6,045 research outputs found

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    Geometrical-based approach for robust human image detection

    Get PDF
    In recent years, object detection and classification has been gaining more attention, thus, there are several human object detection algorithms being used to locate and recognize human objects in images. The research of image processing and analyzing based on human shape is one of the hot topic due to the wide applicability in real applications. In this paper, we present a new object classification approach. The new approach will use a simple and robust geometrical model to classify the detected object as human or non-human in the images. In the proposed approach, the object is detected. Then the detected object under different conditions can be accurately classified (i.e. human, non-human) by combining the features that are extracted from the upper portion of the contour and the proposed geometrical model parameters. A software-based simulation using Matlab was performed using INRIA dataset and the obtained results are validated by comparing with five state-of-art approaches in literature and some of the machine learning approaches such as artificial neural networks (ANN), support vector machine (SVM), and random forest (RF). The experimental results show that the proposed object classification approach is efficient and achieved a comparable accuracy to other machine learning approaches and other state-of-art approaches. Keywords: Human classification, Geometrical model, INRIA, Machine learning, SVM, ANN, Random forest

    Image Features for Tuberculosis Classification in Digital Chest Radiographs

    Get PDF
    Tuberculosis (TB) is a respiratory disease which affects millions of people each year, accounting for the tenth leading cause of death worldwide, and is especially prevalent in underdeveloped regions where access to adequate medical care may be limited. Analysis of digital chest radiographs (CXRs) is a common and inexpensive method for the diagnosis of TB; however, a trained radiologist is required to interpret the results, and is subject to human error. Computer-Aided Detection (CAD) systems are a promising machine-learning based solution to automate the diagnosis of TB from CXR images. As the dimensionality of a high-resolution CXR image is very large, image features are used to describe the CXR image in a lower dimension while preserving the elements in the CXR necessary for the detection of TB. In this thesis, I present a set of image features using Pyramid Histogram of Oriented Gradients, Local Binary Patterns, and Principal Component Analysis which provides high classifier performance on two publicly available CXR datasets, and compare my results to current state-of-the-art research

    Real-time vehicle detection using low-cost sensors

    Get PDF
    Improving road safety and reducing the number of accidents is one of the top priorities for the automotive industry. As human driving behaviour is one of the top causation factors of road accidents, research is working towards removing control from the human driver by automating functions and finally introducing a fully Autonomous Vehicle (AV). A Collision Avoidance System (CAS) is one of the key safety systems for an AV, as it ensures all potential threats ahead of the vehicle are identified and appropriate action is taken. This research focuses on the task of vehicle detection, which is the base of a CAS, and attempts to produce an effective vehicle detector based on the data coming from a low-cost monocular camera. Developing a robust CAS based on low-cost sensor is crucial to bringing the cost of safety systems down and in this way, increase their adoption rate by end users. In this work, detectors are developed based on the two main approaches to vehicle detection using a monocular camera. The first is the traditional image processing approach where visual cues are utilised to generate potential vehicle locations and at a second stage, verify the existence of vehicles in an image. The second approach is based on a Convolutional Neural Network, a computationally expensive method that unifies the detection process in a single pipeline. The goal is to determine which method is more appropriate for real-time applications. Following the first approach, a vehicle detector based on the combination of HOG features and SVM classification is developed. The detector attempts to optimise performance by modifying the detection pipeline and improve run-time performance. For the CNN-based approach, six different network models are developed and trained end to end using collected data, each with a different network structure and parameters, in an attempt to determine which combination produces the best results. The evaluation of the different vehicle detectors produced some interesting findings; the first approach did not manage to produce a working detector, while the CNN-based approach produced a high performing vehicle detector with an 85.87% average precision and a very low miss rate. The detector managed to perform well under different operational environments (motorway, urban and rural roads) and the results were validated using an external dataset. Additional testing of the vehicle detector indicated it is suitable as a base for safety applications such as CAS, with a run time performance of 12FPS and potential for further improvements.</div

    Energy-Efficient HOG-based Object Detection at 1080HD 60 fps with Multi-Scale Support

    Get PDF
    In this paper, we present a real-time and energy-efficient multi-scale object detector using Histogram of Oriented Gradient (HOG) features and Support Vector Machine (SVM) classification. Parallel detectors with balanced workload are used to enable processing of multiple scales and increase the throughput such that voltage scaling can be applied to reduce energy consumption. Image pre-processing is also introduced to further reduce power and area cost of the image scales generation. This design can operate on high definition 1080HD video at 60 fps in real-time with a clock rate of 270 MHz, and consumes 45.3 mW (0.36 nJ/pixel) based on post-layout simulations. The ASIC has an area of 490 kgates and 0.538 Mbit on-chip memory in a 45nm SOI CMOS process

    Gabor-enhanced histogram of oriented gradients for human presence detection applied in aerial monitoring

    Get PDF
    In UAV-based human detection, the extraction and selection of the feature vector are one of the critical tasks to ensure the optimal performance of the detection system. Although UAV cameras capture high-resolution images, human figures' relative size renders persons at very low resolution and contrast. Feature descriptors that can adequately discriminate between local symmetrical patterns in a low-contrast image may improve a human figures' detection in vegetative environments. Such a descriptor is proposed and presented in this paper. Initially, the acquired images are fed to a digital processor in a ground station where the human detection algorithm is performed. Part of the human detection algorithm is the GeHOG feature extraction, where a bank of Gabor filters is used to generate textured images from the original. The local energy for each cell of the Gabor images is calculated to identify the dominant orientations. The bins of conventional HOG are enhanced based on the dominant orientation index and the accumulated local energy in Gabor images. To measure the performance of the proposed features, Gabor-enhanced HOG (GeHOG) and other two recent improvements to HOG, Histogram of Edge Oriented Gradients (HEOG) and Improved HOG (ImHOG), are used for human detection on INRIA dataset and a custom dataset of farmers working in fields captured via unmanned aerial vehicle. The proposed feature descriptor significantly improved human detection and performed better than recent improvements in conventional HOG. Using GeHOG improved the precision of human detection to 98.23% in the INRIA dataset. The proposed feature can significantly improve human detection applied in surveillance systems, especially in vegetative environments
    • …
    corecore