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ABSTRACT

IMAGE FEATURES FOR TUBERCULOSIS CLASSIFICATION

IN DIGITAL CHEST RADIOGRAPHS

by

Brian Hooper

June 2020

Tuberculosis (TB) is a respiratory disease which affects millions of people each

year, accounting for the tenth leading cause of death worldwide, and is especially

prevalent in underdeveloped regions where access to adequate medical care may be

limited. Analysis of digital chest radiographs (CXRs) is a common and inexpensive

method for the diagnosis of TB; however, a trained radiologist is required to interpret the

results, and is subject to human error. Computer-Aided Detection (CAD) systems are a

promising machine-learning based solution to automate the diagnosis of TB from CXR

images. As the dimensionality of a high-resolution CXR image is very large, image

features are used to describe the CXR image in a lower dimension while preserving the

elements in the CXR necessary for the detection of TB. In this thesis, I present a set of

image features using Pyramid Histogram of Oriented Gradients, Local Binary Patterns,

and Principal Component Analysis which provides high classifier performance on two

publicly available CXR datasets, and compare my results to current state-of-the-art

research.
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CHAPTER I

INTRODUCTION

Tuberculosis (TB) is a respiratory disease caused by an infection of the bacteria

Mycobacterium Tuberculosis in the lungs. TB can be contracted through the air by

exposure to a person already infected with TB. In 2018, it was estimated that 10 million

people contracted TB, and approximately 1.4 million people die from the disease every

year. As of 2018, TB accounted for the tenth leading cause of death worldwide and the

highest leading cause of death from a single infectious agent. TB is especially prevalent

in underdeveloped regions, with eight countries accounting for two-thirds of new TB

cases: India, China, Indonesia, The Philippines, Pakistan, Nigeria, Bangladesh, and South

Africa [1].

Currently, the primary method for diagnosing tuberculosis is the detection of

Mycobacterium Tuberculosis using sputum smear microscopy; however, this process

can take several days or weeks for the sample to be identified, and the test can suffer

from a high number of false positives. As such, it is frequently used in combination with

the analysis of chest radiographs (CXRs), especially due to the wide availability and

relative low cost of digital radiography machines. However, CXRs still require analysis

by a trained radiologist, and are subject to human error and are dependent on the level

of expertise of the radiologist. The difficulty in CXR analysis is compounded by the

varying manifestations of TB on chest radiographs, with both the texture and geometry

of the lungs affected. Overlapping tissue structures in the CXR increases the complexity

of interpretation. Other methods, such as blood tests, can be more reliable than CXR

diagnosis but are generally much more costly and time consuming, and so are much less

commonly used than CXRs [2].
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There is currently interest in applying Computer-Aided Detection (CAD) systems

to the detection of tuberculosis and other respiratory diseases such as pneumonia. In

regions lacking a sufficient number of trained radiologists, CAD systems could be used

to help screen patients and highlight those with the greatest need for further treatment,

and greatly reduce the time required to screen a large population [2]. However, much

of the current research in developing CAD systems for use with CXRs is dedicated to

early detection of lung cancer, with a comparatively small number of studies dedicated

to TB and other similar pathologies [3]. Typically, CAD systems work by first pre-

processing the CXR images, segmenting the region of interest (ROI), extracting image

features, and classifying the disease [4]. Publicly available CXR datasets devoted to the

diagnosis of TB and other pathologies have contributed to the increase in studies of CAD

systems. Image feature descriptors can be used to reduce the dimensionality of CXR

images, and increase the performance of a classifier system. The goal of this thesis is to

develop a set of image features appropriate for the efficient and accurate classification

of Tuberculosis in CXR images. While my primary focus will be on image features, I

will study and compare different machine learning methods for image classification in

order to effectively evaluate my results. I will test my feature descriptors and classifier

models on two publicly available CXR datasets provided by Jaeger et al. [5]. The rest

of this thesis is organized as follows: In Chapter II, I introduce current methods for TB

diagnosis, CAD systems, and discuss current research in CAD systems for TB diagnosis.

In Chapter III, I present the background of image feature descriptors. Chapter IV provides

background information on Machine Learning classifier models. In Chapter V, I describe

the descriptor and classifier models, experimental results, and analysis of results. Finally,

in Chapter VI, I present my conclusions on the use of image feature descriptors for TB

diagnosis in CXR images.
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CHAPTER II

BACKGROUND

Tuberculosis Diagnosis

There are currently many methods for the diagnosis of Tuberculosis (TB), including

sputum smear microscopy, and analysis of chest radiographs (CXRs). CXR diagnosis

benefits from quick results, low cost, and ease of use. CXR images contain a wide range

of information about a patients health, and can be used to detect various illnesses such as

Pneumonia or lung cancer [3]. However, accurate assessment of a CXR is challenging,

requiring a highly trained specialist to correctly interpret the image. Even expert analysis

is not perfect, with one study from 1999 reporting that 19% of pulmonary nodules were

undetected by expert radiologists [6].

Many factors contribute to the difficulty of analyzing a CXR for the presence of

TB, including varying manifestations of TB, differences in image resolution and contrast,

noise, and overlapping tissue structures. The manifestation of TB on a CXR image is

complex, with a large number of abnormalities in the lung region that may or may not be

present. These abnormalities include texture abnormalities, such as changes in appearance

or structure, focal abnormalities, such as the presence of pulmonary nodules, and shape

abnormalities, meaning changes in the lung contour [7].

Common CXR imaging manifestations of TB include lung cavitations, pulmonary

consolidations, bilateral infiltrates, and pleural effusion, which can appear as blunted

costophrenic angles [8]. The difficulty of TB diagnosis is compounded by differences in

manifestations between active infections and inactive infections, meaning either patients

who have been previously treated for TB, or patients who have been exposed to small
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colonies of TB bacteria which remains inactive in the body. Patients with inactive TB

are at risk for TB infection if their immune system becomes compromised. Specifically,

patients with Human Immunodeficiency Virus (HIV) are at significantly higher risk for

TB, with TB accounting for one of the leading causes of death among people infected

with HIV [1].

Computer-Aided Detection

In recent years, there has been an interest in the development of Computer-Aided

Detection (CAD) systems for the diagnosis of TB. Such systems would reduce the

time it takes to screen a large population, and more effectively filter patients with the

highest need for further treatment. There are currently multiple commercial available

CAD systems for the analysis of CXR images, including CAD4TB and Riverain [9].

However, because of the complexity of CXR images, the development of an effective

CAD system is challenging, and the majority of commercially available CAD systems are

dedicated to the detection of lung cancer, with the research towards detecting other types

of pathologies relatively limited. Additionally, current commercial CAD systems do not

match the performance of state of the art research systems, with one review of CAD4TB

performance showing an AUC ranging from 0.71 to 0.84. A new version of CAD4TB,

released in 2019, used a deep learning model trained on a dataset of 500 images from

Pakistan, and achieved a specificity of 98% and a sensitivity of 90% [10].

