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Abstract: This paper presents an original application of the Galois lattice theory, the
visual landmark selection for topological localization of an autonomous mobile robot,
equipped with a color camera. First, visual landmarks have to be selected in order
to characterize a structural environment. Second, such landmarks have to be detected
and updated for localization. These landmarks are combinations of attributes, and the
selection process is done through a Galois lattice. This paper exposes the landmark
selection process and focuses on probabilistic landmarks, which give the robot thorough
information on how to locate itself. As a result, landmarks are no longer binary, but
probabilistic. The full process of using such landmarks is described in this paper and
validated through a robotics experiment.
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1 Introduction

Finding its place in an environment is a difficult challenge today for an au-
tonomous mobile robot. This robot needs to know how to characterize and to
recognize a place by itself in order to be considered fully autonomous in terms
of orientation and navigation.

The robot in our experiment uses visual landmarks (section 2) to characterize
each site in the structural environment. This localization approach means that
the robot recognizes its topological but not metric position. Thus it is more
qualitative than quantitative. Metric localization is efficient in a local context,
provided objects are not moving. But as soon as the environment gets larger, or
objects start moving (as in a typical human environment), metric localization
becomes very costly and less stable than the topological approach. Moreover, the
use of visual landmarks is justified through advantages the sensor (a standard
”webcam” in our application) presents: small, cheap, robust. By nature, images
are also -potentially too- replete with information.

The formalism used to select landmarks is Galois -or concept- lattice (sec-
tion 3), and a general approach has already been described in a previous paper
[Zenou and Samuelides, 2003]. We have developed a general Galois lattice-based
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landmark selection algorithm. Here we describe this technique much more thor-
oughly than previously (section 4). Moreover, we use the heritage lattice (see
section 6) to avoid attribute redundancy.

The robot thus locates itself if it finds a landmark specific to its site in the
current image. However, this landmark-based localization process gives a weak
response rate, i.e. a weak number of images that the robot knows how to locate
compared with the total number of images it captures.

Our original approach developed in this paper is the introduction of ”prob-
abilistic landmark” (section 5) to improve the response rate. Most of the time,
the probabilistic side of localization concentrates on the metric localization (see
[Thrun et al., 2000, Thrun, 2002]), where landmarks are mainly interest points
[Harris and Stephens, 1988]. Here, landmarks give a probability associated with
each site in the structured environment.

In a practical way, if the robot does not find any classical landmarks, it will
try to find such probabilistic landmarks. However, probabilistic landmarks must
be very robust. Here we underline one specificity of our application. Indeed, if
the robot cannot locate itself by finding (classical or probabilistic) landmarks in
the images it captures, it will be able to move and catch other images until a
robust landmark is detected. Thus it is an active vision process.

The landmark selection procedure (similar to a landmark-based classification
process) and the localization process are described respectively in sections 6 and
7. Experimentations and results are exposed in section 8, before our conclusion
in section 9.

2 Visual Landmarks

In [Zenou and Samuelides, 2003], a wide discussion is initiated to answer the
following questions: what is a landmark ? How to find it ? And how to select
it ? A new classification systems is introduced: fully pre-defined landmarks,
the robot ”just” has to recognize [Knapek et al., 2000, Mata et al., 2001]; par-
tially pre-defined landmarks, for which a general structure is pre-defined, as
in [Hayet et al., 2002] where authors use quadrangular surfaces (posters); and
non pre-defined landmarks, where no hypothesis is done about landmarks (such
landmarks are usually bio-inspired [Itti et al., 1998, Arleo et al., 2001]). Our ap-
proach belongs to this last category.

During the learning phase, all pictures are shot from the robot camera in
the different places of the environment. Thus, a set of images is attached to
each place of the environment. From these pictures, primitives (segments from
polynomial contour extraction, color from the HSV space, objects quantified with
morphological operators. . . ) are extracted to find features, which are supposed to
be more robust than primitives. The algorithms used to extract primitives from



images are quite classical. For instance, to obtain segments, the contours are
extracted with a Canny-Deriche algorithm and approximated with polynomial
figures, from which segments are extracted (see Figure 1 as an example).

