227 research outputs found

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    Full text link
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors

    Radio Astronomical Image Formation using Constrained Least Squares and Krylov Subspaces

    Full text link
    Image formation for radio astronomy can be defined as estimating the spatial power distribution of celestial sources over the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a-priori knowledge is crucial. In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov subspace based techniques, where the structure of the problem allows massive parallelism and reduced storage needs. The performance of the algorithm is evaluated using simulations

    Efficient calculation of sensor utility and sensor removal in wireless sensor networks for adaptive signal estimation and beamforming

    Get PDF
    Wireless sensor networks are often deployed over a large area of interest and therefore the quality of the sensor signals may vary significantly across the different sensors. In this case, it is useful to have a measure for the importance or the so-called "utility" of each sensor, e.g., for sensor subset selection, resource allocation or topology selection. In this paper, we consider the efficient calculation of sensor utility measures for four different signal estimation or beamforming algorithms in an adaptive context. We use the definition of sensor utility as the increase in cost (e.g., mean-squared error) when the sensor is removed from the estimation procedure. Since each possible sensor removal corresponds to a new estimation problem (involving less sensors), calculating the sensor utilities would require a continuous updating of different signal estimators (where is the number of sensors), increasing computational complexity and memory usage by a factor. However, we derive formulas to efficiently calculate all sensor utilities with hardly any increase in memory usage and computational complexity compared to the signal estimation algorithm already in place. When applied in adaptive signal estimation algorithms, this allows for on-line tracking of all the sensor utilities at almost no additional cost. Furthermore, we derive efficient formulas for sensor removal, i.e., for updating the signal estimator coefficients when a sensor is removed, e.g., due to a failure in the wireless link or when its utility is too low. We provide a complexity evaluation of the derived formulas, and demonstrate the significant reduction in computational complexity compared to straightforward implementations

    雑音特性の変動を伴う多様な環境で実用可能な音声強調

    Get PDF
    筑波大学 (University of Tsukuba)201

    A Phoneme-Scale Assessment of Multichannel Speech Enhancement Algorithms

    Full text link
    In the intricate acoustic landscapes where speech intelligibility is challenged by noise and reverberation, multichannel speech enhancement emerges as a promising solution for individuals with hearing loss. Such algorithms are commonly evaluated at the utterance level. However, this approach overlooks the granular acoustic nuances revealed by phoneme-specific analysis, potentially obscuring key insights into their performance. This paper presents an in-depth phoneme-scale evaluation of 3 state-of-the-art multichannel speech enhancement algorithms. These algorithms -- FasNet, MVDR, and Tango -- are extensively evaluated across different noise conditions and spatial setups, employing realistic acoustic simulations with measured room impulse responses, and leveraging diversity offered by multiple microphones in a binaural hearing setup. The study emphasizes the fine-grained phoneme-level analysis, revealing that while some phonemes like plosives are heavily impacted by environmental acoustics and challenging to deal with by the algorithms, others like nasals and sibilants see substantial improvements after enhancement. These investigations demonstrate important improvements in phoneme clarity in noisy conditions, with insights that could drive the development of more personalized and phoneme-aware hearing aid technologies.Comment: This is the preprint of the paper that we submitted to the Trends in Hearing Journa

    User-Symbiotic Speech Enhancement for Hearing Aids

    Get PDF
    corecore