Typically, CAD systems work in the following manner: pre-processing,

segmentation, feature extraction, and classification. Segmentation, or region-of-interest

extraction, isolates the lung regions within the image. This allows the feature extraction

and classification steps to only act on those regions within the image that contribute to

a positive or negative diagnosis, removing all other regions in the image that only act
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as noise. Automatic segmentation of lung regions is one of the most difficult aspect of

CAD systems, and as such, there have been many studies that focus on lung segmentation

methods. [5] [11].

Pre-processing includes any kind of image transformation that occurs prior to

segmentation or feature extraction, such as resizing, cropping, rotation, equalization, or

other image processing technique. Because contrast has a large influence on the detection

of lung abnormalities, contrast enhancement can be applied to more effectively highlight

these regions. Pre-processing steps can be an important factor in reducing the overall

noise in a CXR image. Noise can be characterized in two categories: radiographic noise,

resulting from variations in radiographic techniques and equipment, and anatomical

noise, referring to the tissue structures, such as ribs or vascular structures, that surround

and overlap the lungs. In CXR images, anatomic noise contributes significantly to

the difficulty in detecting pulmonary nodules [12]. In addition to noise reduction,

segmentation is important in defining the outer shape of the lung region. Deformations

in lung shape, such as cavities, can contribute to the diagnosis of TB. In general,

segmentation methods can be grouped into two categories: rule-based methods, and

machine learning based methods. Rule-based methods include segmentation methods

that use location, texture, and shape features to define regions of interest algorithmically.

The category also includes deformable model based methods. Machine learning based

methods use supervised or unsupervised learning to classify pixels as belonging to a

particular anatomical structure.

As accurate classification of TB in CXR images requires high-resolution images,

the dimensionality of the image causes challenges in training a classifier system. For

example, a 1000 by 1000 pixel image contains one million dimensions. As such, methods

for dimensionality reduction, such as image feature descriptors, are typically used to
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reduce the size of the dataset required to train a classifier. I describe various feature

descriptors in Chapter III. In some systems, such as Convolutional Neural Networks,

feature extraction and classification are combined into one step.

Related Work

In recent years, various CAD systems have been developed using feature extraction

and image classification methods for CXR diagnosis. Vajda et al. [8] considered three

feature sets for classification of segmented CXR images from the Montgomery and

Shenzhen CXR datasets [5]. Set A consisted of shape, edge, and texture descriptors, with

an overall vector length of 192. Set B consisted of 595 intensity, edge, texture, color, and

shape moment features. Set C contained only shape measurements, with a much smaller

set of only 12 features. Using a neural-network based classifier on the Montgomery

dataset, the authors obtained an AUC of 0.87, 0.72, 0.71 on sets A, B, and C, respectively.

With the Shenzhen dataset, an AUC of 0.99, 0.90, and 0.77 was achieved.

Jaeger et al. [5] created an effective algorithm for automatic lung boundary

segmentation. Using a content-based image retrieval method combined with a set of

manually segmented training images, the authors matched patient CXRs to the closest

matching training images, and then warped the patient CXR image to the training set

using a nonrigid registration algorithm. This work provided the segmentation used in the

Montgomery and Shenzhen datasets.

Hogweg et al. [7] used lung sub-segmentation to extract images features from four

sections for each lung: lower, middle, central, and upper. Using two datasets consisting

of 200 CXR images each, the researchers achieved a best AUC for TB detection of 0.90.

Automatic segmentation was achieved using a combination of pixel classification and

shape model information. This method of incorporating spatial data is promising for the
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development of a CAD system because TB can show as present different anomalies on

a CXR. However, the precise segmentation requirements of this method make its use on

low-quality images challenging.

Xue et al. [13] proposed a CAD system to distinguish between frontal and lateral

CXR images. Using a combination of image profile, body shape, Pyramid Histogram

of Oriented Gradients (PHOG), and contour-based shape features, the authors achieved

a very high accuracy of 99.9% on a CXR dataset containing 8300 images provided by

University of Indiana School of Medicine .

Carrillo-de-Gea et al. [14] created a CAD system to classify healthy lungs from

those with any form of non-normality or pathology present based on an ensemble of

location-specific classifiers. For their training and test data, the researchers collected

a private dataset of CXR images from 25 male patients and 23 female patients. By

applying Local Binary Pattern (LBP) features to the image, they created an ensemble

of classifiers by training individual classifiers on local lung regions. With this method, the

they achieved a highest accuracy of 70% . While the overall accuracy is low, this result is

significant given that the dataset consisted of only 48 samples.

More recently, deep convolutional neural networks have been applied to TB

detection in CXR images. Hwang et al. [15] used transfer learning on a deep CNN with

the AlexNet architecture, achieving an accuracy of 67% on the Montgomery dataset, and

an accuracy of 83% on the Shenzhen dataset. Pasa et al. [16] developed a deep-learning

model with significantly lower hardware requirements than previous CNN-based CAD

systems. The authors trained the model using the Montgomery and Shenzhen datasets and

achieved an AUC of 0.811 and 0.9, respectively. Compared to Hwang et al., the authors

achieved similar classifier performance, but with a more efficient CNN model and without

using transfer learning.
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Similarly, CNNs have been used as feature extraction methods, while using a

traditional model for classification. Allaouzi and Ahmed [17] used a pre-trained CNN

as a feature extractor on CXR images from the ChestX-ray14 and CheXpert datasets. The

authors used the DenseNet-121 CNN architecture with transfer learning from ImageNet

as a feature extractor to give a feature vector of length 1024. For classification, they used

a Logistic Regression model and to predict the probability that each sample belonged to

each of the 14 labels in the ChestX-ray14 and CheXpert datasets. Metrics were calculated

by taking an average of the binary classification accuracy across all labels. For the

ChestX-ray14 dataset, the researchers obtained an AUC of 0.88, and an AUC of 0.81

on the CheXpert dataset. Lopes and Valiati [18] used pre-trained convolutional network

as a feature extractor to train a support vector machine classifier, and achieved an ACC of

83% and an AUC of 0.92 on the Montgomery dataset and an ACC of 85% and an AUC of

0.93 on the Shenzhen dataset. Overall, feature descriptor based methods have been more

effective for TB classification than CNN-based methods, with generally lower hardware

requirements for both training and classification.
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CHAPTER III

IMAGE FEATURE DESCRIPTORS

This chapter describes the image feature descriptors used for my experiments.

Because the dimensionality of a CXR images is high (1 million data points for a 1000 by

1000 grayscale image), image features are extracted to attempt to describe the image in a

lower dimension. I experimented with various feature extraction method in an attempt

to find a set of feature descriptors that is able to effectively classify the presence of

Tuberculosis in a CXR image with a minimum number of features.

Feature extraction is closely related to the problem of compression, that is, what

is the minimum number of dimensions that can be used to represent the data, while still

preserving some necessary element of the data (in this case, the presence or lack of TB

manifestations on CXR images) [19]. In many cases, better classifier performance can

be achieved with a selection of features than with the original data. This may be due the

curse of dimensionality, the idea that as the dimensionality of your data increases, the

number of samples required to effectively train a classifier increases exponentially.

