΣ increases which

lowers the barrier. Meanwhile, CGB/CΣ decreases which increases the SS. DIBL and

SS can be expressed as [72,73]
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Fig. 3.1. Illustration of the capacitor model of 2D electrostatics on MOS-
FETs. ΨS is the potential at the top barrier which is controlled by gate,
source, drain and body potentials. CSB, CDB and CGB represent source
to body capacitance, drain to body capacitance and gate to body capaci-
tance, respectively. CD is the depletion capacitance, it is sometimes absent
in the thin-body SOI and nanowire structures considered. Cit is the in-
terface trap capacitance. The model describes the electrostatic control of
the potential on the top of the barrier.

DIBL =
∂VG
∂VD

∣∣∣∣
ΨS

=
CDB
CGB

(3.3)

and

SS =
∂log(ID)

∂ΨS

∂ΨS

∂VG
=
ln(10)kT

q

CΣ

CGB
. (3.4)
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By inserting eq. (3.2) and eq. (3.3) into eq. (3.4) and using CGB=Cox, SS as a

function of DIBL is obtained as follows,

SS =
ln(10)kT

q
(1 + γDIBL+

CD + Cit
Cox

), (3.5a)

SS =
ln(10)kT

q
γDIBL+ SSL, (3.5b)

where

γ = 1 +
CSB
CDB

, (3.6)

and

SSL =
ln(10)kT

q
(1 +

CD + Cit
Cox

), (3.7)

which is the classic long channel SS formula that is the same as in eq. (1.7). The γ

defined here is a function of CSB/CDB. In particular, at low drain bias, γ equals to

2 because of the source and drain symmetry (CSB=CDB when VD=VS). If DIBL is

measured at high drain bias, it is reasonable to assume that γ deviates from 2 but

still a constant number, as suggested by experiment and simulation in Fig. 3.2. Thus,

in a set of devices with the same device structure and DIBL evaluated at the same

bias condition, γ is close to a constant number. Eq. (3.7) is the model of SS typically

seen at long channel devices without considering SCEs. The depletion capacitance,

CD, sometimes is absent in the thin-body SOI and nanowire structures considered.

In classical subthreshold Dit extraction method, eq. (3.7) is used to calculate Dit

from SSL without considering SCEs. However, eq. (3.4) and eq. (3.5) point out

that classical subthreshold method in Dit extraction, which assumes CDB/CGB → 0,

would give a significant overestimation of Dit in ultra-scaled MOSFETs due to the

failure to take CDB into account. DIBL-SS relation can be used here to eliminate the

SCEs in SS as SS is a first order linear function DIBL. As shown in eq. (3.5b), the

slope of SS with respect to DIBL is γln(10)kT/q while the intersection with y-axis

at DIBL=0 is SSL. Therefore from the y-axis intersection of DIBL-SS relation, SSL

can be extracted. Then, Dit can be evaluated classically using eq. (3.5b). By using
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Cit=q
2Dit and assuming CD is small, Dit can be calculated by simple algebra. The

result is

Dit =
Cox
q2

(
qSSL

ln(10)kT
− 1). (3.8)

When eq. (3.5) and eq. (3.8) are applied to extract Dit, we need to have the

devices with different DIBL. This can be done simply by fabricating devices with

different Lch at similar scale and with SCEs to obtain a clear range of DIBL. Device-

to-device variability also provides source of various DIBL. Fig. 3.2(a) shows SS versus

DIBL on three sets of silicon MOSFETs with different Lch and structures to verify eq.

(3.5). The devices are fabricated with Lch from 30 nm to 60 nm for silicon gate-all-

around (GAA) MOSFETs [74], from 35 nm to 85 nm for SOI silicon MOSFETs [75],

from 30 nm to 120 nm for fully depleted SOI (FDSOI) silicon MOSFETs as simulation

results [76]. It is found by both experiments and simulations that SSL extracted from

silicon devices is close to ideal 60 mV/dec at room temperature due to the low Dit in

silicon devices and negligible CD in thin-body SOI and GAA structures. Fig. 3.2(b)

shows the application of this method to Dit evaluation of InGaAs GAA MOSFETs.

The detailed device fabrication process and device performance can be found in [12].

The devices are fabricated with Lch from 20 nm to 80 nm, nanowire width from 20 nm

to 35 nm and with 0.5 nm Al2O3/4 nm LaAlO3 as gate dielectric, EOT is 1.2 nm. The

SSL is extracted to be 66.3 mV/dec. The estimated Dit from eq. (3.8) is 1.9× 1012

eV−1 cm−2 which is a factor of 2 smaller than the overestimated value of ∼4× 1012

eV−1 cm−2 from the measured SS [12].

To further verify the proposed Dit extraction method. TCAD simulation is done

on silicon GAA MOSFETs. The simulated devices have a cylinder silicon nanowire

channel with Lch from 15 nm to 60 nm, 10 nm nanowire diameter (DNW ) and with

2 nm SiO2 as gate dielectric. The channel material is intrinsic silicon so that CD is

negligible. Dit from 0 to 1× 1012 eV−1 cm−2 is used in simulation. DIBL-SS relations

of the silicon GAA devices with different Dit are plotted as shown in Fig. 3.3 and

Dit is extracted by eq. (3.5) and eq. (3.8) at the same time. The Dit extracted from
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capacitor model of 2D electrostatics. The proposed Dit extraction method is based

on classical subthreshold method but SCEs are eliminated from the DIBL-SS re-

lation by linear fitting of SS with respect to DIBL. The model is shown to be in

good agreement with both experimental and simulation results. The proposed Dit

extraction method provide clear guideline on reliability and radiation effect studies

of oxide/semiconductor interfaces on ultra-scaled MOSFETs [77].