Figure 1: Segments issued from a shelf.

Color information is coded into the HSV space, that is much more robust
against luminosity alteration. The three primary colors (red, green, blue) and
secondary colors (yellow, magenta, cyan) pixels are extracted and objects (i.e.
homogeneous local area with the same color) extracted.

To quantify such an information, morphological operators are used in the
six binary images. Indeed, given for instance any image (Figure 2(a)) and the
associated real ”red” image (H < 0.07, S > 0.7, V > 0.1 in the normalized HSV
space, see Figure 2(b)), after being ”cleaned” with the open and close operators,
there is a (minimum) 40× 10 sized rectangle red object in the original image if
and only if the result of an erosion is not an empty image (Figure 2(c)).

Features are issued from primitives. For instance, ”there is a yellow object”
or ”there is a large number of identical (orientation and size) segments” (shelf)
are typical features, more robust against rotation, translation and scaling than
primitives. By this way, to each image is associated a set of features, and a
mapping is filled up (Figure 3).

A cross means that the feature f (called ”attribute” since now)is present in
the image i (called ”object” since now). The mapping is thus partitioned into
classes. Our goal is to create a landmark-based classifier.

To mine information, an original mathematical formalism is used by the
machine to find landmarks of its environment.

3 Galois Lattices

All information is described in terms of concepts, that associate sets of objects
(images) with sets of attributes. This formalization matches very well with our
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Figure 2: Colored Object Extraction: from the image (a), red colored pixels are
extracted (b). Afterwards, morphological filters (opening and closing), using and
small structuring element (SE) are done to clean the binary image, i.e. to remove
small black pixels in the white space and small white pixels in the black space.
Finally, An erosion, using a 50 × 20 SE is done on the filtered image and, as a
resulting image (c) is not fully black, it shows the presence of a minimum 50×20
red object on the image.

application: subsets of images corresponding to particular places (inside a site)
are described with particular feature combinations. For instance, a green plant
is described as a green objects with many small segments, inside a site. There
is thus a very close relationship between landmarks, sites, images and concepts,
which is not the case with classification trees for instance.

Moreover, updating a lattice and visual landmarks is very easy with an in-
cremental algorithm. it s not necessary to restart the learning process when a
new object arrives, in opposition with a neural network for instance. Moreover,
concept lattices are fully deterministic, and do not depend on any stochastic
initialization process.

All concepts are organized into a a lattice-type hierarchy, called Galois -or
concept- lattices. Landmarks are extracted from these “hierarchized” concepts.

The full formalism about Galois lattices is described in the following books:
[Barbut and Monjardet, 1970, Ganter and Wille, 1999]. Let us expose however
the main definitions.

3.1 Galois Lattice formalism

Definition 1 A lattice is a partially ordered set in which two any elements
have a least upper bound (lub) and a greatest lower bound (glb). A complete
lattice is a lattice where any set has a lub and a glb.



 Feature 1 Feature 2 Feature 3 Feature 4 Feature f Feature Nf
Image 1.1 X X
Image 1.2 X X X
Image 1.3

X
Image 1.N1
Image 2.1 X
Image 2.2 X X X X X
Image 2.3 X

Image 2.N2
… … X X

Image p.1 X
Image p.2 X X
Image p.3

X
Image p.Np

Place 1

Place 2

Place p

Figure 3: Information structuring.

Definition 2 A context K is a triple (O,F , ζ) where O is a set of objects,
F is a set of attributes and ζ is a mapping from O ×F into {0, 1}.