A distinction should be made between feature selection, and feature extraction.

In feature selection, a subset of features in a data is taken, and the rest of the features

are discarded, with the idea to keep only the features that contribute the most to the

correct classification and reduce unnecessary noise. Typically, feature selection involves

some form of feature ranking, where the variables are ordered by some measure of

their relevance for classification. In feature extraction, new features that describe some

aspect of the data, such as texture or shape, are generated from the original data [20].

Filters, transformations, statistical measures, shape and texture analysis, and interest point

detection are all forms of feature extraction methods.
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Pyramid Histogram of Oriented Gradients

The Pyramid Histogram of Oriented Gradients (PHOG) feature descriptor is

a variation of the Histogram of Oriented Gradients (HOG) image descriptor, which

computes the occurrence of gradient orientation over a grid of cells in an image. The

original HOG descriptor was developed in 2005 and has shown to be useful for pedestrian

detection and handwriting recognition [21]. PHOG was first described by Bosch et

al in 2007 [22]. The PHOG descriptor divides the image into sub-regions at various

resolutions, and calculates the HOG descriptor for each spatial pyramid, which is then

concatenated into one feature vector [23]. Both PHOG and HOG output a scale-invariant

feature vector of fixed size depending on the input parameters, which makes it suitable for

using as input to a classifier.

The HOG descriptor computes occurrences of gradient orientation over a dense grid

of uniformly space cells. Across the whole image, the horizontal and vertical gradients

are calculated for each pixel. This is achieved by first applying a Sobel filter to the image

with a kernel size of 1, and then computing the magnitude and direction of the gradient

for each pixel using equations 3.1 and 3.2, respectively, where gx and gy represent the

Sobel filtered value for the pixel in the horizontal and vertical directions.

g =
√
g2x + g2y (3.1)

θ = arctan
gy
gx

(3.2)

Figure 1 shows a subset of pixel gradients computed over a CXR image. For each

8x8 cell in the image, a single gradient is shown, with the magnitude represented by

the length of the line and the line running perpendicular to the direction of the gradient.

Numerically, I use unsigned gradients with a range of 0 to 180 degrees to represent the

10



angle of the gradient, with a gradient and its negative represented by the same direction.

In practice, this method has been shown to be more effective than using signed gradients

[21].

(a) Original Image (b) Gradient orientations

FIGURE 1: Visualization of Histogram of Oriented Gradients feature descriptor.

In order to encode location data into the feature descriptor, we divide the image into

a uniform grid of fixed-size cells, and compute a histogram of gradient orientations for

each cell. These histograms are concatenated together to provide the final HOG descriptor

vector. For my experiments, I used a cell size of 8 by 8 pixels. While somewhat arbitrary,

this cell size is sufficient to detect the smallest features necessary for the recognition of

TB, provided that the resolution of the CXR images is sufficiently large, and my initial

experimentation showed little change in classification accuracy with smaller or larger cell

sizes.

As we have 2 values per pixel (gradient and magnitude), using an 8x8 grid gives

us 128 pixel values per cell. Each histogram consists of 9 bins, corresponding to angles

0-19, 20-39, etc. Each pixel’s magnitude is added to the respective bin based on its

magnitude. For example, a pixel with angle 25 and magnitude 5 would have 5 added to

the second bin in the histogram. Before each cell’s histograms are concatenated together,

the histograms are normalized relative to each other. The purpose of this step is to reduce
11



the variance from lighting across the image. For normalization, we use a sliding window

consisting of a 2x2 grid of cells, normalizing the block of four cells together, and moving

the window by one cell across the image until all histograms are normalized. Finally,

the histograms are concatenated together to provide the final HOG feature vector. In the

PHOG algorithm, HOG features are computed over an image pyramid, by filtering and

resampling the image at different resolutions, computing HOG features at each resolution,

and concatenating the results into a final feature vector. Figure 2 shows an example of an

image pyramid resampled at 4 levels.

FIGURE 2: An image pyramid [24].

Local Binary Patterns

The Local Binary Patterns (LBP) feature descriptor is a local texture descriptor that

encodes each pixel in an image by thresholding its intensity based on its eight neighbors.

For each pixel, a new value is computed by creating an vector of 8 bits, assigning a value

to each bit by comparing the pixel to each of its eight neighbors, starting with the upper

left pixel and moving clockwise. For each neighbor, a value of 1 is assigned if the center

pixel has an intensity higher than or equal to the neighbor, and a value of 0 is assigned if
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the pixel has an intensity less than the neighbor. This corresponds to an 8-bit value, which

is assigned as the new value for the pixel in the output mask. Figure 3 shows the mask

created by the LBP algorithm.

FIGURE 3: Local Binary Patterns mask computed for a segmented image in the
Shenzhen dataset.

Because the feature descriptor does not reduce the dimensionality of the image, we

compute a histogram of pixel values, resulting in a feature vector of length 256. As the

segmented CXR images have large regions of black pixels, we remove this value from the

histogram, and normalize the final length 255 histogram.

As the final feature vector of LBP is a histogram, any location-based data in the

image is lost. Instead of computing one histogram over the entire image, the LBP mask

can be divided into segments, a histogram can be computed for each segment, and then

each histogram can be concatenated together to create a single output vector. This method

is similar to the grid of histograms used in the HOG descriptor. To reduce the length

of the output vector, a smaller number of bins for each histogram can be used. As the

location of texture features can be an indicator of TB infection, incorporating location

data into the LBP feature descriptor should improve classifier performance.
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Autoencoder Networks

An Autoencoder network is type of artificial neural network that uses unsupervised

learning to re-create its input as its output, while passing the data through one or more

smaller hidden layers. Functionally, an autoencoder is similar to a multi-layer perceptron

model. The first half of the network acts as an encoder, mapping the input to a smaller

feature space, while the second half acts as a decoder, attempting to re-create the input

data based on the encoded data. For this reason, autoencoders are typically symmetrical,

with the decoder consisting of the same steps as the encoder, but in reverse. If the central

hidden layer (acting as the output of the encoder, and the input to the decoder) has

significantly smaller dimensionality than the original data, the encoded data should

represent the data most important for the reconstruction of the original data. As such,

autoencoder networks are an effective method for both image feature extraction and

data compression. Figure 4 shows an example autoencoder model with three fully

connected hidden layers, with the original data consisting of 5 variables and the encoded

data consisting of two variables. The first autoencoder network was proposed by D.E.

Rumelhart et al. in 1985, and has been used successfully for both dimensionality

reduction and compression [25]. As a method for dimensionality reduction, an optimally

trained autoencoder produces an encoding similar to principal component analysis (PCA)

[26].
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FIGURE 4: A schematic of an autoencoder network with three fully connected hidden
layers.

