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ABSTRACT

In this paper, we use stereo vision processing techniques to
detect and localise sensors used for monitoring simulated
environmental events within an experimental sensor net-
work testbed. Our sensor nodes communicate to the camera
through patterns emitted by light emitting diodes (LEDs).
Ultimately, we envisage the use of very low-cost, low-power,
compact microcontroller-based sensing nodes that employ
LED communication rather than power hungry RF to trans-
mit data that is gathered via existing CCTV infrastructure.
To facilitate our research, we have constructed a controlled
environment where nodes and cameras can be deployed and
potentially hazardous chemical or physical plumes can be
introduced to simulate environmental pollution events in a
controlled manner. In this paper we show how 3D spatial
localisation of sensors becomes a straightforward task when
a stereo camera rig is used rather than a more usual 2D
CCTV camera.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis—depth cues, stereo
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1. INTRODUCTION

In previous work, we showed how LED communications
from sensor nodes can be picked up in a controlled envi-
ronment using a simple CCTV camera [3]. Chemical gas
plumes were monitored by low-cost LED-based chemosen-
sors and when threshold chemical concentrations were de-
tected, a signal LED was used to communicate this event
to the camera. We have also reported on the use of con-
ventional RF-enabled nodes with the same LED-based sen-
sors [13]. Looking to the future, and as also recognised by
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others (see [5], for example), we feel that the most realis-
tic approach to deploying over wider areas will require a
combination of these data harvesting approaches, with spe-
cific configuration dictated by the application in question.
In this paper, we are again interested in understanding the
potential of using cameras to harvest sensor data, however
this time we consider a more sophisticated camera device
as the data gatherer in order to facilitate automatic node
localisation.

2. CCTV & STEREO VISION

In our initial proof of concept work, we postulated that
sensor nodes could be placed within a camera’s field of view
and that the sensors could signal their status (and what
they are sensing) to the camera via LEDs, thereby avoiding
power-hungry RF transmissions. Clearly, for such an ap-
proach to exhibit practical scalability to real scenarios, suf-
ficiently dense CCTV coverage is required and some means
to automatically localise arbitrarily placed sensor must be
available.

Such visual sensing coverage is already in place within
most built environments such as city centres, private prop-
erty and strategic buildings where people congregate (in-
cluding subways, train stations, airports, etc.) via the grow-
ing deployment of CCTV [11]. Using the existing CCTV
infrastructure would mean that battery-life concerns asso-
ciated with visual processing on power-constrained devices
can be side-stepped since the cameras are wired and sup-
port continuous sensing. In fact, it even becomes feasible to
start considering a change to the camera modality and/or
the possibility of pushing relatively computationally expen-
sive data processing to the camera.

Existing CCTV cameras simply gather and transmit the
video data to a back-end server. Thus, the gathered data is
really only useful in a forensic capacity i.e. after an impor-
tant event has occurred. Ideally, we would like to locate the
required image processing in the camera itself so that it can
‘wake-up’ upon detection of an event, and signal this appro-
priately. Of course, this would necessitate replacing every
camera in the network with a ‘smart’ camera with the re-
quired processing capability. However, CCTV networks will
be upgraded in time and indeed replaced as they get older.
Whilst the camera placement is expensive, it is a once-off
activity that can be thereafter used over a lengthy period
for multiple deployments of cheap sensors.

Our initial work used 2D visual processing for sensor de-
tection but did not consider node localisation. One approach
to address localisation is outlined in [7], whereby each mote
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is equipped with a LED and is wireless enabled. Computer
vision techniques are employed to obtain the direction of the
continuously blinking LEDs from a single camera. The dis-
tance of the mote is approximated by obtaining the power
drop in RF signal strength. However, this solution em-
ploys idealised models to infer distance from received sig-
nal strength, which may be violated in some scenarios. In
addition, the use of wireless has implications on the power
requirements of the motes. An interesting discussion on the
variation of received RF signal strength due to diffraction,
refraction, reflection and multi path fading as well as RF
power issues is discussed in [10].