Definition 3 Given a context K = (O,F , ζ) let us define two mappings from
P(O) into P(F) and from P(F) into P(O) using the same notation ′ by the
formula

∀A ⊂ O,A′ = {f ∈ F | ∀o ∈ A, ζ(o, f) = 1} (1)

∀B ⊂ F ,B′ = {o ∈ O | ∀f ∈ B, ζ(o, f) = 1} (2)

A′ is called the dual of A, similarly B′ is called the dual of B.

Definition 4 Given a context K = (O,F , ζ), the pair C = (A,B) is called a
concept of K if and only if A′ = B and B′ = A.

Definition 5 A is called the extent of the concept C and B is called its intent.
This is denoted by A = extent(C) and B = intent(C).

Considering an order relationship defined through inclusion of intents, one may
define a Galois lattice or concept lattice:

Definition 6 The complete lattice L(K) of concepts of the context K is called
(general) Galois lattice or formal concept lattice.

Using this formalism, concepts are properly defined and landmarks will be
extracted from them.

3.2 Galois Lattice Building Algorithms

Two families of lattice building algorithms exist: incremental algorithms and
non-incremental algorithms.



Incremental algorithms (Godin et al. [Godin et al., 1991], Carpineto & Ro-
mano [Carpineto and Romano, 1996], Norris [Norris, 1978], . . . ) expand the lat-
tice as a new object appears, whereas non-incremental algorithms (Chein [Chein, 1969],
Ganter [Ganter, 1984], Bordat [Bordat, 1986],. . . ) build the lattice after the map-
ping is filled up.

All these algorithms build a full (or join semi-) lattice, without considering
any specificity. The complexity of the algorithms is exponential w.r.t. the size of
the context, but for some algorithms is linear in the number of concepts mod-
ulo some polynomial of the input size [Kuznetsov and Obiedkov, 2002]. Many
techniques have been developed with the aim to reduce the complexity, as in
[Nguifo and Njiwoua, 1998] where properties are eliminated from the mapping,
with an entropy function.

A very complete comparison is done in [Kuznetsov and Obiedkov, 2001] where
authors expose algorithms, advantages and drawbacks of each of them.

In our application, images arrive as one goes along. Therefore we have decided
to use the Norris algorithm, that is exposed section 6.3, which has been slightly
modified in our activity.

4 Formal Landmark Definitions Using Galois Lattices

4.1 General Definition

The context in our application being defined with a set of images (objects), a set
of attributes, and a mapping (the presence or not of a attribute f in an image i),
the general lattice is built and landmarks are extracted thanks to the following
definition:

Definition 7 Given a context K = (O,F , ζ) and a subset of objects A ⊂ O. A
subset B ⊂ F is said to be a landmark of A if and only if

– B′′ = B,

– and B′ ⊆ A.

Let us note that our definition of a landmark is equivalent to the definition of a
hypothesis in [Finn, 1983, Ganter and Kuznetsov, 2000].

By this way, a landmark is a combination of attributes of a concept (intent)
that describes a set of images (extent) belonging to a specific place. The complete
process, using a heritage lattice is wholly described and detailed section 6.

4.2 Landmark Formal Definitions in a Partitioned Context

Let us expose here some definitions useful in our particular context.



4.2.1 Site Landmark Definition

We suppose here to have a context K = (O,F , ζ) and a partition (Oθ)θ∈Θ of the
object set. So We have O =

⊕
(θ∈Θ) θ.

Definition 8 θ is called a site and Θ the set of sites.

More generally, a site is a class of objects, in a general classification context.

Definition 9 Bθ ⊂ F is said to be a landmark of a site θ if and only if

– B′′

θ = Bθ,

– and B′

θ ⊆ θ.

A landmark is thus a set of attributes for which the simultaneous presence
is effective in some image of the site to characterize.

4.2.2 Full Landmarks

In particular, if the landmark Bθ is a set of attributes present simultaneously in
all images of the site, Bθ is called full landmark.

Definition 10 Bθ ⊂ F is said to be a full landmark of a site θ if and only if

– B′′

θ = Bθ,

– and B′

θ = θ.