3.3 Low Frequency Noise and Random Telegraph Noise on Near-ballistic

III-V MOSFETs

Low frequency noise and RTN characterizations can be used as alternate probes to

quantitatively analyze performance, variability and reliability of highly scaled devices

[78–86]. Furthermore, low noise is required in advanced digital or analog circuit

applications so that it is important to systematically study the noise performance and

identify noise sources for transistors made of new material systems such as InGaAs

MOSFETs. In this work, we report the observation of RTN in highly scaled InGaAs

GAA MOSFETs fabricated by a top-down approach. RTN and low frequency noise

were systematically studied for devices with various gate dielectrics, channel lengths

and nanowire diameters. Mobility fluctuation is identified to be the source of 1/f

noise. The 1/f noise was found to decrease as the channel length scaled down from

80 nm to 20 nm comparing with classical theory, indicating the near-ballistic transport

in highly scaled InGaAs GAA MOSFET. Low frequency noise in ballistic transistors

is discussed theoretically.

It has been generally admitted that the low frequency noise in MOSFETs can be

well described by carrier number fluctuation model or mobility fluctuation model [87].

RTN is attributed to the trapping and de-trapping event in a single defect. 1/f noise

is the superposition of a number of individual RTNs in the carrier number fluctuation

theory. On the other hand, classical theories suggest that 1/f noise increases inversely

with decreasing channel length [88–95]. If true, this may negate some of the perfor-
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Fig. 3.4. Schematic and cross-section of the present InGaAs GAA MOS-
FETs.

mance gain of short channel transistors [78–80]. Several groups have recently reported

RTN of bottom-up synthesized long-channel InAs nanowire MOSFETs [96–98], and

InGaAs FinFETs [99]. However, there havent been any work systematically studies

low frequency noise and RTN on highly scaled InGaAs MOSFETs.

Here, this section (i) reports the observation of RTN on top-down fabricated In-

GaAs GAA MOSFETs, (ii) examines the origin of low frequency noise on highly scaled

InGaAs GAA MOSFETs, (iii) systematically studies the property of low frequency

noise and RTN characteristics on near-ballistic InGaAs GAA nanowire MOSFETs

with nanowire width varying from 20 nm to 35 nm, channel length varying from 20 nm

to 80 nm and with various gate dielectrics, (iv) theoretically studies and predict the

low frequency noise behavior in transistors working in ballistic limit [86, 100].

Fig. 3.4 shows the schematic diagram and cross-sectional view of an InGaAs

GAA MOSFET. The top-down fabrication process can be found in [12]. The samples

used for noise characterizations and device dimensions are summarized in Table 3.2.
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Table 3.2.
Description of samples and device dimensions

Sample A

(Al2O3 first)

Sample B

(LaAlO3 first)

Sample C

(Al2O3 only)

Channel

Material

10 nm In0.65Ga0.35As

/10 nm In0.53Ga0.47As

/10 nm In0.65Ga0.35As

Lch (nm) 20 20, 30, 50, 80 20

LNW (nm) 200 200 200

WNW (nm) 20 20, 25, 30, 35 20

TNW (nm) 30 30 30

Gate

Stack

0.5 nm Al2O3

/4 nm LaAlO3

4 nm LaAlO3

/0.5 nm Al2O3

3.5 nm Al2O3

EOT (nm) 1.2 1.2 1.7

Samples A and B have a 0.5 nm Al2O3/4 nm LaAlO3 stack (EOT = 1.2 nm), where

Al2O3 was grown before LaAlO3 for sample A and vice versa for sample B. Sample

C has 3.5 nm Al2O3 as gate dielectric (EOT = 1.7 nm). The InGaAs channel layer

consists of one 10 nm In0.53Ga0.47As layer sandwiched by two 10 nm In0.65Ga0.35As

layers. Devices with Lch varying from 20 nm to 80 nm, WNW varying from 20 nm to

35 nm, TNW of 30 nm and LNW of 200 nm are measured. LNW is the physical length

of the nanowire while Lch is the channel length defined by implantation.

Source current power spectral density (SIS) was measured in the linear region of

operation (VDS=50 mV). The gate voltage (VGS) is supplied by a digital controllable

voltage source. A Stanford SR570 battery-powered current amplifier is used as source

voltage supply and current amplifier for the source current (IS). IS is used due to the

relatively large junction leakage current in ID. IS shows more clearly the fundamen-
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Fig. 3.5. (a) Output and (b) transfer characteristics of a Lch=20 nm
InGaAs GAA MOSFET with Al2O3/LaAlO3 gate dielectric (Sample A,
EOT=1.2 nm) and WNW=20 nm. IS is used due to relatively large junc-
tion leakage current in ID.

tal transport properties inside the nanowire. The SR570 current amplifier output is

directly connected to a Tektronix TDS5032B oscilloscope to record RTN signal and

an Agilent 35670A dynamic signal analyzer to obtain the power spectrum density

(PSD) of the noise of IS at the same time. All noise measurements were performed at

VDS=50 mV and at VGS from −0.2 V to 0.4 V and at room temperature unless oth-

erwise specified. Positive bias temperature instability (PBTI) measurement confirms

that VT shift less than 10 mV during noise measurement (Maximum VGS=0.4 V) is

ensured [86] so that IS shift is negligible during noise measurement.