Speeded-Up Robust Features

Speeded up robust features (SURF) are a faster variation of the Scale Invariant

Feature Transform (SIFT) algorithm, which detects local features in an image. Like

SIFT features, SURF is scale-invariant, meaning the same interest points can be found

at different image sizes. In SURF, interest points are detected using a Hessian matrix

approximation, and for each interest point, a local feature descriptor containing 64

features is computed. An full description of the SURF algorithm is given in [27]. SURF

features, and other similar blob-detection algorithms, are commonly used in image-

retrieval systems, where a compact description of the image is required. However,

because the number of local features extracted using SURF varies for each image,

it cannot be directly used in a classifier model that takes a fixed-length vector as an

input. For this reason, SURF features are typically used for classification by quantizing

detected features into a fixed set of clusters, using K-Means or another similar clustering

algorithm. This method is commonly used in content-based image retrieval applications

[28] and has been successfully applied to medical image classification [29].
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Principal Component Analysis

Generally, the main purpose of feature extraction is to reduce the dimensionality

of the image, while preserving the elements that contribute the most to successful

classification. As such, we can use well-known dimensionality reduction methods such

as Principal Component Analysis (PCA). The PCA method was first proposed in the

early 20th century, but was not commonly used until advances in computing power made

working with large dimension datasets possible [30]. PCA creates an orthogonal linear

transformation of the data, by deriving a set of principal components which maximize the

variance in the data.

The operation of the PCA algorithm as as follows: given a set of n samples, each

with m dimensions which we want to reduce to k dimensions, we take a n by m matrix

X such that each row represents a single sample and each column represents a single

variable. The covariance matrix Cx can be calculated as Cx = 1
n−1(X − X̄)(X − X̄)T .

Given that Cx represents a linear transformation of X, we can calculate the eigenvalues

and corresponding eigenvectors of the transformation. Eigenvalues and eigenvectors

represent properties of linear transformations in matrices. Specifically, an eigenvector

is a vector measurement of the direction of a transformation, and eigenvalues represent a

scalar measurement of the factor by which an eigenvector is scaled. Formally, eigenvalues

and eigenvectors represent a property of a matrix such that Ax = λx, where A represents

a matrix, x represents the eigenvector, and λ represents the corresponding eigenvalues.

By ranking the eigenvalues from largest to smallest, we can take the first k eigenvectors,

which represent the k most significant components, giving us a n by k matrix E. Finally,

we transform our original dataset X by taking the transpose of the eigenvector matrix

multiplied by our original matrix X . Therefore, given a set of original values, we can

substitute a set of optimal derived principal components with lower dimensionality than
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the original dataset. PCA is often used by reducing the dataset to two or three principal

components, which allows a higher dimension dataset to be visualized in two or three

dimensions.

Other Feature Descriptors

In addition to the feature descriptors mentioned above, I examined Zernick

Moments, Gabor Filters, Gray-Level Co-Occurence Matrix, Haralick texture features,

Determinant of Hessian, and Oriented Fast and Rotated BRIEF features. However, the

performance of my classification experiments with these descriptors was poor, as such, I

will not describe their operation in this paper.
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CHAPTER IV

IMAGE CLASSIFICATION

In this chapter, I describe the various machine learning models used in this thesis.

While I will attempt to defend my choice to use each model, when selecting a classifier,

there is often little indication of the potential for success of one model compared to

another, as such, I will use the models that have proven to be successful in both CXR

classification and other computer vision applications.

Classification Metrics

To evaluate the performance of the classifier models, I used accuracy (ACC) and

area under the curve (AUC). In most image classification systems, ACC is the primary

metric of classifier performance [3]. However, the simple ratio of correctly classified

samples to incorrectly classified samples in the dataset is not sufficient for working

with medical data. Specifically, we cannot have an effective classifier that has a chance

of classifying a patient infected with TB as healthy, and so it is significantly more

important to minimize the number of false negatives than it is to minimize false positives.

Therefore, we calculate the receiver operating characteristic (ROC) curve, which plots the

ratio of the true positive rate of classified samples to the false positive rate:

TPR =
TP

TP + FN
(4.1)

FPR =
FP

FP + TN
(4.2)

From the ROC curve, we can calculate the area under the ROC curve (AUC) across

the unit square, which provides a useful metric of classifier performance between 0 and 1:
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AUC =

∫ ∞
−∞

TPR(T )FPR′(T )dT (4.3)

AUC better encapsulates the performance of the classifier for medical purposes

than by ACC alone [31]. Additionally, ACC and AUC are commonly used in image

classification literature, so this allows me to preserve compatibility with other authors

work. Therefore, for all classification experiments, I consider both ACC and AUC.

Multi-Layer Perceptron

The Multi-Layer perceptron (MLP) classifier is the most common type of artificial

neural network classifier, consisting of fully connected layers of artificial neurons (nodes).

MLP classifiers have been used extensively for image recognition tasks, including

classification of TB in CXR images by Vajda et al. [8]. Therefore, the use of this classifier

will allow me to easily compare the performance of my set of image features to other

current research. A MLP always contains an input layer with a number of nodes equal to

the dimensionality of the data, an output layer, and one or more hidden layers, containing

a variable number of nodes. There is evidence that any mathematical model can be

represented with a single hidden layer, and my empirical testing showed no increase

in classifier performance from using multiple hidden layers. With the exception of the

nodes in the input layer, each node in a MLP uses an activation function to map the sum

of its inputs to its output. In my experiments, I use two common activation functions, The

rectifier linear unit (ReLu), given in Equation 4.4 and SoftMax, given in Equation 4.5.

f(x) =

 0 x ≤ 0

x x > 0
(4.4)
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s(xi) =
exi∑n
j=1 e

xj
(4.5)

Random Forest

The Random Forest algorithm is a supervised machine learning algorithm

that uses an ensemble of randomized decision trees. Decision trees were one of the

first classification algorithms, and have been successfully used in a wide variety of

classification problems. Individual decision trees can be very fast, both for training

and prediction, but can be highly sensitive to overfitting. The Random Forest classifier

attempts to mitigate this problem, by taking an ensemble of randomized decision trees,

the output can be averaged, reducing the variance.

In general, a higher number of trees in the forest increases the performance of the

classifier, but at the cost of slower prediction time. A Random Forest classifier is trained

by bagging, where each tree is trained on a random sample with replacement of the

original dataset. Figure 5 shows an visualization of a Random Forest classifier consisting

of three decision trees.
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FIGURE 5: The Random Forest algorithm [32].

Ensemble Classifiers

In some cases, a combination of individual classifiers can be more effective than

an individual classifier alone. An ensemble classifier, or multiclassifier system, combines

multiple classifiers and aggregates their output to produce a single prediction. An typical

analogy to a multiclassifier system is a panel of experts making a decision by majority

vote. Multiclassifier systems allow different classifiers to take different approaches to

classification in order to better classify data. In a multiclassifier system, the output of each

classifier is aggregated to produce a single prediction, either by a majority vote or other

aggregation method [33]. In Figure 6, an example ensemble classifier with 5 individual

classifiers is shown.
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FIGURE 6: An example ensemble classifier system with 5 individual classifiers [34].