Let us note that full landmarks (also called unique hypothesis in [Finn, 1983])
usually never exist in a practical application.

4.2.3 Maximal Landmark and Coverage

If there is no full landmark, it is interesting to limit the number of landmarks by
selecting the more general ones; that is why maximal landmarks are introduced.

Definition 11 A maximal landmark B̂ in a set of landmarks is a landmark
of minimal intent.

Note that maximal landmarks are similar to minimal hypothesis exposed in
[Ganter and Kuznetsov, 2000]

In a practical way, only maximal landmarks (issued from maximal concept)
will be stored during the learning phase.

the coverage of a site by a landmark or a set of landmarks specifies if all
images of the site include some of landmarks or not.



Definition 12 let {Bθ,i}i=1...Nθ
be the Nθ landmarks of a site θ. This site is

said to be covered, or the landmarks cover the site, if and only if⋃
i=1...Nθ

{B
′

θ,i} = θ

If there is a full landmark in a site, the coverage is obvious. If not, this means
that some pictures could not be covered by a landmark. Let us note that the
coverage, if it exists, is done by maximal landmarks.

4.3 From Classical Landmarks to Probabilistic Landmarks

Such ”classical” landmarks allow to select combinations of attributes that label
the subset A. However, most of the case, this too strict definition of landmark
leads to a very important ”no-response” rate. Indeed, in a real case, a lot of new
images will have a posteriori no landmark, and thus could not be classified.

That is why we here introduce probabilistic landmarks, that will give a non-
binary information but a probability to be in each place.

5 Probabilistic Landmarks

Probabilistic landmarks give probabilistic information on the place -in a topo-
logical sense- the robot locate itself. From now, landmarks are only defined as a
combination of attributes present in one place (site) and not in another. How-
ever, such information could be expanded with probabilities to improve efficiency,
mostly in the case of ”no answer”.

Let us expose in this section the complete formalism introducing probabilistic
landmarks. First, we define landmarks in a partitioned context; second, we define
a probabilistic Galois lattice and, finally, we will be able to define probabilistic
landmarks in our application context.

5.1 Probabilistic Galois Lattice

Let us define first probabilistic concepts. A concept, as exposed in section 3, is
an association of a set A of objects (extent) and a set B of attributes (intent):
C = (A,B). However, in our robotic application, objects (images) have no interest
by themselves, but the number of objects that have such and such attribute. That
is why we here propose to replace the extent by the probability of having the
attribute:

Definition 13 Let C = (A,B) be any concept of a lattice L. The corresponding
probabilistic concept, Cp, is the association of a set of attributes B and the
probability associated to this set p(B).



Thus we have:
C = (A,B) ⇒ Cp = (p(B),B) (3)

The probability associated to a subset B in a concept is simply deducted
from the number of objects having B among attributes:

C = (A,B) ⇒ p(B) =
card(A)
card(O)

(4)

5.2 Probabilistic Landmarks

Let us transpose this in a partitioned context. The probability of having one
particular extent in a general context has no meaning, but that of having one
particular extent in each site is important and useful.

Let B ⊂ F be a combination of attributes and θ a specified site. The goal is
thus, ”seeing” B, to find the probability to be in θ: p(θ|B).

The following formula allows us to establish such a experimental probability:

p(θ|B) = p(θ ∩ B)× p(B) (5)

However, this probability is actually ”legible” inside concepts through the car-
dinality of elements:

p(θ|B) =
card(A ∩ θ)

card(A)
(6)

Therefore, giving a concept C = (A,B) inside a lattice, it is possible to have
the probability of being in each site, with a particular combination of attributes:

Cp = ((p(θ1|B), (p(θ2|B), . . . , (p(θNs
|B)),B) (7)

where Ns is the number of sites.