Fig. 3.5(a) and 3.5(b) show a typical output and transfer characteristics of

a GAA MOSFET measured in this work with Lch=WNW=20 nm. Fig. 3.6(a)

and (b) show RTN signals in time domain of an InGaAs GAA MOSFET, with

Lch=20 nm, WNW=20 nm and 3.5 nm Al2O3 as gate dielectric, at VGS=−0.025 V and

VGS=−0.075 V at 15 ◦C. Two distinct current switching levels are observed, which

clearly indicates the existence of a single active trap. Fig. 3.7 shows SIS normalized
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GAA MOSFET with Lch=80 nm, WNW=30 nm at VGS=1 V and VDS varying from

0 V to 4 V. The drain side is heated at high VDS by ballistic electrons, indicating

that electrons travel substantial distance into the drain contact before reaching equi-

librium with the lattice. It supports the conclusion of Fig. 3.12 and Fig. 3.13 that

InGaAs GAA MOSFETs in this work are near-ballistic. Hot Carrier Injection (HCI)

measurement on Sample C shows HCI degradation is weakly dependent on Lch be-

cause less electrons would interact with interface and oxide at the end of channel. It

further confirms the near-ballistic transport in the devices as we reported in [106].

To further understand the low frequency noise behavior in near-ballistic MOS-

FETs, low frequency noise is theoretically studied in ballistic transistors. In princi-

ple, in a ballistic MOSFETs, electrons transport from source to the drain without

any scattering processes and then equilibrate to lattice temperature at drain contact.

Therefore, mobility fluctuation will not happen inside the channel of ballistic tran-

sistors. There have been theoretical and experimental study on long channel carbon

nanotube ballistic transistor [107, 108]. Carrier number fluctuation is proposed to

dominate the 1/f noise in the long-channel (600 nm) carbon nanotube transistors

because the large number of defects inside the gate oxide. However, this theory will

not be applied in the short channel III-V MOSFETs because the highly scaled chan-

nel length make it impossible to have enough number of defects in gate oxide to have

a 1/f noise spectrum. In this work, low frequency noise in ballistic transistors with

no trapping and de-trapping events in gate oxide is studied. In ideal case, if there

are no active defects meanwhile no scattering process inside channel, there will be no

current fluctuation with fixed VGS and VDS in an ideal ballistic transistor. However,

as RSD exists in every transistor and resistor noise also has a 1/f noise spectrum,

current fluctuation from series resistor is one the noise source in ballistic transistors.

The noise originating from S/D resistances can be modeled as the combination of

mobility fluctuation noise and thermal noise. Thermal noise can be negligible in low

frequency noise analysis because it is independent of frequency in noise spectrum. As

RSD is fluctuated, the VGS and VDS of the ballistic transistor will also be fluctuating.



53

Thus, it is important to understand the effect of RSD on the low frequency noise of

ballistic transistors. If we consider RSD and ballistic transistor together, the total

source current PSD can be expressed as [87],

SIS =
SIch + g2

chR
2
DSIRD

+R2
S(gm + gch)

2SIRS
)

[1 + gmRS + gch(RS +RD)]2
(3.9)

where SIch is the source current PSD inside channel, SIRD
is the source current PSD

in drain series resistance (RD), SIRS
is the source current PSD in source series resis-

tance (RS), gch is the channel conductance and gm is the transconductance. If we

consider ballistic transistor and symmetric S/D so that SIch=0, RS=RD=RSD/2 and

SIRS
=SIRD

=2SIRSD
, eq. (3.9) becomes

SIS =
R2
SD[g2

ch + (gm + gch)
2]SIRSD

2[1 + (gm + 2gch)RSD/2]2
= βSIRSD

=
βαHI

2
S

fN
, (3.10a)

β =
R2
SD[g2

ch + (gm + gch)
2]

2[1 + (gm + 2gch)RSD/2]2
, (3.10b)

SIS
I2
S

=
αH
fN

(3.10c)

where we consider SIRSD
=
αHI

2
S

fN
, αH is the Hooge parameter and N is the number of

carriers in S/D region [104]. Thus, in ballistic transistors, SIS/I2
S will be independent

of Lch. If (gm + 2gch)RSD/2 � 1, SIS/I2
S is independent on IS to the zeroth order

approximation. If (gm + 2gch)RSD/2 � 1, SIS/I2
S has a positive correlation with

IS. Fig. 3.15 shows the relation between SIS/I2
S and IS/VDS in an InGaAs GAA

MOSFETs with Lch=20 nm, WNW=25 nm and at VDS from 0.1 V to 0.5 V. SIS/I2
S is

plotted versus IS/VDS because SIS/I2
S is inversely proportional to IS/VDS in mobility

fluctuation model of MOSFETs [87]. SIS/I2
S shows weaker negative correlation with

IS/VDS as VDS increases. This phenomenon suggests noise from series resistance has

a higher contribution to the source current noise as VDS increases. In near-ballistic

transistors, ballistic efficiency at high VDS increases which reduces the noise from the

channel so that low frequency noise depends more on the series resistance.
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top-down InGaAs GAA MOSFETs and only around threshold voltage because RTN

is negligible comparing with mobility fluctuation induced noise at high VGS.
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Fig. 4.1. (a) Schematic diagram and (b) TEM cross-sectional image of an
InGaAs planar TFET.

and de-trapping near source-channel junction because it is weakly dependent on Lch

and this is also confirmed from SS reduction in fast I-V measurement. A detailed

scaling metrics study (SS, DIBL, VT , ION , gm) are carried out, showing immunity

to SCEs with scaled EOT and well-behaved device performance down to sub-100 nm

and better immunity to SCEs comparing with InGaAs planar MOSFETs with lightly

p-doped channel.