An ideal ensemble classifier does not necessarily require that the individual

classifiers are completely error free, provided that each individual classifier makes

different kinds of errors. That is, the samples that are incorrectly classified by one

classifier have little overlap with the types of errors made by another classifier, and

therefore the errors produced by any one classifier can potentially be canceled out

by the correct classifications performed by other classifiers. A useful measure of the

performance of a multiclassifier system is the Jaccard Index, given in Equation 4.6

J(A,B) =
|A ∩B|
|A ∪B|

(4.6)

Given each set of samples that was classified incorrectly by each individual

classifier, we can measure the complimentarity of the classifiers relative to each other by

taking the intersection of the sets divided by the union of the sets. This produces a value

between 0 and 1, where 0 represents all classifiers making exactly the same mistakes and

1 represents no two classifiers making any of the same mistakes. Equation 4.6 is shown

for a multiclassifier system consisting of two classifiers; however, the Jaccard Index can

be generalized for any number of classifiers.
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Convolutional Neural Networks

In recent years, Convolutional Neural Networks (CNNs) have been introduced as

one of the most promising methods for image classification. Breakthroughs in computing

power, as well as the availability of large training datasets, have made possible more

complex neural networks which have in some cases reached levels of performance

comparable to humans. Additionally, CNNs act as both a feature extractor and a classifier,

eliminating the need for a separate feature extraction step. Typically, CNNs are comprised

of an input layer, followed by one or more convolutional and pooling layers, which

are then fed into a fully connected neural network. A convolutional layer operates by

passing a filter kernel over the image, multiplying the kernel matrix by the underlying

pixels at each step. Pooling layers reduce the dimensionality of the image by sub-

sampling. Typically, a pooling layer passes a filter across the image, with each step

taking a statistical measure such as the sum, average, or maximum. An example CNN

architecture with convolutional and pooling layers is shown in Figure 7. In general,

CNNs with multiple convolutional and neural networks are the most effective at image

recognition tasks.

FIGURE 7: An example CNN architecture showing convolutional and pooling layers
[35].
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Convolutional Neural Networks (CNNs) have shown promising results in medical

image classification, and promising results have been achieved using CNNs to detect TB

in CXR images [36]. However, CNNs typically require a very large amount of training

data, and so are limited in their application on small datasets. Additionally, because

CNNs combine feature extraction and classification, the training time and computational

requirements of CNNs are frequently much higher [17]. Some success with smaller

datasets have been reported using transfer learning; however, this method has not so far

surpassed the accuracy of explicit feature-extraction based methods for TB detection [15].

Other Classifier Models

In addition to the classifier models described in this chapter, I performed

experiments with Support Vector Machines, Stochastic Gradient Descent classifiers,

Naive Bayes classifiers, and K-Nearest Neighbor classifiers. However, as the performance

of these classifiers was poor, I will not describe their operation here.
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CHAPTER V

EXPERIMENTAL RESULTS

In Chapter III, I outlined many feature extraction and dimensionality reduction

methods, and in Chapter IV I discussed multiple classifier models. In this chapter, I

discuss my experiments to develop a set of CXR image features effective for use in

a CAD system for Tuberculosis detection, as well as my experiments in lung region

segmentation. For my classification experiments, I used Multi-Layer Perceptron, Random

Forest, Gaussian Process, Support Vector Machine, and K-Nearest Neighbor classifiers.

Of these classifiers, SVM and KNN did not achieve meaningful classification accuracy

with any feature set during my initial experimentation, and as such were excluded from

later experiments.

Datasets

To test my feature descriptors and classifier models, I use two publicly available

CXR datasets, the Shenzhen dataset containing 662 samples, and the Montgomery dataset

containing 138 samples. For both datasets, lung region segmentation was provided

by Jaeger et al. [5]. In order to train the classifiers, each dataset was split into 80% of

samples for training, and reserved 20% of samples for testing, with the samples in each

category randomized for each experiment. The size of this split allows the performance

of my classifier to be easily assessed given the small size of the datasets. Additionally, for

my experiments with segmentation, I examine the CheXpert dataset, a large multi-class

CXR dataset containing 223,648 samples. More information on these datasets is available

in Appendix A.
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Image Processing

Typically, CAD systems apply various forms of pre-processing to the CXR images

in order to enhance the image quality, or to reduce variation across the dataset [2].

For my experiments with the Shenzhen and Montgomery datasets, it was desirable to

scale the images to be a consistent size across all samples. However, the aspect ratio

varied between images, and it was necessary to preserve the original aspect ratio of the

image. Therefore, in the pre-processing step, I isolated the region of interest, removing

unnecessary black pixels on the sides of the image. Next, I downscaled the image so

that the large of the two dimensions was 1000 pixels. Finally, I padded the smaller of

the two dimensions equally on each side, so that the final dimension of all images was

1000 by 1000 pixels, with the original aspect ratio of the images preserved and the region

of interest centered in the image.

Segmentation

In order to segment the images in the CheXpert [37] dataset to improve classifier

performance, I experimented with two segmentation methods: a rule-based method

using Canny edge detection, and pixel-classification based methods using K-Means

clustering and Self-Organizing Maps (SOM). Similar methods have been applied to image

segmentation with varying degrees of success, but is typically suceptable to noise [38].

The rule-based segmentation used a Canny edge detector followed by pixel gradient

detection. For each CXR image, I first extracted the edge pixels in the image using

a canny edge detector, then split the image into left and right lungs by measuring the

vertical column of pixels with the lowest number of white pixels in the middle one-third

of the image. This method proved successful for images that are aligned so that a clear

vertical line can be drawn that separates the left and right lung. However, if the image
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is rotated so that a vertical line cannot be drawn without intersecting at least one lung,

this method is ineffective. In general, this method was suitable for the majority of images

in the CheXpert dataset. For the left and right lung regions, I found the pixels with the

greatest gradient (light to dark) in all four directions (top to bottom, left to right, etc).

I used this set of interest points for each direction to create a mask between the edge

of the image and the set of points, and subtracted those masks from the image. Figure

8 shows the interest points extracted from the left lung as well as the corresponding

segmented image. While this segmentation method was effective for some images, it

was computationally expensive, and was susceptible to noise in the image, particularly

around the rib bones that overlap the lung region. Additionally, there were many edge-

cases for which this segmentation was ineffective, particularly if the left and right lungs

were unable to be separated due rotation or noise in the image.

(a) (b) (c)

FIGURE 8: Interest points extracted from the left lung using the rule-based method.

For pixel-classification based segmentation I experimented with two methods: K-

Means Clustering and Self-Organizing Map (SOM). Figure 9 shows the pixel regions

classified using K-means with 2, 4, and 16 clusters. Typically, the higher number of
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clusters used, the more likely the separation between the lung region and the surrounding

tissue could be identified. However, there was no single number of clusters that was

effective for all images in the dataset. My experiments with Self-Organizing Map (SOM)

pixel classification had similar results to my K-Means method. Figure 10 shows two

images after SOM classification. SOM was more effective than K-means for images

with high contrast between the lung region and the surrounding tissue; however, SOM

was ineffective at classifying images with low contrast and was unable to classify regions

with overlapping tissue structures. Because of the poor performance of my segmentation

methods on the highly varied images in the CheXpert dataset, I chose to focus my

research on the Shenzhen and Montgomery datasets using the high-quality segmentation

provided by Jaeger et al. [5].

FIGURE 9: K-Means segmentation with 2, 4, and 16 clusters.

FIGURE 10: Pixel regions classified using self-organizing maps.

Classification

To compare and evaluate the performance of my feature descriptors, I experimented

with various supervised machine learning models, including Multi-Layer Perceptron,
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Random Forest, Gaussian Process, Support Vector Machine, and K-Nearest Neighbor.

Details on the operation of these models is given in Chapter IV. Here, I describe the

parameters and inputs to each classifier model.

Classifier Models

The Multi-Layer Perceptron (MLP) classifier consisted of an input layer containing

a number of nodes equal to the size of each feature vector, a single fully connected

hidden layer, and an output layer. Each node used ReLu as the activation function. I

experimented with two methods for the number of nodes in the output layer: a single

output node, where an activation less than or equal to 0.5 corresponded to the negative

class, and an activation greater than 0.5 corresponded to the positive class, and two

output nodes, with one node corresponding to the negative class and the other node

corresponding to the positive class. After some experimentation, I determined that using

two nodes in the output layer provided slightly better classifier performance. For the

hidden layer, I found that modifying the number of nodes in the hidden layer had little

effect on the performance of the classifier, as such, I settled on 32 nodes. Finally, I found

that 40 training epochs provided the maximum classifier performance without overfitting.

All MLP experiments were performed using the Keras machine learning library in Python

version 3.6 on Ubuntu Linux 19.04.

For the Random Forest classifier, I performed hyperparameter optimization

using grid search with cross validation, with optimal performance achieved using 100

estimators with a maximum depth of 7. For both my experiments with the Gaussian

Process classifier and Support Vector Machine, I used the Radial-Basis Function kernel.

Finally, for K-Nearest Neighbors, I used the KDTree algorithm using the Euclidian
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distance metric. All RF, GP, SVM, and KNN experiments were performed using the

Scikit-Learn library in Python version 3.6.

Feature Descriptors

Pyramid Histogram of Oriented Gradients

Two sets of Pyramid Histogram of Oriented Gradients (PHOG) features were

extracted from the CheXpert, Shenzhen, and Montgomery datasets: 3 pyramids, with

20 bins per histogram, and 2 pyramids with 10 bins per histogram, resulting in feature

vectors of length 1700 and 210, respectively.

Local Binary Patterns

I extracted three primary Local Binary Patterns (LBP) feature descriptors.

First, by simply taking a histogram of pixel values across the entire image, resulting

in a feature vector of length 255 with black pixels removed, as I ignore the empty space

outside the lung contour. Before classification, the histogram values are normalized

between 0 and 1.

Second, in order to attempt to encode location-based data in the LBP histogram,

I compute LBP features across the entire image, divide the image into a uniform grid of

cells, and compute a histogram of each cell, concatenating the histograms together to

produce the final feature vector. In order to determine optimal parameters, I experimented

with taking 16, 32, 128, and 256 cells across the image, as well as computing 5, 10, and

20 bins per histogram. While I expected encoding the additional location data would

increase the performance of the classifier, this method was less effective than taking a

single histogram across the entire image.
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Speeded-Up Robust Features

Because the SURF algorithm outputs a variable number of interest points, I used K-

Means clustering to quantize the SURF descriptors into a fixed-length feature vector. This

method is commonly used when using SURF features for classification, and is similar

to the bag-of-words approach common in natural language processing applications [32].

In order to avoid cross-contaminating the test data, I train the K-Means model on the

training set only, and apply the same transformation to the set of samples reserved for

testing. For my experiments, I computed SURF features with 50 and 100 cluster centers.

In the set of SURF interest points detected on a CXR image shown in Figure 11, we can

see that the vast majority of interest points are located on the contour of the lung, with no

interest points in the center of the lungs. However, the interest points alone represent a

rudimentary outline of the lung shape, with low granularity for detecting small features

along the contour. This pattern was similar among all samples in the Shenzhen dataset.

As such, it is likely that SURF features alone are insufficient for the detection of TB in

CXR images.
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FIGURE 11: A set of SURF interest points extracted from a CXR image in the
Montgomery dataset.

Autoencoder Networks

For my experiments with autoencoder networks, I scaled the images in the

Shenzhen dataset to 250 by 250 pixels, giving us a flattened feature vector of length

62,500. The encoder network consisted of an input and output layer with 62,500 nodes

each, and a single hidden layer with 64 nodes. The pixel values in each image were

normalized between 0 and 1 before passing them to the network. Figure 12 shows an

input CXR image on the left, and the output from passing the image through the trained

autoencoder on the right.
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(a) (b)

FIGURE 12: A CXR image from the Shenzhen dataset before and after passing through
the trained autoencoder network.

In order to use the encoded images in a classifier, I trained the autoencoder on

the set of training data, and then passed each image in the whole dataset through the

network and captured the activations in the hidden layer, giving us a length 64 feature

vector. These features were then used to train a multi layer perceptron model using the

same train-test split as the autoencoder. Unfortunately, the classification accuracy for this

method was poor, likely due to the relatively small size of the Shenzhen dataset. Similar

results were found from using a hidden layer with 128, 256, and 512 nodes.

To factors likely contributed to the poor performance of the autoencoder-classifier

system. First, by downsampling the images to 250 by 250 pixels, some granularity in

the image is lost. There may be some manifestation of TB, such as pulmonary nodules,

that are lost in the smaller resolution image. Second, even with the downsampled image,

the feature vector is still very large, consisting of 62,500 data points, which increases the

number of samples required to train the classifier. In this case, as the Shenzhen dataset

consists of only 662 samples, it is likely that the size of the dataset was insufficient in

order to train the autoencoder. As such, an an autoencoder may be effective as a feature

extractor for a larger TB dataset. Similarly to Convolutional Neural Networks, transfer
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learning may be used to improve the performance of an autoencoder; however, I did not

perform experiments using transfer learning.

Principal Component Analysis

In addition to feature extraction methods, I evaluated using Principal Component

Analysis for dimensionality reduction, both on a flattened representation of the original

CXR image, and on PHOG and LBP feature descriptors. In order to avoid introducing any

test data into the training dataset, I first split the data into train and test sets, then fit the

PCA model to the training set only. Then, the same transformation is applied to both the

train and test datasets. While I experimented with various levels of reduction, I found that

classifier performance decreased significantly with less than 500 dimensions.