5.3 Classical Landmarks and Probabilistic Landmarks

As defined earlier, a classical landmark is a set of attributes that is present in
one site and absent in all other sites. Probabilistic landmarks, on the other hand,
do exist everywhere, but with their intrinsic probabilities.

The relationship between a classical landmark and a probabilistic landmark
is thus the value of the probabilities. Using the strict definition of a landmark, a
probabilistic landmark attached to a site θ is a landmark of θ if and only if the
probability is equal to one:

Bθ landmark of θ ⇔ p(θ|Bθ) = 1 (8)



5.4 Comparison with Other Galois Lattice-Based Classification
Systems

Many lattice-based classification systems exist. See [Nguifo and Njiwoua, 2003]
for a complete description.

RULEARNER [Sahami, 1995] is a very closed lattice-based system using
classical landmarks. However, though our landmark definition is similar, the se-
lection process is very different in that we use heritage lattices in our application.
Advantages of such lattices is shown in section 6.

Now, the closest system using ”probabilistic landmarks” is the GALOIS sys-
tem [Carpineto and Romano, 1993], which uses a similarity based on the number
of common attributes.

Nevertheless, in our application, the similarity measure is relative to the
number of attributes present in both the concept and the object. Thus a set of
attributes could be very useful and conclusive even if its cardinality is small.

Moreover, finding a similar concept is not enough to validate the classifica-
tion: the experimental probability must be above a threshold T we have fixed
arbitrary.

Finally, the full classification process uses both classical landmarks and prob-
abilistic landmarks, if needed.

6 Landmarks Selection Process

Here is presented the general Galois lattice-based landmark selection algorithm,
that uses the heritage lattice, followed by the new probabilistic landmarks-based
algorithm.

6.1 Classical Landmark Based Algorithms

Following the strict definition of a landmark, the general lattice is built and
concepts are put into a hierarchy. Considering all concepts Cθ relative to a site
θ, i.e. all concepts whose extent are (only) some images of the place, landmarks
are intents of these concepts. The algorithm is given Figure 4.

However, in a practical way, heritage lattices [Godin et al., 1995] use H-
concepts to avoid attribute redundancy. Let us formalize them:

Definition 14 let L be a concept lattice and C any node of this lattice. The
H-concept C̃ = (Ã, B̃) corresponding to the concept C = (A,B) is the pair (new
object(s), new attribute(s)), new objects (resp. new attributes) being w.r.t. the
child (resp. parent) nodes of C. Ã and B̃ are called respectively H-extent and
H-intent.

Let us notice that, generally, H-concepts are not concepts.



1. Extract primitives from each image
2. Determine the presence or not of attributes and fill up the

mapping
3. Build the corresponding general lattice
4. Select concepts relative to a site θ, i.e. concepts whose ex-

tents contain only images of the site
5. Landmarks are intents of such concepts

Figure 4: The classical Landmark Based Algorithm

Definition 15 let L be a concept lattice. The heritage lattice L̃ is the lattice
L in which concepts have been replaced by corresponding H-concepts.

Considering, in the heritage lattice, the set of H-concepts {C̃θ} relative to a
site θ in the heritage lattice, it is necessary to select H-concepts:

1. that are relative to the site θ;

2. that are parents or children of all H-concepts of {C̃θ};
3. and, among them, select the set of H-concepts that have in the H-extent no

object related to another site θ∗ 6= θ.

Landmarks are H-intents of those selected H-concepts.
However, in some particular cases, no H-concept is selected for a site θ, so

the heritage lattice fails to give landmarks. In such a case, the concept lattice
is used to read landmarks in the set of concepts {Cθ}. The general algorithm is
presented Figure 5.

A simple but explicit example is shown Figure 6.
The cardinalities of H-intents are considerably smaller. This property is very

useful in our application. Indeed, an image could be characterized by several
hundreds of attributes. Thus reducing the size of concepts means that much less
memory in being used by the computer.

6.2 Probabilistic Landmark Based Algorithm

In such a case, all concepts give probabilistic landmarks on each site of the
environment. Therefore, in such an algorithm, all concepts are kept, and there
is no need to have now any selection process.

The number of probabilistic landmarks being more important than the num-
ber of classical ones, we do have here a richer information to allow a robot to
make a decision.



1. Extract primitives from each image
2. Determine the presence or not of attributes and fill up the

mapping
3. Build the corresponding heritage lattice
4. For each place θ:
41. Select the set of H-concepts {C̃θ} whose H-extents are only

images of the place θ

42. Select all ascendants and descendants of H-concepts of {C̃θ}
43. Remove H-concepts that have, as descendant, one H-

concept including object(s) from another site in the H-
extent

44. Eventually, if desired to find maximal landmarks, among
remaining H-concepts, remove those that have any other
H-concept as ascendants in the same group

45. Finally, read the landmarks in the H-intent of remaining
H-concepts. If empty, read the intent of the corresponding
concept in L

Figure 5: The Galois Lattice-Based Landmark Extraction Algorithm using a
Heritage Lattice

The algorithm is presented Figure 7.
In a real process, the two last steps carry out together: indeed, probabilities

are updated by an algorithm of Norris for building a lattice, which has been
slightly modified.

6.3 Modified Norris Algorithm

We implemented the algorithm of Norris [Norris, 1978], which is one of those
described in [Kuznetsov and Obiedkov, 2001]. The modification we have added
concerns the way concepts update probabilistic landmarks of the lattice. The
algorithm is shown in Figure 8.

7 Localization Using Visual Landmarks

Autonomous localization is now fully dependent on visual landmarks. Given
every new image I from the structured environment, landmarks will allow the
robot to locate itself. First, the robot tries to find classical landmarks. But if it
fails, it will try to find probabilistic landmarks.
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Figure 6: Simple example of landmark extraction. Let us consider here two places
and the set of H-concepts related to each place (H-concepts 4, 9 and 10 for the
first one and 11 and 12 for the second one). Landmarks of the first place are
H-intents (if not empty) of H-concepts 4, 9, 10, and 5, that are ascendants of
H-concepts 9 and 10; full landmark of the first place is H-intent (if not empty)
of H-concept 1. Note that H-concepts 0, 2 and 6 are not considered for the
first place, because they have H-concepts of the second place as descendant .
H-concepts of the second place are H-intents (if not empty) of H-concepts 7, 8,
11 and 12, and there is no full landmark for the second place.

1. Extract primitives from each image
2. Determine the presence or not of attributes and fill up the

mapping
3. Build the corresponding general lattice
4. Determine the probabilistic landmarks

Figure 7: The Probabilistic Landmark Based Algorithm

7.1 Localization Using Classical Landmarks

The rule of localization of classical landmark is quite very simple:

– if there is, in the new image I, one or several landmarks relative to one and
only one site, the robot is in this site;

– if there is no landmark, the robot cannot locate itself;

– if there is landmarks from at least two different sites, the lattice is updated
with the new image. Once this new image located, landmarks are updated.



NORRIS:
1. L := ∅
2. For each new object o ∈ O
2.1 ADD(o,L)

3. L is the concept set.

ADD (o,L):
1. For each (A,B) ∈ L
1.1. If B ⊆ {o}′
1.1.1. A := A ∪ {o}
1.1.2. ∀θ ∈ Θ, p(B|θ) := (card(A ∩ θ)/card(A))

1.2. Else
1.2.1. D := B ∩ {g}′
1.2.2. If {h|(h ∈ O)&(h has already been added)&(D ⊆

{h}′)} = ∅
1.2.2.1. L := L ∪ (A ∪ {o},D)
1.2.2.2. ∀θ ∈ Θ, p(B|θ) := (card(A ∩ θ)/card(A))

2. If {h|(h ∈ O)&(h has already been added)&({o}′ ⊆
{h}′)} = ∅

2.1. L := L ∪ ({o}, {o}′)
2.2. p(B|θ = Θ(o)) := 1
2.3. ∀θ∗ 6= Θ(o), p(B|θ∗) := 0

Figure 8: Modified Norris Algorithm

7.2 Localization Using Probabilistic Landmarks

The rule is here quite different than earlier. First, what is the most similar
concept is needed.