Fig. 4.1 shows the (a) schematic diagram and (b) TEM cross-sectional image

of a fabricated InGaAs planar TFET. The device fabrication process flow is shown

in Fig. 4.2. The 500 nm intrinsic InAlAs and 100 nm intrinsic In0.53Ga0.47As layers

were epitaxially grown on semi-insulating (100) InP substrates as starting material.

After solvent clean and (NH4)2S pretreatment, 10 nm Al2O3 was grown by ALD at

300 ◦C as an encapsulation layer and diffusion mask for Zn diffusion. Source and

drain Si implantation was then performed at 20 keV with a dose of 1× 1014 cm−2
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 MBE Growth
 10nm ALD Al2O3 Deposition
 Si Implantation (20keV 1×1014/cm2)
 Dopant Activation (600oC 15s in N2)
 BCl3/Ar ICP Dry Etching 

Open Zn Diffusion Window
 Source Zn Spin-on-Glass Doping 

(450/500/550 oC)
 ALD Al2O3 Gate Dielectric Deposition

(1.4/2.3/3.6/8 nm)
 Ni/Au Gate Metal Deposition
 Pt/Au Ohmic Contact

Fig. 4.2. Fabrication process flow for the InGaAs TFET.

followed by dopant activation at 600 ◦C for 15 s in N2. After source patterning using

diluted ZEP520A and BCl3/Ar based dry etching, the 10 nm Al2O3 was removed in

selected area as open window for Zn diffusion. Dry etching is preferred here to avoid

undercut in wet etching process so that short channel devices can be achieved. Zn-

doped spin-on-glass (SOG) was then spinned on top of the wafer followed by RTA in

N2 at 450/500/550 ◦C for 1 min. Zn-doped p+ InGaAs region is etched down partly

because of the less selective dry etching process and oxidation from O2 in SOG during

Zn diffusion process [115]. After SOG and Al2O3 removal in diluted BOE:H2O=1:5

solution for 10 min and 10 min passivation in 10% (NH4)2S, 2.3/3.6/8 nm Al2O3

were grown by ALD at 250 ◦C as gate dielectric. Then, Ni/Au was deposited as the

gate and Pt/Au Ohmic contacts were formed for both source and drain. All RTN

measurements are done in same setup as [100].
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Fig. 4.3. TLM measurement on doped InGaAs by (a) Zn diffusion and
(b) Si implantation.

Fig. 4.3 shows the TLM measurements of (a) Zn-doped p+ InGaAs with Pt/Au

contact (b) Si Implanted n+ InGaAs with Pt/Au contact. The p+ InGaAs is doped

through Zn diffusion from Zn-doped SOG at 450 ◦C and 500 ◦C. Both n-type and p-

type TLMs were fabricated together along with InGaAs TFET devices. Contact resis-

tance (RC) is extracted to be 0.22 Ω mm for Zn diffusion at 450 ◦C and 0.0124 Ω mm for

Zn diffusion at 500 ◦C, showing comparable results comparing with RC=0.084 Ω mm

for n+ InGaAs formed by Si implantation and with Pt/Au contact. Sheet resistance

(Rsh) is extracted to be 290 Ω/� for Zn diffusion at 450 ◦C, 184 Ω/� for Zn diffusion

at 500 ◦C and 144 Ω/� for n+ InGaAs formed by Si implantation. Although RC and

Rsh are larger for Zn diffusion at 450 ◦C than for Zn diffusion at 500 ◦C, the resistance

is still small enough for the InGaAs TFET devices as discussed in on-state scaling

metrics in the following.
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In summary, the scaling properties of InGaAs planar TFETs are systematically

studied. RTN is observed on InGaAs TFET on both long channel and short channel

devices for the first time. RTN is found to origin from trapping and de-trapping near

source-channel junction so that weakly dependent on Lch. EOT scaling is confirmed

to improve both the on-state and off-state performance and reduce SCEs. It is found

InGaAs planar TFET has better immunity to SCEs comparing with InGaAs planar

MOSFETs.

4.3 3D Gate-all-around InGaAs Tunnel Field-effect Transistors

3D MOSFETs such as FinFETs and GAA MOSFETs are well known to offer

better gate control so that they have better immunity to the short channel effects.

Therefore, by using such structures in TFETs, the performance of TFETs in both on-

and off-states can be enhanced [121,124]. In this section, 3D InGaAs GAA TFETs are

fabricated and studied with different nanowire dimensions. It is found that InGaAs

GAA TFETs with smaller WNW have smaller SS, larger ION and gm, showing both on-

and off-state performance improvement, suggesting InGaAs 3D TFETs are promising

for future low power and high speed logic applications.

Fig. 4.15 shows the (a) cross-sectional view and (b) top view schematic diagram

a fabricated InGaAs gate-all-around TFET. The device fabrication process flow is

shown in Fig. 4.16. The starting material was a 2 inch semi-insulating (100) InP

substrate. InP buffer layer and 50 nm intrinsic In0.53Ga0.47As layers were epitaxi-

ally grown by MBE. After solvent clean and (NH4)2S pretreatment, 10 nm Al2O3

was grown by ALD at 300 ◦C as an encapsulation layer and diffusion mask for Zn

diffusion. Source and drain Si implantation was then performed at 20 keV with a

dose of 1× 1014 cm−2 followed by dopant activation at 600 ◦C for 15 s in N2. After

source patterning using diluted ZEP520A and BCl3/Ar based dry etching, the 10 nm

Al2O3 was removed in selected area as open window for Zn diffusion. Dry etching

is preferred here to avoid undercut in wet etching process so that short channel de-
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Fig. 4.15. (a) Cross-sectional view and (b) top view schematic diagrams
of an InGaAs GAA TFET.

vices can be achieved. Zn-doped spin-on-glass (SOG) was then spinned on top of the

wafer followed by RTA in N2 at 450 ◦C for 1 min. Zn-doped p+ InGaAs region is

etched down partly because of the less selective dry etching process and oxidation

from O2 in SOG during Zn diffusion process [115]. SOG and Al2O3 were removed

in diluted BOE:H2O=1:5 solution for 10 min. Nanowire fins were then defined by

BCl3/Ar reactive ion etching. HCl based release process was then performed to cre-

ate free standing InGaAs nanowires, using similar process as in [29]. After 10 min
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5. NEGATIVE CAPACITANCE FIELD-EFFECT

TRANSISTORS WITH III-V AND EMERGING

SEMICONDUCTOR MATERIALS

5.1 Introduction

The motivation of steep-slope transistors has already been discussed in chapter

1.3. The origin of the fundamental thermionic limit of the subthreshold slope in a

MOSFET is from the thermal distribution of electrons. In a NC-FET, the insulating

ferroelectric layer served as a negative capacitor so that channel surface potential can

be amplified more than the gate voltage, and hence the device can operate with SS

less than 60 mV/dec at room temperature [15]. In this chapter, section 5.2 studies the

physics of NC-FETs as steep-slope transistors. Section 5.3 discusses the ferroelectric

properties in ALD deposited HZO, which is used as in the gate stack of the following

sections. Section 5.4 studies MoS2 2D NC-FETs. Section 5.5 discusses NC-FETs

using InGaAs as channel material.

5.2 Physics of Negative Capacitance Field-effect Transistors

The device physics of a NC-FET is discussed here. A back-gate 2D NC-FET

structure is used as an example. The NC-FET device physics for other structures

such as 3D NC-FETs, top-gate NC-FETs can be treated similarly. As shown in

Fig. 5.1(a) a negative capacitance 2D transistor can be treated as an intrinsic 2D

transistor in series with an ferroelectric capacitor. In addition, the electrical behavior

of ferroelectric capacitor can be described by Landau-Khalatnikov (LK) equation

[15, 125, 126]. The potential distribution is essentially uniform (as illustrated by a

metal in Fig. 5.1(a)) across the interface between oxide and ferroelectric insulator,
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Fig. 5.1. (a) Schematic diagram of a back-gate 2D NC-FET. (b) Simpli-
fied small-signal capacitance representation of the 2D NC-FET. CS is the
capacitance of 2D channel, Cox is the capacitance of the oxide layer, and
CFE is the capacitance of the ferroelectric insulator layer.

which simplifies the overall analysis by allowing one to decouple the ferroelectric

insulator from the standard MOSFET structure. In fact, the errors caused by this

approximation can be ignored when the thickness of ferroelectric layer is not too

thick [127,128].

Fig. 5.1(b) shows a small-signal capacitance circuit of the NCFET. From this

capacitance network, SS can be written as,

SS =
2.3kBT

q

1
∂ΦS

∂VGS

=
2.3kBT

q
(1 +

CS
Cox

)(1− Cdevice
|CFE|

) (5.1)

Cdevice = 2Cfr +
CSCox
CS + Cox

(5.2)

Note that Cfr is the parasitic capacitance. SS must satisfy the condition,

0<SS<2.3kBT/q, so that non-hysteretic behavior and a sub-thermionic SS (inter-

nal gain>1) could be obtained at the same time. The constraint conditions as the

equations (5.3, 5.4) deduced from (5.1) are,

Cdevice < |CFE| (5.3)
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|CFE| > Ceq (5.4)

To satisfy non-hysteretic conditions, |CFE| need to be greater than Cdevice (eq.

(5.3)), while to satisfy internal gain condition (internal gain>1, SS<2.3kBT/q), |CFE|

need to be less than Ceq (eq. 5.4).

The complete LK equation of ferroelectric insulator is written as [129,130],

VFE = 2tFEαQ+ 2tFEβQ
3 + 6tFEγQ

5 + ρtFE
dQ

dt
(5.5)

where α, β, and γ are landau coefficients. α is less than zero for ferroelectric insulators

so that when Q is around zero, the capacitance of ferroelectric insulator can be less

than zero.

In summary, the NC-FET structure can achieve sub-60 mV/dec operation without

hysteresis at room temperature by inserting a ferroelectric insulator into the gate stack

of a MOSFET. The theory of such operation is discussed.

5.3 ALD Deposited Hafnium Zirconium Oxide as Ferroelectric Insulators

ALD hafnium zirconium oxide (HZO) is chosen as the ferroelectric insulator for

NC-FETs here for its ferroelectricity, CMOS compatible manufacturing, and ability

to scale down EOT to ultra-thin dimensions [131–134].