Combined Feature Descriptors

Based on previous research, I expect that by combining feature sets, I would

achieve higher classifier performance than with a single feature vector. Particularly

because TB can manifest in multiple ways on a CXR image, I expect that a combination

of feature descriptors would be more invariant to different manifestations of TB. I

experimented with two methods for combining PHOG and LBP features: concatenating

the two feature vectors into a single feature vector with 1955 dimensions, which I will

refer to as PHOG + LBP I, and by first computing the LBP mask across the image, and

then computing PHOG features, resulting in 1700 dimensions, which I will refer to as

PHOG + LBP II. For each method, I also evaluated the performance of PCA reduction on

the final feature vector by reducing the feature vector to 500 dimensions.
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Results by Dataset

As the CheXpert dataset does not have segmentation, I experimented with PHOG

features only on the CheXpert dataset. In order to use binary classification on the

CheXpert dataset, the data was re-labeled to 2 classes, with ”No finding” as the negative

class and any other observations as positive. Additionally, to preserve compatibility

with other datasets, only frontal images were considered. This resulted in a dataset

of 17,075 positive samples and 174,155 negative samples. I extracted PHOG features

using 3 pyramids, resulting in a feature vector of length 1700, and the dataset was split

into 80% training data and 20% testing data. Additionally, because of the unbalanced

nature of the dataset, I experimented with oversampling the negative samples so that the

dataset contained an equal number of positive and negative samples. However, this did

not provide a significant change in the classification accuracy.

For all experiments with the Shenzhen dataset, I split the dataset into 80% of

samples for training, and 20% for testing. Both ACC and AUC are taken as an average

over 5 iterations, with the train-test split randomized at each iteration. A summary of

classifier performance for different feature sets with the Shenzhen dataset is given in

Table 1. Overall, the MLP model achieved significantly higher classification accuracy

than either the RF or GP models, with the PHOG + LBP I + PCA feature set achieving the

highest ACC of 92% and AUC of 0.96.
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TABLE 1: Classification results of different feature descriptors and classifier models on
the Shenzhen dataset. The feature set with the highest accuracy is given in bold.

Feature Descriptor Classifier Model Vector length ACC AUC
PHOG MLP 1700 90% 0.94
PHOG RF 1700 81% 0.81
PHOG GP 1700 82% 0.82
PHOG MLP 210 87% 0.88
LBP MLP 255 79% 0.85
LBP RF 255 86% 0.87
LBP GP 255 86% 0.85

PHOG + LBP I MLP 1955 86% 0.90
PHOG + LBP II MLP 1700 76% 0.86

Flattened image + PCA MLP 500 72% 0.76
PHOG + PCA MLP 500 89% 0.92

PHOG + LBP I + PCA MLP 500 92% 0.96
PHOG + LBP II + PCA MLP 500 84% 0.92
Autoencoder Network MLP 64 54% 0.58
Autoencoder Network MLP 128 68% 0.61

On the Montgomery dataset, the data was split into 80% training and 20% testing

samples, resulting in 110 samples reserved for training and 28 samples reserved for

testing. As with the Shenzhen dataset, the segmented images were pre-processed before

feature extraction was performed, and the train-test split was randomized at each iteration.

As I did not achieve significant classifier performance with Autoencoder networks or

SURF features, I did not perform experiments on the Montgomery dataset with these

features. Similarly, I performed all experiments on the Montgomery dataset using

the same MLP model as I used for my experiments with the CheXpert and Shenzhen

datasets, as the performance of this classifier model was significantly higher than my

experiments with RF or GP classifiers. Finally, as the Montgomery dataset is both similar

in quality to the Shenzhen dataset, and very small, approximately one-fifth the size of the

Shenzhen dataset, it is expected to achieve a lower ACC and AUC using the same feature

descriptors. An overview of my classification experiments with the Montgomery dataset
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is given in Table 2. In order to apply the same PCA transformation to the Montgomery

dataset as the Shenzhen dataset, I used oversampling to augment the number of samples

in the Montgomery dataset.

TABLE 2: Classification results of different feature descriptors using an MLP classifier
on the Montgomery dataset. The feature set with the highest accuracy is given in bold.

Feature Descriptor Vector length ACC AUC
PHOG 1700 72% 0.80
PHOG 210 62% 0.67
LBP 255 67% 0.64

PHOG + LBP I 1955 78% 0.82
PHOG + LBP II 1700 65% 0.76

PHOG + LBP I + PCA 500 67% 0.68
PHOG + LBP II + PCA 500 67% 0.70

PHOG + PCA 500 75% 0.84

Ensemble Classifiers

To evaluate the performance of ensemble classifiers for TB detection, I performed

experiments using MLP, RF, and GP classifier models, as these models achieved the

highest performance with PHOG features on the Shenzhen dataset. Table 3 shows the

Jaccard index calculated for ensembles of two and three classifiers. As I did not achieve a

high Jaccard Index on any combination of classifiers, I concluded that the use of ensemble

classifiers was not a more effective solution for TB classification than using a single

classifier. As such, I did not continue my experiments with ensemble classifier using other

datasets or feature descriptors.

TABLE 3: Jaccard index for an ensemble of three classifiers.

Classifiers Jaccard Index
MLP + RF 0.5161
MLP + GP 0.2692
RF + GP 0.5152

MLP + RF + GP 0.3637
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Convolutional Neural Networks

I experimented with Convolutional Neural Networks (CNNs) using both the

CheXpert and Shenzhen datasets. As CNNs require very large training datasets, I did

not perform experiments with the Montgomery dataset. The CNN architecture was

a modified version of the AlexNet network, which is a commonly used architecture

and has been used successfully for a wide variety of image recognition tasks. In 2012,

AlexNet was used to win the ImageNet Large Scale Visual Recognition Challenge,

and contributed to a significant increase in interest in deep neural networks [39]. The

AlexNet architecture contains 5 convolutional layers, 3 max pooling layers, and three

fully connected connected layers with dropout. The final dense layer uses the Softmax

activation function, with the ReLu activation function used for all other hidden layers. An

overview of the AlexNet architecture is shown in Figure 13. For performance reasons, I

downsampled the CXR images to the standard AlexNet input size of 224 x 224 pixels.

My experiments with CNNs were performed using an Intel i7-3770 processor with 16

gigabytes of memory and an NVidia Titan GPU, using an implementation of the Keras

machine learning library for Python 3.6 optimized for GPUs on Windows 10.

FIGURE 13: The AlexNet Convolutional Neural Network Architecture [40].

For both the CheXpert and Shenzhen datasets, the CNN classifier performance

was very poor. In the case of the Shenzhen dataset, it is likely that the relative small size

of the dataset was insufficient to fully train the network. While the CheXpert dataset
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is significantly larger, the lack of segmentation increases the amount of noise in the

dataset, and does not encode lung contour information, which can be an indicator of TB.

Variations in the number of convolutional layers, kernel size, dropout, and nodes in the

hidden layer did not have an effect on classifier performance. As my experiments with

traditional neural-network based classifiers showed significantly higher classification

performance, I chose to not move forward with CNNs for my research. However, other

researchers, including Hwang et al. [15] and Pasa et al. [16], have reported successful

results using similar CNN architectures.

Analysis of Results

Overall, I obtained the highest classifier performance using an MLP classifier

with a combination of PHOG, and LBP, and PCA features, obtaining an ACC of 92%

on the Shenzhen dataset, and an AUC of 0.96. However, the size of the feature vector

is still relatively large at 500 features. On the Montgomery dataset, the combination

of PHOG and LBP features without any dimensionality reduction achieved the highest

ACC of 78% and AUC of 0.82, with applying PCA resulting in a reduction of AUC by

0.20. This decrease is somewhat expected, as the amount by which I am reducing the

dimensionality of the dataset, from 1700 to 500 features, is significantly larger than the

size of the training dataset at 110 samples. While I used oversampling to attempt to

augment the training data, the variance in the training data remained very low, which

limited the performance of the classifier.
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TABLE 4: Comparison of results with other studies on the Shenzhen and Montgomery
datasets.

Shenzhen Montgomery
Study Descriptor Classifier Model ACC AUC ACC AUC

Lopes et al. [18] CNN SVM 85% 0.93 83% 0.92
Pasa et al. [16] None CNN 0.90 0.81

Hwang et al. [15] None CNN 83% 67%
Vajda et al. [8] Shape, edge, and texture MLP 96% 0.99 78% 0.87

My Model PHOG + LBP MLP 92% 0.96 78% 0.82

Table 4 shows a comparison of my model against other recent studies on the

Shenzhen and Montgomery datasets. We see that my model obtained higher classifier

performance than each model using convolutional networks for either feature extraction

or classification. Likely due to the small size of the training datasets, the performance of

single classifier models with image feature descriptors far out-performed my experiments

with both Convolutional Neural Networks and Ensemble Classifiers. Similarly, texture-

based descriptors such as PHOG and LBP were significantly more effective than

transformation-based descriptors using PCA and autoencoder networks.
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CHAPTER VI

CONCLUSION

In conclusion, the difficulty of Tuberculosis detection in chest radiographs is the

different manifestations of the infection, combined with variance in image quality, clarity,

and orientation. As accurate interpretation of CXR images requires skilled radiologists,

the development of Computer-Aided Detection systems for automatic diagnosis of

TB in CXR images is promising for reducing the spread of the disease, particularly in

developing countries, which are disproportionately affected by TB.

In this thesis, I have examined methods for building a CAD system for the

automatic diagnosis of TB from CXR images, including methods for lung region

segmentation, image feature extraction, and classification. I have evaluated my results

on three publicly available CXR datasets. My experimental results showed a combination

of shape and texture features using Pyramid Histogram of Oriented Gradients and Local

Binary Patterns, and dimensionality reduction through Principal Component Analysis

provided the highest classifier performance. Using a Multi-Layer Perceptron classifier

model, I achieved a highest ACC of 92% and an AUC of 0.96 on the Shenzhen dataset,

and an ACC of 78% and an AUC of 0.82 on the Montgomery dataset.

Recently, the use of convolutional neural networks for CXR classification has

achieved promising results for CXR classification; however, these models require large

amounts of training data, and the lack of publicly available large segmented CXR datasets

limits the effectiveness of CNN models for TB diagnosis. For smaller datasets, the use

of texture and shape descriptors provides higher classifier performance while minimizing

the dimensionality the training data. My proposed CAD system outperforms recent CNN-

based methods, including models by Hwang et al. [15] and Pasa et al. [16], and achieves
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comparable performance to current state-of-the-art feature-based models, including work

by Vajda et al. [8] and Karargyris et al. [41].
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APPENDIX

DATASETS

Shenzhen

The Shenzhen dataset consists of 662 frontal chest images from the Shenzhen No.3

People’s Hospital, Guangdong Medical College, Shenzhen, China. Most of the images

were taken over the course of September 2012. Of the 662 images, 326 are healthy

samples while the remaining 336 are images of patients with tuberculosis. Segmentation

was provided for this dataset using the atlas-based method by Jaeger et al., making the

dataset suitable for classification because the noise from non-lung regions have been

removed [5]. Additionally, the resolution of the dataset is quite large, with the images

an average of approximately 2500 by 2500 pixels.

FIGURE 14: A selection of unprocessed images from the Shenzhen dataset.

Montgomery

The Montgomery (MC) dataset consists of 138 frontal chest X-ray images collected

from the Montgomery County Tuberculosis screening program in Maryland, USA.

The dataset contains 80 normal (healthy) samples and 58 samples from patients with

tuberculosis [5]. As with the Shenzhen dataset, the images are relatively high resolution,

and segmentation was provided using the atlas-based method. However, because the
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dataset is extremely small, and because of the relatively unbalanced nature of the dataset,

the performance of my experiments with dataset was generally lower than experiments

with the Shenzhen dataset.

FIGURE 15: A selection of unprocessed images from the Montgomery dataset.

CheXpert

The CheXpert dataset consists of 223,648 chest radiographs taken from 65,240

patients from Stanford hospital between October 2002 and July 2017. Of the 223,648

samples, 191,229 are frontal images and 32,419 are lateral images. The dataset

considered 14 observations: No finding (indicating the lack of any other observations),

Enlarged Cardiomegaly, Cardiomegaly, Support Devices, Fracture, Lung Opacity, Edema,

Consolidation, Pleural Other, Pleural Effusion, Pneumonothorax, Atelectasis, Lung

Lesion, and Pneumonia [37]. Labels for the dataset were extracted from radiology reports

using a rule-based data mining algorithm developed by the authors of the dataset. For

validation, a set of 200 samples was also provided with labels assigned by a consensus

of three radiologists. Each label is assigned one of three states, either positive, negative,

or uncertain. A positive ”No Finding” label indicates a negative or uncertain label for all

other observations. To handle uncertain labels, the authors proposed five methods: U-

Ignore, where uncertain labels are dropped from the dataset, U-Zeros, where uncertain

labels are treated as negative, U-Ones, where uncertain labels are treated as positive,
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U-SelfTrained, which uses unsupervised learning to re-assign uncertain labels, and U-

Multiclass, where uncertain labels are treated as their own class.

To analyze the dataset, the authors trained a Convolutional Neural Network

classifier using the DenseNet121 architecture, and achieved a best AUC of 0.97 on Pleural

Effusion and a worst AUC of 0.85 on Atelectasis. While the large size of the dataset

provides a significant advantage for classifier training, particularly for deep learning

applications, the lack of segmentation available for this dataset reduces its usefulness for

the detection of Tuberculosis, as a tuberculosis infection may alter the apparent shape

of the lungs on a CXR image. Additionally, because of the large number of samples

in the dataset, the resolution of the images is low, with an average size of 325 by 371

pixels. The dataset also suffers from low variation, with 70% of the images representing

only 31% of patients. Additionally, because the observations are automatically extracted

from radiology reports, the dataset does not make a distinction between active and latent

observations. For example, in the ”Fracture” class, no distinction is made between a

patient with a current bone fracture and one with a fully healed fracture. Finally, there

is some uncertainty in the ”No Finding” observation, as this simply represents that no

observation was found in the radiology report. For these reasons, I consider the CheXpert

dataset to be less applicable to the development of a CAD system for TB detection than

the Shenzhen or Montgomery datasets.

FIGURE 16: A selection of unprocessed images from the CheXpert dataset.
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