Definition 16 Let C1 = (A1,B1) and C2 = (A2,B2) be two arbitrary concepts,
the similarity S(C1, C2) is defined by the formula:

S(C1, C2) =
card(B1 ∩ B2)
card(B1 ∪ B2)

(9)

Let BI ⊂ F be the set of attributes in the new image I. The most similar
concept C∗ of the new image associated to its attributes is thus defined by:

C∗ = max
C∈L

(S(C, (I,BI))) (10)



Secondly, once the most similar concept found, the localization in given by
the probability of being in a site. The robot is in the site θ∗ defined by:

θ∗ = max
θ

(p(θ|B∗)) (11)

where B∗ is the intent of C∗.
In our application, in order to have a security margin, we have introduced a

threshold:
θ∗ selected ⇔ p(θ∗|B∗) > T = 0.75 (12)

7.3 Localization Algorithm

Figure 9 exposes the general localization algorithm. If the robot does not de-
tect any (full or not) landmark, it will try to locate itself using probabilistic
landmarks.

As soon as a new image is captured:
0. The robot is not located
1. Analyse the image and look for attributes
2. Find landmark(s) among attributes
2.1. If there is landmarks from one and only one site
2.1.1. The robot is located

2.2. Else if there is landmarks from different sites
2.2.1. The robot cannot locate

2.3. Else if there is no landmark
2.3.1. Select the most similar concept
2.3.2. if the highest probability is above a threshold T

2.3.2.1. The robot is located
3. If the robot is not located
3.1 Move to capture another picture

Figure 9: General Localization Algorithm

8 Experimentation and Results

Experimentation have been done is the SUPAERO laboratory, with the robot
Pekee (Fig 10) equipped with a CCD color camera, in a real four-place (-site)
structured environment.



(a) (b)

Figure 10: Pekee with its color camera and the map of the structured environ-
ment.

177 images have been taken for the learning stage, in four different places of
the laboratory environment. The attribute extraction process gives a 177 × 66
mapping. The corresponding 5265 concept lattice is computed in 8 seconds on
an AMD Athlon 2400+ machine. For the four classes, 883 concept-landmarks
are extracted, and 42 maximal landmarks are kept: 9 for the first place, 8 for
the second one, 17 for the third one, and 8 for the fourth one (see Table 1).

Place Full Landmarks Maximal
Landmarks Landmarks

Place #1 0 194 9
Place #2 0 316 8
Place #3 0 291 17
Place #4 0 82 8
Total : 0 883 42

Table 1: Landmarks Extraction.

8.1 Results with Classical Landmarks

During the generalization phase, 32 images are issued from the place #1. These
images are different from those of the learning phase. Landmarks are searched



on all images: 1 image contains 2 ambiguous landmarks (one of the place #1, one
of the place #3) and 14 no landmark ; 16 images contain only landmarks of the
place #1, and 1 image contains a place #4 landmark. There is thus a response
rate of 53.1%, an absolute well situated image rate of 50% on all images, more
important a relative well situated image rate of 94.1% on (well or not) located
images, an absolute error rate of 3.1% and a relative error rate of 5.88%. Identical
analysis has been done for the four places, Table 2 (NI: Number of Images, NR:
Number of Responses, NGR: Number of Good Responses, NBR: Number of False
Responses).