A particularly elegant approach, outlined in [2], eliminates
the need for wireless communication between non-visual sen-
sor motes by employing only computer vision techniques to
establish node localisation in the shared field of view of a
number of widely distributed camera sensor platforms. The
approach employs the use of modulated light emissions from
a bright red LED as both a communication and localisation
mechanism. This reduces the cost of deployment since in-
dividual nodes will not be required to create and maintain
their own communications infrastructure and so they can
be built as simpler, cheaper low power devices. In the ap-
proach proposed in [2], it is necessary that each LED is
able to uniquely identify itself to the cameras and this is
achieved by modulating the LED emissions from each mote.
Once each camera has identified each of the motes present
in its field of view, the information from multiple cameras
is merged to calibrate the cameras and thereby localise the
motes.

In this work, we consider an alternative approach based
on the idea of using existing wired CCTV infrastructure,
albeit an infrastructure where the 2D cameras are replaced
with narrow base-line stereo cameras as a result of our hy-
pothetical upgrade mentioned above. Such devices are likely
to become widespread in future CCTV networks, given the
benefits they have been proven to provide over 2D cameras
in terms of robust analysis of unconstrained scenes for secu-
rity and safety applications — see [6, 9]. The use of calibrated
short-baseline stereo cameras eliminates the need for each
mote to uniquely identify itself in addition to avoiding the
requirement of [2] for the deployment of special patterns that
includes distance information, or distance measurements be-
tween camera nodes. Notwithstanding this, we acknowledge
that a stereo camera network will still suffer the limitations
of any such approach (e.g. line-of-sight issues between nodes
and cameras, temporary occlusions, shadows, etc.), and thus
our future work will consider a similar approach to that of
[2] but with multiple stereo cameras with overlapping fields
of view.

3. ENVIRONMENTAL CHAMBER

To facilitate our work on these and other issues, we have
built a laboratory-based environmental sensing chamber (see
figure 1(a)) where we can locate LED-based sensor nodes
and introduce gas plumes in a controlled manner in order to
simulate an environmental pollution event — see figure 1(b).
The chamber is constructed from bonded 10mm thick clear
Perspex™™ sheets and has a dimension of 2m x 1m X 1m.
This constitutes a versatile airtight environment that allows
for the use of a range of hazardous chemicals and other medi-
ums during testing. We use Mica2Dot MPR500CA mote de-
vices [1]. Since the work reported here is a proof of concept
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Figure 1: Environmental Sensing Chamber: (a) Di-
mensions; (b) System diagram showing air flow, sen-
sors and stereo camera. Note that in practice sen-
sors are placed in arbitrary locations in the 3D vol-
ume.

of using a stereo camera, for our experiments in this pa-
per we simply sense temperature rather than any hazardous
chemical. It should be noted though that we have a pipeline
of other sensing modalities we are working with, including
very low cost optical chemo-sensors that can be used as de-
tectors in gas and liquid phase monitoring applications [14,
12]. We employ a single thermistor per mote interfaced to
a single ended analog to digital converter (ADC). ADC val-
ues are used unconverted to trigger a signalling LED when
a preset threshold temperature is reached. An example of a
sensor node is shown in figure 2(a).

4. VIDEO PROCESSING

4.1 Pre-processing

Node localisation is achieved via a triangulation process
based upon establishing correspondence between the same
scene points imaged by the rig’s two cameras — see figure
3. The difference from where the point u occurs in the left
image and where the corresponding point u’ occurs in the
right image is known as the disparity. Many disparity esti-
mation techniques simplify this correspondence problem by
applying a well known geometric rule known as the Epipolar
Constraint [15]. By applying this rule, the correspondence
problem is reduced from a 2D to a 1D search along the so-
called Epipolar Line. To obtain the disparity of the LEDs,
we employ a correlation based disparity estimation technique
[4] that assumes that corresponding pixels between images



Figure 2: Sensor nodes: (a) An example sensor node
incorporating a Crossbow Mote (right) and LED
sensing/signalling (left); (b) Thermistor potential
divider circuit

have very similarly intensities. We therefore perform im-
age colour normalisation prior to this. Following this, the
images from the two cameras are rectified i.e. they are pro-
jected onto a new common image plane that is parallel to
the cameras’ baseline [4].

