2,101 research outputs found

    Fringe trees, Crump-Mode-Jagers branching processes and mm-ary search trees

    Full text link
    This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) mm-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). The general results are applied to fringe trees and extended fringe trees for several particular types of random trees, where the theory is developed in detail. In particular, we consider fringe trees of mm-ary search trees in detail; this seems to be new. Various applications are given, including degree distribution, protected nodes and maximal clades for various types of random trees. Again, we emphasise results for mm-ary search trees, and give for example new results on protected nodes in mm-ary search trees. A separate section surveys results on height, saturation level, typical depth and total path length, due to Devroye (1986), Biggins (1995, 1997) and others. This survey contains well-known basic results together with some additional general results as well as many new examples and applications for various classes of random trees

    Representations of stack triangulations in the plane

    Full text link
    Stack triangulations appear as natural objects when defining an increasing family of triangulations by successive additions of vertices. We consider two different probability distributions for such objects. We represent, or "draw" these random stack triangulations in the plane R2\R^2 and study the asymptotic properties of these drawings, viewed as random compact metric spaces. We also look at the occupation measure of the vertices, and show that for these two distributions it converges to some random limit measure.Comment: 29 pages, 13 figure

    B-urns

    Full text link
    The fringe of a B-tree with parameter mm is considered as a particular P\'olya urn with mm colors. More precisely, the asymptotic behaviour of this fringe, when the number of stored keys tends to infinity, is studied through the composition vector of the fringe nodes. We establish its typical behaviour together with the fluctuations around it. The well known phase transition in P\'olya urns has the following effect on B-trees: for m59m\leq 59, the fluctuations are asymptotically Gaussian, though for m60m\geq 60, the composition vector is oscillating; after scaling, the fluctuations of such an urn strongly converge to a random variable WW. This limit is C\mathbb C-valued and it does not seem to follow any classical law. Several properties of WW are shown: existence of exponential moments, characterization of its distribution as the solution of a smoothing equation, existence of a density relatively to the Lebesgue measure on C\mathbb C, support of WW. Moreover, a few representations of the composition vector for various values of mm illustrate the different kinds of convergence

    Some families of increasing planar maps

    Full text link
    Stack-triangulations appear as natural objects when one wants to define some increasing families of triangulations by successive additions of faces. We investigate the asymptotic behavior of rooted stack-triangulations with 2n2n faces under two different distributions. We show that the uniform distribution on this set of maps converges, for a topology of local convergence, to a distribution on the set of infinite maps. In the other hand, we show that rescaled by n1/2n^{1/2}, they converge for the Gromov-Hausdorff topology on metric spaces to the continuum random tree introduced by Aldous. Under a distribution induced by a natural random construction, the distance between random points rescaled by (6/11)logn(6/11)\log n converge to 1 in probability. We obtain similar asymptotic results for a family of increasing quadrangulations

    Local limit of labeled trees and expected volume growth in a random quadrangulation

    Full text link
    Exploiting a bijective correspondence between planar quadrangulations and well-labeled trees, we define an ensemble of infinite surfaces as a limit of uniformly distributed ensembles of quadrangulations of fixed finite volume. The limit random surface can be described in terms of a birth and death process and a sequence of multitype Galton--Watson trees. As a consequence, we find that the expected volume of the ball of radius rr around a marked point in the limit random surface is Θ(r4)\Theta(r^4).Comment: Published at http://dx.doi.org/10.1214/009117905000000774 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore