7,052 research outputs found

    Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems

    Get PDF
    Optimization techniques are widely applied in various engineering areas, such as modeling, identi�cation, optimization, prediction, forecasting and control of complex systems. This thesis presents the novel optimization methods that are used to control Photovoltaic (PV) generation systems. PV power systems are electrical power systems energized by PV modules or cells. This thesis starts with the introduction of PV modeling methods, on which our research is based. Parameter estimation is used to extract the parameters of the PV models characterizing the utilized PV devices. To improve e�ciency and accuracy, we proposed sequential Cuckoo Search (CS) and Parallel Particle Swarm Optimization (PPSO) methods to extract the parameters for di�erent PV electrical models. Simulation results show the CS has a faster convergence rate than the traditional Genetic Algorithm (GA), Pattern Search (PS) and Particle Swarm Optimization (PSO) in sequential processing. The PPSO, with an accurate estimation capability, can reduce at least 50% of the elapsed time for an Intel i7 quad-core processor. A major challenge in the utilization of PV generation is posed by its non linear Current-Voltage (I-V ) relations, which result in the unique Maximum Power Point (MPP) varying with di�erent atmospheric conditions. Maximum Power Point Tracking (MPPT) is a technique employed to gain maximum power available from PV devices. It tracks operating voltage corresponding to the MPP and constrains the operating point at the MPP. A novel model-based two-stage MPPT strategy is proposed in this thesis to combine the o�ine maximum power point estimation using the Weightless Swarm Algorithm (WSA) with an online Adaptive Perturb & Observe (APO) method. In addition, an Approximate Single Diode Model (ASDM) is developed for the fast evaluations of the output power. The feasibility of the proposed method is veri�ed in an MPPT system implemented with a Single-Ended Primary-Inductor Converter (SEPIC). Simulation results show the proposed MPPT method is capable of locating the operating point to the MPP under various environmental conditions

    Efficiency of Photovoltaic Systems in Mountainous Areas

    Full text link
    Photovoltaic (PV) systems have received much attention in recent years due to their ability of efficiently converting solar power into electricity, which offers important benefits to the environment. PV systems in regions with high solar irradiation can produce a higher output but the temperature affects their performance. This paper presents a study on the effect of cold climate at high altitude on the PV system output. We report a comparative case study, which presents measurement results at two distinct sites, one at a height of 612 meters and another one at a mountain site at a height of 1764 meters. This case study applies the maximum power point tracking (MPPT) technique in order to determine maximum power from the PV panel at different azimuth and altitude angles. We used an Arduino system to measure and display the attributes of the PV system. The measurement results indicate an increased efficiency of 42% for PV systems at higher altitude

    Maximum power point tracking and control of grid interfacing PV systems

    Get PDF
    Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power.Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Maximizing solar photovoltaic system efficiency by multivariate linear regression based maximum power point tracking using machine learning

    Get PDF
    Introduction. In recent times, there has been a growing popularity of photovoltaic (PV) systems, primarily due to their numerous advantages in the field of renewable energy. One crucial and challenging task in PV systems is tracking the maximum power point (MPP), which is essential for enhancing their efficiency. Aim. PV systems face two main challenges. Firstly, they exhibit low efficiency in generating electric power, particularly in situations of low irradiation. Secondly, there is a strong connection between the power output of solar arrays and the constantly changing weather conditions. This interdependence can lead to load mismatch, where the maximum power is not effectively extracted and delivered to the load. This problem is commonly referred to as the maximum power point tracking (MPPT) problem various control methods for MPPT have been suggested to optimize the peak power output and overall generation efficiency of PV systems. Methodology. This article presents a novel approach to maximize the efficiency of solar PV systems by tracking the MPP and dynamic response of the system is investigated. Originality. The technique involves a multivariate linear regression (MLR) machine learning algorithm to predict the MPP for any value of irradiance level and temperature, based on data collected from the solar PV generator specifications. This information is then used to calculate the duty ratio for the boost converter. Results. MATLAB/Simulink simulations and experimental results demonstrate that this approach consistently achieves a mean efficiency of over 96 % in the steady-state operation of the PV system, even under variable irradiance level and temperature. Practical value. The improved efficiency of 96 % of the proposed MLR based MPP in the steady-state operation extracting maximum from PV system, adds more value. The same is evidently proved by the hardware results.Вступ. Останнім часом зростає популярність фотоелектричних (ФЕ) систем, насамперед через їх численні переваги в галузі відновлюваної енергетики. Однією з найважливіших і складних завдань у ФЕ системах є відстеження точки максимальної потужності (MPP), яка необхідна для підвищення їх ефективності. Мета. ФЕ системи стикаються із двома основними проблемами. По-перше, вони демонструють низьку ефективність вироблення електроенергії, особливо в умовах низького випромінювання. По-друге, існує сильний зв’язок між вихідною потужністю сонячних батарей і погодними умовами, що постійно змінюються. Ця взаємозалежність може призвести до невідповідності навантаження, коли максимальна потужність не ефективно відбиратиметься і передаватиметься в навантаження. Цю проблему зазвичай називають проблемою відстеження точки максимальної потужності (MPPT). Для оптимізації пікової вихідної потужності та загальної ефективності генерації ФЕ систем було запропоновано різні методи керування MPPT. Методологія. У цій статті представлено новий підхід до максимізації ефективності сонячних ФЕ систем шляхом відстеження MPP та дослідження динамічної реакції системи. Оригінальність. Цей метод включає алгоритм машинного навчання багатовимірної лінійної регресії (MLR) для прогнозування MPP для будь-якого рівня освітленості і температури на основі даних, зібраних зі специфікацій сонячних ФЕ генераторів. Ця інформація потім використовується для розрахунку коефіцієнта заповнення перетворювача, що підвищує. Результати. Моделювання MATLAB/Simulink та експериментальні результати показують, що цей підхід послідовно забезпечує середню ефективність понад 96 % в режимі роботи ФЕ системи, що встановився, навіть при змінних рівнях освітленості і температурі. Практична цінність. Підвищена ефективність 96 % пропонованого MPP на основі MLR в режимі роботи, що вистачає максимум з ФЕ системи, підвищує цінність. Те саме, очевидно, підтверджують і апаратні результати

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Optimizing Solar Energy Harvesting: Supervised Machine Learning-Driven Peak Power Point Tracking for Diverse Weather Conditions

    Get PDF
    Solar Power is one of the significant prevalent forms of clean energy due to its perceived to be pollution-free and easily accessible. The market for renewable energy was established by the rapid development in electrical energy consumption and the diminution of conventional energy resources (CER). Under varying weather condition extracted energy from solar system is not constant and maximum. This study suggests the applicability of machine learning algorithm (MLA) in Peak power point tracking (P3T) methods to maximize power of a PV arrangement under varying weather conditions. Machine learning methods optimize peak power point tracking in solar photovoltaic systems by bringing agility, data-driven decision-making, and increased accuracy. MLAs improve the overall efficiency, stability, and dependability of these systems by handling the unpredictability of solar energy production under varying weather circumstances and PSCs Because MLAs are able to learn and adjust to non-linear relationships between solar intensity and PVS output. In this study, the squared multiple squared exponential Gaussian process regression method SGPRA tested in three rapidly varying ecological conditions. The performance of ML-P3T methods is validated using Matlab/Simulink, and the simulation outcome are compared with one of the most used algorithms, the variable step size incremental conductance algorithm (VINA). The Matlab/Simulink findings show that SGPRA operates significantly better under varying weather circumstances, harnessing more peak power efficiency 90%, shorter tracking time 0.13 sec, a mean error of 0.042, and superior stability
    corecore