4.2 Foreground Extraction

Prior to performing disparity estimation, it is necessary
to extract the foreground LED regions. A commonly used
technique is background suppression — see [16, 8]. This in-
volves building a representation of the background and then
detecting foreground pixels as those that differ significantly
from their modeled value. However, unlike most classical
background suppression scenarios that attempt to solve a
two-class classification problem where the foreground is un-
defined, in our scenario, we know the colour of the LEDs we
are attempting to detect. This allows us to create a robust
background suppression algorithm that is less sensitive to
noise. Our algorithm is implemented in two steps applied
to both images separately:

e Background Suppression: We employ a Gaussian based
background modeling technique, similar to that de-
fined in [17], to obtain foreground regions.

e Foreground Colour Mask: The foreground regions are
then filtered through a colour mask, which extracts
green coloured foreground regions (the LED colour we
use). This is a natural extension of the 2D image pro-
cessing we used in [3].

4.3 Disparity Estimation

In order to obtain the 3D position of each detected region,
corresponding to the spatial location of the LED, the dispar-
ity of each foreground region must be determined. An initial
step to this process is to cluster the pixels in one foreground
image, F'I1, into regions using a 4-neighbourhood connected
component algorithm [4]. For a given foreground region, 71,
in F'I;, the disparity of the region is obtained by moving
r1 along its corresponding epipolar line for a maximum dis-
tance of dpaz, the disparity limit. At each position along
the epipolar line, a matching score is obtained using the Sum
of Absolute Differences (SAD) between all the pixels in r;
and the corresponding pixels in F'I>. The position along the
epipolar line where the matching score is minimum is cho-
sen as the corresponding region, r2, iff r2 contains at least 1
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Figure 3: (a) & (b) Triangulation; (c) & (d) Epipolar
Geometry; (e) & (f) Rectification

foreground pixel. The disparity is then defined as the differ-
ence in position of 1 and re within their respective images.
This process is then reversed to obtain the disparities for all
regions in F'I> to remove any inconsistent region matches.

4.4 3D localisation

The chamber is positioned in 3D space relative to the
camera by manually tagging 3 points in the scene in both Iy
and I2. This is carried out once, when the camera is initially
positioned (the once-off calibration step required at instal-
lation time, referred to in section 2). The disparity of these
points are determined and the 3D position of the points is
calculated from the rectified images using triangulation, as
defined in [15]. These 3 points are used to constrain the
chamber’s position and orientation in 3D space with respect
to the camera. Each walid foreground region, as obtained
from section 4.3, is also projected into 3D space. It is then
possible to obtain the 3D coordinates of the projected region
with respect to the environmental chamber’s coordinate sys-
tem, in fact with respect to the entire scene.

5. EXPERIMENTAL RESULTS

Experimental data was captured using a Digiclops® stereo
camera at a distance of 1.4 meters to the chamber. The
camera baseline is 10cm and image resolution is 640x480
pixels. Four separate tests were carried out, resulting in
2470 images, where upto 3 LEDs may be on at any given



time. The experiments involved various mote setups, where
the motes were positioned at known ground truth positions
with respect to the chamber’s coordinate system. In addi-
tion, different lighting conditions were simulated. Each mote
is equipped with a green LED. An LED is determined as de-
tected if the foreground region in I; and its corresponding
region in I2, both correspond to a real LED being on within
the chamber.

To evaluate the detection results we use the commonly
used metrics of Precision (P) and Recall (R) defined as:

_ LEDTP _ LEDtp
o LEDTP + LEDFP

P = LEDrp+LEDpN

where LED7p is the number of true-positive LED regions,
i.e. the number of LED regions correctly detected by our
system, LE Dpp is the number of false-positive LED regions,
i.e. the number of incorrect LED detections, and LEDrn
is the number of false-positive LED regions, i.e. the number
of missed LED detections. For a total of 3,658 LED acti-
vations, we obtained an average precision of 95.35% and
an average recall rate of 99.18%. The average difference
between the real-world position of an LED and the detected
position of an LED that has been switched on, with respect
to the chamber’s coordinate system was 15.63cm, where the
average distance from an LED to the camera was 215.37cm.
Thus, we obtained the correct 3D position of LEDs with an
error in precision of just 7.258% with respect to the camera
placement. These results indicate extremely accurate detec-
tion and spatial localisation. Many of the false-positives in
precision are due to reflections of activated LEDs from the
perspex sides that occur when an LED is positioned at the
edge of the chamber.

