849 research outputs found

    Interference Management Algorithms for Multicell MIMO Systems

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 이광복.Intercell interference is one of the most challenging issues limiting the performance of cellular systems, especially when the spectrum is highly reused across cells.In multiple-input multiple-output (MIMO) systems, in particular, it has been reported that, in a multicell environment, the performance of spatial multiplexing is significantly degraded due to intercell interference. In this dissertation, we develop interference management algorithms for multicell MIMO systems. In the first part of this dissertation, an efficient user selection scheme for the downlink of multiuser MIMO systems is proposed in a multicell environment. In a multicell environment, the intercell interference is one of the most influential factors limiting the performance. Thus, a user selection scheme that considers intercell interference is essential to increase the sum rate. The proposed scheme is based on an interference aware precoding. It sequentially selects users such that the sum rate is maximized. In particular, we develop a simple incremental metric for the sum rate. The use of the derived metric enables a significant reduction in the computational complexity of the user selection process, as compared to the optimal exhaustive search. Numerical results show that the proposed scheme provides near-optimal performance with substantially reduced complexity. In the second part of this dissertation, we propose a one-shot (non-iterative) cooperative beamforming scheme for downlink multicell systems. Unlike previous noniterative beamforming schemes, the proposed cooperative beamforming strives to balance maximizing the desired signal power while minimizing the generated interference power to neighbors by maximizing the network-wide average sum rate. Based on the average sum rate analysis, we derive what we term a global selfishness that steers the egoistic-altruistic balance of the network to maximize average sum rate. The global selfishness enables an autonomous decision on the cooperative beamforming vector in each cell. The main advantage of our approach is that cooperative beamforming solutions are analytically derived not only for an ideal two-cell network scenario but also for a practical three-sectored cellular network scenario. The simulation results verify that the proposed one-shot cooperative beamforming outperforms other conventional non-iterative schemes especially in interference-limited regions, which implies that it is very effective for performance improvement of edge users. In the third part of this dissertation, we propose a distributed cell clustering algorithm for coordinated-multi-point (CoMP) system based on message passing algorithm. In 5G networks system, it is expected that a large number of base stations (BSs) serve simultaneously and BSs are deployed in a very high density. Because of this high density systems, the centralized coordination approaches typically lead to high computational burden for practical implementations. Moreover, the sum rate metric are all coupled and it is difficult to determine clusters of BSs. This motivates us to propose a distributed cell clustering scheme based on message passing algorithm. The simulation results verify that the proposed clustering algorithm outperform the conventional distributed algorithm and reduces computational burden compared to centralized clustering algorithms.Chapter 1 Introduction 1 1.1 Low Complexity User Selection Algorithm 1 1.2 Non-iterative Beamforming Scheme 2 1.3 Distributed Cell Clustering Algorithm Based on Message Passing 5 Chapter 2 Low Complexity User Selection Algorithm 7 2.1 System Model 7 2.2 Proposed User Selection Algorithm 10 2.2.1 User Selection Criterion 11 2.2.2 User Selection Algorithm 15 2.3 Numerical Results 18 Chapter 3 Non-iterative Beamforming Scheme 26 3.1 System Model 26 3.2 Proposed One-Shot Cooperative Beamforming 27 3.3 Determination of Global Selfishness 31 3.3.1 Ideal Two-cell Network Scenario 31 3.3.2 Practical Three-Sectored Cellular Network Scenario 36 3.3.3 Practical Cellular Network Scenario with Nt antennas 40 3.4 Numerical Results 43 Chapter 4 Distributed Cell Clustering Algorithm Based on Message Passing 53 4.1 System Model 53 4.2 Message Passing Algorithm 54 4.3 Numerical Results 57 Chapter 5 Conclusion 62 Bibliography 67 Abstract (In Korean) 73Docto