Place NI NR NGR NFR
Place #1 32 17 (53.1%) 16 (94.1%) 1 (5.88%)
Place #2 50 13 (26%) 12 (92.3%) 1 (15%)
Place #3 31 10 (32.3%) 10 (100%) 0 (0%)
Place #4 38 20 (52.6%) 19 (95%) 1 (5%)
Total : 151 60 (39.8%) 57 (95%) 3 (5%)

Table 2: Results using Classical Landmarks

Let us note that the generalization phase has been processed firstly with
the learning set of images. Of course, for each place, there is no landmark from
another place, but also the response rate is not 100% (88%, 43.1%, 85.7% and
54.8% for respectively place #1, #2, #3 and #4): there is some images with
a posteriori no useful information, i.e. images whose attributes are shared with
some pictures of other sets.

8.2 Results with an Optimized Neural Network

A classical neural network under MatLab has been processed to validate our
approach. To be optimized, several experimentations have been computed to
obtain the best network as possible.

The optimized network is composed of 66 neurons in the first layer (corre-
sponding to our 66 attributes), 66 neurons in the middle layer and 4 neurons
(corresponding to the 4 places) in the last layer. The training function is a
Backpropagation gradient training with an adaptative learning (taingda), with
a hyperbolic tangent sigmoid transfert function for each layer of the network.
Other comparisons have been done with different number of layers, different
number of neurons in the middle layer, different training process and/or differ-
ent transfer functions, but with worse results. The Levenberg-Marquardt and
Bayesian regularization algorithms fail due to the high number of entries.



With the number of 700 training epochs, the smallest learning rate is 4.10−2

and more significantly the smallest error rate (false response compared to all
response) we obtained is 5% on the training set of images, and 30% on the test
set. . .

More over, the variability of responses of a network is very different from one
learning process to another, with the same training database. Best results cited
above are reached once on five or six tries.

To fit with our technique and to have comparable results (see Table 3), a
program has been developed to allow the neural network to give some “no-
responses”. In a practical way, the classification answer is validated if and only
if the difference between the greatest probability to be in one place and the
second greatest probability to be in another place is above a threshold, that is
adjusted to have the same rate of no-responses.

Place NI NR NGR NFR
Place #1 32 17 (53.1%) 17 (100%) 0 (0%)
Place #2 50 17 (26%) 17 (100%) 0 (0%)
Place #3 31 14 (45.2%) 10 (71.4%) 4 (28.6%)
Place #4 38 12 (31.6%) 10 (83.3%) 2 (16.6%)
Total : 151 60 54 6 (10%)

Table 3: Results using a Neural Network.

8.3 Results with Probabilistic Landmarks

Results we have obtained with probabilistic landmarks are quite better than
classical landmarks (Table 4).

Place NI NR NGR NFR
Place #1 32 25 (78.1%) 24 (96%) 1 (4%)
Place #2 50 14 (28%) 11 (71.4%) 3 (28.6%)
Place #3 31 12 (38.7%) 12 (100%) 0 (0%)
Place #4 38 22 (57.9%) 22 (100%) 0 (0%)
Total : 151 73 (48.3%) 69 (94.5%) 4 (5.5%)

Table 4: Results using Probabilistic Landmarks



Even if the final result is quite identical in terms of good response rate (94.5%
against 95%), the number of well located images is higher (73 against 60, i.e.
21.7% much better !!), which was the goal of introducing probabilistic landmarks.

9 Conclusion and Perspective

Our original approach using Galois lattices gives very good results compared
to classical techniques such as neural network for selecting visual landmarks.
Moreover, the initial technique using classical landmarks, giving a high rate of
good results but with a weak rate of answers, is improved by the introduction of
probabilistic landmarks. Such landmarks give a probability for the robot to be
in each place of the structured environment through the probabilistic concepts
inside the lattice it has built.

The next step is to implement active vision for our robot: now, the robot just
”waits” to know where it is, and results will be improved a lot by introducing a
landmark searching algorithm if the robot does not know where it is.

Finally, a semi-supervised learning is about to be implemented, where a robot
detects room changes without knowing whether it is in a new place or not.
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