The TiN/HZO/TiN MIM capacitor shown in Fig. 5.2 is used as the test ferroelec-

tric capacitor. The fabrication process is discussed as follows. After standard solvent

clean, 30 nm TiN was deposited by ALD at 250 ◦C, using [(CH3)2N]4Ti (TDMAT)

and NH3 as precursors. Hf1-xZrxO2 film was deposited at 250 ◦C, using [(CH3)2N]4Hf

(TDMAHf), [(CH3)2N]4Zr (TDMAZr), and H2O as the Hf precursor, Zr precursor,

and O precursor, respectively. The Hf1-xZrxO2 film with different x can be achieved

by controlling HfO2:ZrO2 cycle ratio, x=0.5 unless otherwise specified. Then, 30 nm

TiN was deposited on top of HZO using the same process. Sample transfer in the

ALD deposition processes was within a glovebox, in which samples only exposed to

Ar environment. The sample was then annealed at different temperatures in N2 for 1
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Fig. 5.3. GI-XRD diffractograms of HZO. The formation of non-
centrosymmetric o-phase is believed to lead to the ferroelectricity of HZO
films after annealing at 400 ◦C.

min. 20 nm Ti/50 nm Au top electrodes were fabricated by photo lithography, e-beam

evaporation and lift-off process, followed by CF4/Ar dry etching process to isolate the

different Ti/Au top electrodes.
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The annealing temperature is critical in the ferroelectricity of HZO film. Fig. 5.2

shows the polarization-electric field measurement of HZO MIM capacitors without

RTA and RTA at 500 ◦C in N2 for 1 min. Clear dielectric to ferroelectric transition can

be seen after annealing on the metal-insulator-metal (MIM, TiN/10 nm HZO/TiN)

capacitor. The origin of such impact is studied by X-ray diffraction (XRD) mea-

surement. Grazing incidence XRD analysis in Fig. 5.3 depicts the crystallization

behaviors of HZO with no RTA and after RTA. The sample with 400 ◦C reveals

apparent orthorhombic phases (o-phases). The formation of non-centrosymmetric o-

phase is believed to lead to the ferroelectricity of HZO films after annealing [135,136],

as confirmed in Fig. 5.3.

The ferroelectricity and anti-ferroelectricity can be controlled by Hf:Zr ratio in

ALD HZO. Fig. 5.4(a) shows the hysteresis loop of polarization vs. electric field

(P-E) of TiN/HZO/TiN (MIM, ALD at 200 ◦C, RTA in N2 at 500 ◦C) capacitors

with different Hf:Zr ratio from 1:1 to 1:4. It is clear to see HZO shows ferroelectric

hysteresis loop when Hf:Zr ratio=1:1, while with more Zr composition in HZO, the
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Fig. 5.5. (a) Polarization-voltage measurement for 866 cycles (4 ms mea-
surement time for each) on the same HZO MIM capacitor. (b) Remnant
polarization versus cycle number. (c) Coercive voltage versus cycle num-
ber.

P-E hysteresis loop becomes anti-ferroelectric. Fig. 5.4 shows dP/dV vs. electric

field for (b) FE HZO and (c) AFE HZO. HZO with Hf:Zr ratio=1:1 shows two spikes

corresponding to ferroelectric switching while HZO with Hf:Zr ratio=1:4 shows four

spikes corresponding to anti-ferroelectric switching.

Fig. 5.5(a) shows the repeated cycling P-V measurement on a HZO MIM capac-

itor device for 866 cycles (4 ms for each measurement). It can be seen that the P-V

characteristics remain almost ideal ferroelectric hysteresis loop. Fig. 5.5(b) shows the

remnant polarization (Pr) versus cycle number. Pr shows negligible change during

the repeated cycling measurement. Fig. 5.5(c) shows the coercive voltage (Vc) versus
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Fig. 5.6. (a) P-V measurement of 30 different HZO MIM capacitor devices.
(b) Box plot of statistical distribution of remnant polarization. (c) Box
plot of statistical distribution of coercive voltage.

cycle number. Vc shows negligible change after first 30 cycles in the repeated cycling

measurement. The slight change of Vc in the first 30 cycles suggests the result of

initial charge trapping effects. Fig. 5.6(a) shows the statistical P-V measurement of

30 HZO MIM capacitors over the entire sample. Fig. 5.6(b) and 5.6(c) show the box

plot of statistical distribution of Pr and Vc. A very small variation in the P-V charac-

teristics is obtained among all 30 measured devices. The statistical measurement and

repeated cycling measurement confirm the ALD ferroelectric HZO process is repeat-

able, reliable and reproducible as a ferroelectric insulator for NC-FET applications.
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subthreshold slope. The maximum drain current of the NC-FETs fabricated in this

work is found to be around five times larger than MoS2 FETs fabricated on 90 nm

SiO2 using the same process. As will be discussed below, this is a direct consequence

of on-state voltage application in a JL-NCFET. Negative differential resistance, corre-

lated to the negative DIBL at off-state, is observed because of drain coupled negative

capacitance effect. Remarkably, the high performance sustains despite significant

self-heating in the transistors, as opposed to traditional bulk MOSFETs.

The experimental device schematic of a MoS2 NC-FET NC-FET, as shown in Fig.

5.7(a), consists of a mono-layer up to dozen layers of MoS2 as channel, 2 nm amor-

phous aluminum oxide (Al2O3) layer and 20 nm polycrystalline HZO layer as the gate

dielectric, heavily doped silicon substrate as the gate electrode and nickel source/drain

contacts. An amorphous Al2O3 layer was applied for capacitance matching and gate

leakage current reduction through polycrystalline HZO.

The fabrication started from a heavily doped silicon substrate. 20 nm H0.5Z0.5O2

was deposited by ALD as a ferroelectric insulator layer on heavily doped silicon

substrate after standard surface cleaning. Another 10 nm aluminum oxide layer was

deposited as an encapsulation layer to prevent the degradation of HZO by the reaction

with moisture in air. BCl3/Ar dry etching process was carried out to adjust the

thickness of Al2O3 down to 2 nm for capacitance matching. The annealing process

was then performed in rapid thermal annealing in nitrogen ambient for 1 minute at

various temperatures. MoS2 flakes were transferred to the substrate by scotch tape-

based mechanical exfoliation. Electrical contacts using 100 nm nickel electrode were

fabricated using electron-beam lithography, electron-beam evaporation and lift-off

process.