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28

    Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces

    Get PDF
    Intelligent reflecting surfaces (IRSs) constitute a disruptive wireless communication technique capable of creating a controllable propagation environment. In this paper, we propose to invoke an IRS at the cell boundary of multiple cells to assist the downlink transmission to cell-edge users, whilst mitigating the inter-cell interference, which is a crucial issue in multicell communication systems. We aim for maximizing the weighted sum rate (WSR) of all users through jointly optimizing the active precoding matrices at the base stations (BSs) and the phase shifts at the IRS subject to each BS’s power constraint and unit modulus constraint. Both the BSs and the users are equipped with multiple antennas, which enhances the spectral efficiency by exploiting the spatial multiplexing gain. Due to the nonconvexity of the problem, we first reformulate it into an equivalent one, which is solved by using the block coordinate descent (BCD) algorithm, where the precoding matrices and phase shifts are alternately optimized. The optimal precoding matrices can be obtained in closed form, when fixing the phase shifts. A pair of efficient algorithms are proposed for solving the phase shift optimization problem, namely the Majorization-Minimization (MM) Algorithm and the Complex Circle Manifold (CCM) Method. Both algorithms are guaranteed to converge to at least locally optimal solutions. We also extend the proposed algorithms to the more general multiple-IRS and network MIMO scenarios. Finally, our simulation results confirm the advantages of introducing IRSs in enhancing the cell-edge user performance

    A Practical Cooperative Multicell MIMO-OFDMA Network Based on Rank Coordination

    Get PDF
    An important challenge of wireless networks is to boost the cell edge performance and enable multi-stream transmissions to cell edge users. Interference mitigation techniques relying on multiple antennas and coordination among cells are nowadays heavily studied in the literature. Typical strategies in OFDMA networks include coordinated scheduling, beamforming and power control. In this paper, we propose a novel and practical type of coordination for OFDMA downlink networks relying on multiple antennas at the transmitter and the receiver. The transmission ranks, i.e.\ the number of transmitted streams, and the user scheduling in all cells are jointly optimized in order to maximize a network utility function accounting for fairness among users. A distributed coordinated scheduler motivated by an interference pricing mechanism and relying on a master-slave architecture is introduced. The proposed scheme is operated based on the user report of a recommended rank for the interfering cells accounting for the receiver interference suppression capability. It incurs a very low feedback and backhaul overhead and enables efficient link adaptation. It is moreover robust to channel measurement errors and applicable to both open-loop and closed-loop MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for Publicatio

    Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks

    Full text link
    We consider a cellular network with multi-antenna base stations (BSs) and single-antenna users, multicell cooperation, imperfect channel state information, and directional antennas each with a vertically adjustable beam. We investigate the impact of the elevation angle of the BS antenna pattern, denoted as tilt, on the performance of the considered network when employing either a conventional single-cell transmission or a fully cooperative multicell transmission. Using the results of this investigation, we propose a novel hybrid multicell cooperation technique in which the intercell interference is controlled via either cooperative beamforming in the horizontal plane or coordinated beamfroming in the vertical plane of the wireless channel, denoted as adaptive multicell 3D beamforming. The main idea is to divide the coverage area into two disjoint vertical regions and adapt the multicell cooperation strategy at the BSs when serving each region. A fair scheduler is used to share the time-slots between the vertical regions. It is shown that the proposed technique can achieve performance comparable to that of a fully cooperative transmission but with a significantly lower complexity and signaling requirements. To make the performance analysis computationally efficient, analytical expressions for the user ergodic rates under different beamforming strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    A Novel Antenna Selection Scheme for Spatially Correlated Massive MIMO Uplinks with Imperfect Channel Estimation

    Full text link
    We propose a new antenna selection scheme for a massive MIMO system with a single user terminal and a base station with a large number of antennas. We consider a practical scenario where there is a realistic correlation among the antennas and imperfect channel estimation at the receiver side. The proposed scheme exploits the sparsity of the channel matrix for the effective selection of a limited number of antennas. To this end, we compute a sparse channel matrix by minimising the mean squared error. This optimisation problem is then solved by the well-known orthogonal matching pursuit algorithm. Widely used models for spatial correlation among the antennas and channel estimation errors are considered in this work. Simulation results demonstrate that when the impacts of spatial correlation and imperfect channel estimation introduced, the proposed scheme in the paper can significantly reduce complexity of the receiver, without degrading the system performance compared to the maximum ratio combining.Comment: in Proc. IEEE 81st Vehicular Technology Conference (VTC), May 2015, 6 pages, 5 figure
    corecore