4,106 research outputs found

    Sensor node localisation using a stereo camera rig

    Get PDF
    In this paper, we use stereo vision processing techniques to detect and localise sensors used for monitoring simulated environmental events within an experimental sensor network testbed. Our sensor nodes communicate to the camera through patterns emitted by light emitting diodes (LEDs). Ultimately, we envisage the use of very low-cost, low-power, compact microcontroller-based sensing nodes that employ LED communication rather than power hungry RF to transmit data that is gathered via existing CCTV infrastructure. To facilitate our research, we have constructed a controlled environment where nodes and cameras can be deployed and potentially hazardous chemical or physical plumes can be introduced to simulate environmental pollution events in a controlled manner. In this paper we show how 3D spatial localisation of sensors becomes a straightforward task when a stereo camera rig is used rather than a more usual 2D CCTV camera

    The Proceedings of 14th Australian Digital Forensics Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword This is the fifth year that the Australian Digital Forensics Conference has been held under the banner of the Security Research Institute, which is in part due to the success of the security conference program at ECU. As with previous years, the conference continues to see a quality papers with a number from local and international authors. 11 papers were submitted and following a double blind peer review process, 8 were accepted for final presentation and publication. Conferences such as these are simply not possible without willing volunteers who follow through with the commitment they have initially made, and I would like to take this opportunity to thank the conference committee for their tireless efforts in this regard. These efforts have included but not been limited to the reviewing and editing of the conference papers, and helping with the planning, organisation and execution of the conference. Particular thanks go to those international reviewers who took the time to review papers for the conference, irrespective of the fact that they are unable to attend this year. To our sponsors and supporters a vote of thanks for both the financial and moral support provided to the conference. Finally, to the student volunteers and staff of the ECU Security Research Institute, your efforts as always are appreciated and invaluable. Yours sincerely, Conference Chair Professor Craig Valli Director, Security Research Institut

    Anti- Forensics: The Tampering of Media

    Get PDF
    In the context of forensic investigations, the traditional understanding of evidence is changing where nowadays most prosecutors, lawyers and judges heavily rely on multimedia signs. This modern shift has allowed the law enforcement to better reconstruct the crime scenes or reveal the truth of any critical event.In this paper we shed the light on the role of video, audio and photos as forensic evidences presenting the possibility of their tampering by various easy-to-use, available anti-forensics softwares. We proved that along with the forensic analysis, digital processing, enhancement and authentication via forgery detection algorithms to testify the integrity of the content and the respective source of each, differentiating between an original and altered evidence is now feasible. These operations assist the court to attain higher degree of intelligibility of the multimedia data handled and assert the information retrieved from each that support the success of the investigation process

    Security Applications for Converging Technologies - Impact on the Constitutional State and the Legal order

    Get PDF
    In this study we investigate the impact of converging technologies on legal practice and criminology in a forward looking study intended for practitioners and policy makers in the field of legislation, crime prevention, and law enforcement. We look at a 15 years timeframe and discuss the scientific and technical progress in various domains as well as the ethical, legal, and policy dilemmas involved.

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098

    Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities

    Full text link
    [EN] Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing holds potential for new breeds of services and user experience. However, Fog computing is still nascent and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily deployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services on local network while reducing the cost. In this paper, we present a novel resource efficient framework for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on different nodes and a summary is generated over the Fog network, which is periodically pushed to the cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos are used to evaluate the proposed system. Experimental results suggest that even by using an extremely limited resource, single board computer, the proposed framework has very little overhead with good scalability over off-the-shelf costly cloud solutions, validating its effectiveness for IoT-assisted smart cities. (C) 2018 Elsevier Inc. All rights reserved.Nasir, M.; Muhammad, K.; Lloret, J.; Sangaiah, AK.; Sajjad, M. (2019). Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal of Parallel and Distributed Computing. 126:161-170. https://doi.org/10.1016/j.jpdc.2018.11.004S16117012
    corecore