Figures 4 and 5 show illustrative results for two different
spatial configurations of 3 sensors within the chamber. Fig-
ures 4(a) and 5(a) show the colour images obtained by one
of the camera lenses, whilst figures 4(b) and 5(b) show the
colour images obtained using the same experimental set-up
in each case but under different lighting conditions. The
ground truth position of the motes for each configuration
are shown using red circles in one of the images. For both
spatial configurations, typical results of node detection us-
ing 2D image processing (such as that used in our previous
work) is illustrated in figures 4(c) and 5(c), where detected
nodes are again indicated by red circles. From these images
it is clear that there are many erroneous detections that can-
not be resolved with further 2D post-processing. Detection
results from the stereo rig are depicted in figures 4(d) and
5(d) indicating much improved detection accuracy. Figure
5(d) illustrates a problem with the approach whereby it can
be seen that one of the “detected” motes is a false-positive
that results from the reflection of the LED on the surface
of the perspex side of the chamber — this is illustrated by
a blue circle. In figures 4(e) and 4(f), the LEDs are shown
rendered as 3D points in the correct spatial location in a
stylised wireframe model of the chamber from two different
artificially generated viewpoints (where the shaded panel in-
dicates the “floor” of the chamber), and similarly in 5(e) and
5(f) for the second spatial configuration. Such a rendering
of the environment being sensed could feasibly be transmit-
ted/stored as a low bandwidth alternative (or indeed as a
complement) to the video data itself.

(a) Input image; (b) Input (lighting
change);

(¢) 2D foreground re- (d) Disparity regions;
gions;

(e) 3D Positioning — View (f) 3D Positioning — View
1; 2.

Figure 4: Illustration detection results 1

(a) Input image; (b) Input (lighting
change);

(¢) 2D foreground re- (d) Disparity regions;
gions;

(e) 3D Positioning — View (f) 3D Positioning — View
1

)

Figure 5: Illustrative detection results 2



6. CONCLUSIONS

These experiments are extremely encouraging and demon-
strate the potential usefulness of stereo vision as a means
to harvest data from light emitting sensor networks. This
serves to convince us of the possibilities of leveraging al-
ready instantiated CCTV infrastructure as a data gathering
framework for wireless sensor networks, albeit necessitating
increased sophistication in the camera device itself. We have
proved that using mature well understood and computation-
ally efficient vision techniques it is possible to detect and
spatially localise the sensors within an environment, facili-
tating more accurate detection and monitoring of an event
as it unfolds. Clearly, this approach is inherently limited by
the distance of the sensor node to the camera as the bright-
ness of the LED will diminish significantly the further away
it is, making detection problematic and error prone. In this
work to ignore this, as the next step in our work is to use
multiple stereos with overlapping fields of view under the
hypothesis in such a scenario, an LED is always sufficiently
close to one camera in the network to facilitate detection.

We acknowledge that whilst the use of the environmental
chamber in this paper is useful from a conceptual point view,
and provides an easily controlled testbed for the next phase
of our work with more complex sensors with real chemical
events, it is also somewhat artificial. For this reason, we
have to date deliberately not tackled vision problems intro-
duced by the chamber itself. An example is the reflections
caused by the perspex, that could be easily removed from
consideration by determining that they are outside the 3D
volume of the chamber.

In the future, we plan to use the optical chemo-sensors
mentioned in section 3. In parallel we will also distribute
a larger number of sensors with more advanced light sig-
nalling in various 3D spatial configurations within a real
environment, corresponding to a large room or corridor as a
first step, with sensors artificially activated based on mod-
eled dispersion characteristics. We will also move to using
multiple stereo rigs trained on the same scene and use this
to disambiguate occlusions, motivated by the approach of
[2]. We will perform experiments in active scenes i.e. with
moving people/objects, using the stereo techniques we have
developed for foreground object detection and tracking in
surveillance scenarios.
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