A cross-sectional transmission electron microscopy (TEM) image of a represen-

tative MoS2 NC-FET is shown in Fig. 5.7(b) and detailed energy dispersive X-ray

spectrometry (EDS) elemental mapping is presented in Fig. 5.7(c). The EDS analysis

confirms the presence and uniform distribution of elements Hf, Zr, Al, O, Mo and S.

No obvious inter-diffusion of Hf, Zr and Al is found.
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Simulation of interfacial potential vs. VDS.

down to 160 K. Measured SS is below the thermionic limit down to 220 K. SS below

190 K is above the thermionic limit because of the stronger impact of Schottky barrier

at lower temperatures.

Drain-induced-barrier-lowering is widely observed as one of the major evidences for

the short channel effects in MOSFETs [3]. In conventional MOSFETs, the threshold

voltage (VT ) shifts toward the negative direction as drain voltage. The DIBL, defined

as DIBL=−∆VT/∆VDS, is usually positive. It has been theoretically predicted that
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Thermo-reflectance image and (d) temperature map at different power
density from 0.6 W/mm to 1.8 W/mm.

advantage in applying ferroelectric gate stack to enhance on-state performance. An-

other type of NDR (Fig. 5.10(b)) is also clearly observed when the device is biased

at high VGS because of the self-heating effect from large drain current and voltage.

Fig 5.10(c) shows the thermo-reflectance image taken at different power density from







93

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
10

-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

SS
For

= 37.6 mV/dec

SS
Rev,min#1

= 42.2 mV/dec

SS
Rev,min#2

= 8.3 mV/dec

L
ch

=0.5 m

T
ch

=8 nm

I D
 (

A
/

m
)

V
GS

 (V)

 V
DS

=0.1 V

 V
DS

=0.5 V

NC w/ IMG

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
10

-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

SS=75.3 mV/dec

I D
 (

A
/

m
)

V
GS

 (V)

 V
DS

=0.1 V

 V
DS

=0.5 V

Internal FET

10 nm HfO
2

(a)

(b)
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measured at room temperature, same structure as Fig. 5.11. (b) ID−VGS
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tures (SSRev,min#1 and SSRev,min#2) are observed among almost all fabricated devices.

The second local minimum of SS is the result of the switching between two polar-

ization states of the ferroelectric oxide, associated with loss of capacitance match-
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Fig. 5.14. (a) ID−VGS characteristics comparison between MoS2 NC-FET
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for MoS2 NC-FET with IMG calculated based on internal MoS2 FET as
in (a). (c) Internal amplification calculated based on dVint/dVG in (b).

amplification greater than 2 is achieved for both forward and reverse gate voltage

sweeps.

The gate leakage current density is measured for both gate stack with and without

internal metal gate using capacitor structure and Ni as top electrode. The gate leakage

current of the whole stack (I1 for NC-FET with IMG and I2 for NC-FET without

IMG) within ±2 V is negligible to device I − V characteristics as shown in Fig. 5.15.

The leakage current through the internal gate dielectric (I3) and the ferroelectric

stack (I4) are also measured, as shown in Fig. 5.15(d). It is found that within ±2 V,

the leakage current density to the floating IMG (I3 and I4) is sufficiently small.



96

-10 -5 0 5 1010-9

10-7

10-5

10-3

10-1

101  20 nm HZO/2 nm Al2O3

 20 nm HZO/3 nm Al2O3/
20 nm Ni/10 nm HfO2

Le
ak

ag
e 

C
ur

re
nt

 (A
/c

m
2 )

Voltage (V)

20 nm HZO
Heavily Doped Si

2 nm Al2O3

Ni

20 nm HZO
Heavily Doped Si

3 nm Al2O3

20 nm Ni
10 nm HfO2

Ni

(a) (b)

(c)

-4 -3 -2 -1 0 1 2 3 410-9

10-7

10-5

10-3

10-1

101  20 nm HZO/3 nm Al2O3

 10 nm HfO2

Le
ak

ag
e 

C
ur

re
nt

 (A
/c

m
2 )

Voltage (V)

(d)

I1 I2

I3

I4

I2

I1

I3

I4

Fig. 5.15. (a) Cross-sectional view of a capacitor for leakage current mea-
surement with same gate stack as MoS2 NC-FET with IMG. (b) Cross-
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gate stack as MoS2 NC-FET without IMG. (c) Leakage current density of
the gate stack of MoS2 NC-FET with/without IMG (I1/I2). (4) Leakage
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(I4).

In conclusion, steep-slope MoS2 NC-FETs with ferroelectric HZO and internal

metal gate in the gate dielectric stack are demonstrated. SS less than 50 mV/dec

is obtained for both forward and reverse gate voltage sweeps, with minimum

SSFor=37.6 mV/dec and minimum SSRev=42.2 mV/dec.

5.5 III-V Negative Capacitance Field-effect Transistors

III-V materials such as InGaAs are well known as a promising high mobility

semiconductor material as discussed in chapter 2. In this section, we combine the ad-
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Fig. 5.16. Cross-sectional view of an InGaAs NC-FET with ferroelectric
MOSHEMT structure.

vantage of III-V high mobility material together with NC-FET structure and demon-

strate a III-V NC-FET with ferroelectric MOSHEMT structure. The devices exhibit

enhanced performance comparing with the III-V dielectric MOSHEMT using same

structure.

