10,737 research outputs found

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    Dynamic graph-based search in unknown environments

    Get PDF
    A novel graph-based approach to search in unknown environments is presented. A virtual geometric structure is imposed on the environment represented in computer memory by a graph. Algorithms use this representation to coordinate a team of robots (or entities). Local discovery of environmental features cause dynamic expansion of the graph resulting in global exploration of the unknown environment. The algorithm is shown to have O(k.nH) time complexity, where nH is the number of vertices of the discovered environment and 1 <= k <= nH. A maximum bound on the length of the resulting walk is given

    Development of a tabletop guidance system for educational robots

    Get PDF
    The guidance of a vehicle in an outdoor setting is typically implemented using a Real Time Kinematic Global Positioning System (RTK-GPS) potentially enhanced by auxiliary sensors such as electronic compasses, rotation encoders, gyroscopes, and vision systems. Since GPS does not function in an indoor setting where educational competitions are often held, an alternative guidance system was developed. This article describes a guidance method that contains a laser-based localization system, which uses a robot-borne single laser transmitter spinning in a horizontal plane at an angular velocity up to 81 radians per second. Sensor arrays positioned in the corners of a flat rectangular table with dimensions of 1.22 m × 1.83 m detected the laser beam passages. The relative time differences among the detections of the laser passages gave an indication of the angles of the sensors with respect to the laser beam transmitter on the robot. These angles were translated into Cartesian coordinates. The guidance of the robot was implemented using a uni-directional wireless serial connection and position feedback from the localization system. Three experiments were conducted to test the system: 1) the accuracy of the static localization system was determined while the robot stood still. In this test the average error among valid measurements was smaller than 0.3 %. However, a maximum of 3.7 % of the measurements were invalid due to several causes. 2) The accuracy of the guidance system was assessed while the robot followed a straight line. The average deviation from this straight line was 3.6 mm while the robot followed a path with a length of approximately 0.9 m. 3) The overall performance of the guidance system was studied while the robot followed a complex path consisting of 33 sub-paths. The conclusion was that the system worked reasonably accurate, unless the robot came in close proximity

    Supervisor Localization of Discrete-Event Systems based on State Tree Structures

    Full text link
    Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems in the Ramadge-Wonham supervisory control framework. Its essence is the decomposition of monolithic (global) control action into local control strategies for the individual agents. In this paper, we establish a counterpart supervisor localization theory in the framework of State Tree Structures, known to be efficient for control design of very large systems. In the new framework, we introduce the new concepts of local state tracker, local control function, and state-based local-global control equivalence. As before, we prove that the collective localized control behavior is identical to the monolithic optimal (i.e. maximally permissive) and nonblocking controlled behavior. In addition, we propose a new and more efficient localization algorithm which exploits BDD computation. Finally we demonstrate our localization approach on a model for a complex semiconductor manufacturing system

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Galois lattice theory for probabilistic visual landmarks

    Get PDF
    This paper presents an original application of the Galois lattice theory, the visual landmark selection for topological localization of an autonomous mobile robot, equipped with a color camera. First, visual landmarks have to be selected in order to characterize a structural environment. Second, such landmarks have to be detected and updated for localization. These landmarks are combinations of attributes, and the selection process is done through a Galois lattice. This paper exposes the landmark selection process and focuses on probabilistic landmarks, which give the robot thorough information on how to locate itself. As a result, landmarks are no longer binary, but probabilistic. The full process of using such landmarks is described in this paper and validated through a robotics experiment
    corecore