Fig. 5.16 illustrates the cross-sectional schematic diagram of the III-V NC-

FET. A 5 nm undoped Al0.2Ga0.8As, 12 nm undoped In0.2Ga0.8As and 23 nm undoped

Al0.2Ga0.8As with 4× 1012 cm−2 Si δ-doping layer located 3 nm above InGaAs, 1.5 nm

n-doped 1× 1018 cm−3 AlAs etch stop layer, and 60 nm n-doped 5× 1018 cm−3 GaAs

top layer have been sequentially grown on a GaAs buffer layer and semi-insulating

GaAs substrate.

Device isolation was done by wet etching using a H2SO4:H2O2:H2O (2:16:150)

solution. The etch rate is about 10 nm/s. Gate recess was performed using a citric

acid:H2O2:H2O (16g:4 ml:70 ml) solution (high seletivity between GaAs and AlAs)
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6. CONCLUSION AND OUTLOOK

6.1 Conclusion

The dissertation explores the post-CMOS device candidates from material and

device innovations.

• In chapter 2, fabrication process technology are developed for high perfor-

mance and ultra-scaled InGaAs nMOSFETs for future high speed and low

power applications. In particular, we developed a novel dry etching method

to obtain sub-10 nm Lch with Lch down to ∼3 nm are demonstrated on both

planar devices and FinFETs. Meanwhile, the InGaAs GAA MOSFETs with

raised source/drain and ultrathin body structures are studied and performance

improvement with thinner body are demonstrated. Forming gas anneal pas-

sivation on Al2O3/InGaAs interface are studied and confirmed to significantly

improve the quaility of Al2O3/InGaAs interface.

• In chapter 3, characterization methods on ultra-scaled devices are explored.

Firstly, a new and simple method to solve the SCE problem in Dit extraction is

proposed, which demonstrates a correction to the subthreshold method. Second,

low frequency noise and RTN characterizations are used as alternate probes to

quantitatively analyze performance, variability and reliability of highly scaled

devices. The first observation of RTN in highly scaled InGaAs GAA MOSFETs

fabricated by a top-down approach is reported. The 1/f noise was found to

decrease as the channel length scaled down from 80 nm to 20 nm comparing

with classical theory, indicating the near-ballistic transport in highly scaled

InGaAs GAA MOSFET.
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• In chapter 4, TFETs are studied as a candidate for steep-slope transistors.

InGaAs planar and 3D TFET fabrication process are developed. A detailed

scaling metrics study (SS, DIBL, VT , ION , gm) are carried out, showing im-

munity to SCEs with scaled EOT and well-behaved device performance. RTN

was observed on InGaAs TFET for the first time, which originates from elec-

tron trapping and de-trapping near source-channel junction. Meanwhile, 3D

InGaAs GAA TFETs are fabricated with channel length down to 50 nm and

studied with different nanowire dimensions. It is found that InGaAs GAA

TFETs with smaller WNW have smaller SS, larger ION and gm, showing both

on- and off-state performance improvement.

• In chapter 5, NC-FETs are studied as another candidate for steep-slope transis-

tors. ALD ferroelectric HZO process is developed and confirmed to repeatable,

reliable and reproducible as a ferroelectric insulator for NC-FET applications.

Steep-slope MoS2 NC-FETs are demonstrated by introducing ferroelectric HZO

into the gate stack with high drain current, bi-directional sub-thermionic sub-

threshold slope and negative differential resistance in drain current. The impact

of internal metal gate on 2D NC-FETs are also systematically studied. The

advantage of III-V high mobility material are also combined together with NC-

FET structure and a III-V NC-FET with ferroelectric MOSHEMT structure

is demonstrated, exhibiting enhanced performance comparing with the III-V

dielectric MOSHEMT.

6.2 Outlook

Material innovations and device structure innovations are currently the main

stream in solid-state device research. The current status and the future of device

research for logic applications are discussed.

For material point of view, the majorly studied materials are listed as follows,

• III-V, such as InGaAs
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• Ge

• 2D materials, such as MoS2 and BP

However, all these materials are currently experiencing particular problems that

limits their possibilities for immediate industrial digital logic applications. The mate-

rial research for logic device applications will still be driven by solving these problems.

• III-V

– oxide/interface

– reliability

– pFET counterpart

• Ge

– high performance nFET

– oxide/interface

– reliability

• MoS2

– single crystal wafer scale synthesis

– low mobility

– stable doping technique

• BP

– single crystal wafer scale synthesis

– air stability

– stable doping technique

– small bandgap in few layers
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From structure point of view, the majorly studied novel structures are listed as

follows,

• tunneling field-effect transistors

• negative capacitance field-effect transistors

However, all these structures are also currently experiencing challenges that limits

their immediate industrial digital logic applications. The device structure research

for logic device applications will still be driven by solving these problems.

• tunneling field-effect transistors

– low on-current in homojunction TFETs

– large SS in heterojunction TFETs with high on-current

– defects induced trap assistant tunneling

• negative capacitance field-effect transistors

– the origin of the negative capacitance is still in debating.

– time response

– high speed performance

In summary, although promising materials and device structures are emerging in

device research, the ongoing materials and device structures need to address many

problems to be used in real CMOS logic applications. The Si CMOS technology will

be likely to continue in commercial technology for next 5-10 years. But there are

a lot of opportunities for device researchers to explore for the future post-Si CMOS

technology from both material and device innovations.
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