5,053 research outputs found

    Lambda Calculus in Core Aldwych

    Get PDF
    Core Aldwych is a simple model for concurrent computation, involving the concept of agents which communicate through shared variables. Each variable will have exactly one agent that can write to it, and its value can never be changed once written, but a value can contain further variables which are written to later. A key aspect is that the reader of a value may become the writer of variables in it. In this paper we show how this model can be used to encode lambda calculus. Individual function applications can be explicitly encoded as lazy or not, as required. We then show how this encoding can be extended to cover functions which manipulate mutable variables, but with the underlying Core Aldwych implementation still using only immutable variables. The ordering of function applications then becomes an issue, with Core Aldwych able to model either the enforcement of an ordering or the retention of indeterminate ordering, which allows parallel execution

    Call-by-value non-determinism in a linear logic type discipline

    Get PDF
    We consider the call-by-value lambda-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction

    On Constructor Rewrite Systems and the Lambda Calculus

    Full text link
    We prove that orthogonal constructor term rewrite systems and lambda-calculus with weak (i.e., no reduction is allowed under the scope of a lambda-abstraction) call-by-value reduction can simulate each other with a linear overhead. In particular, weak call-by- value beta-reduction can be simulated by an orthogonal constructor term rewrite system in the same number of reduction steps. Conversely, each reduction in a term rewrite system can be simulated by a constant number of beta-reduction steps. This is relevant to implicit computational complexity, because the number of beta steps to normal form is polynomially related to the actual cost (that is, as performed on a Turing machine) of normalization, under weak call-by-value reduction. Orthogonal constructor term rewrite systems and lambda-calculus are thus both polynomially related to Turing machines, taking as notion of cost their natural parameters.Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:0904.412

    (Leftmost-Outermost) Beta Reduction is Invariant, Indeed

    Get PDF
    Slot and van Emde Boas' weak invariance thesis states that reasonable machines can simulate each other within a polynomially overhead in time. Is lambda-calculus a reasonable machine? Is there a way to measure the computational complexity of a lambda-term? This paper presents the first complete positive answer to this long-standing problem. Moreover, our answer is completely machine-independent and based over a standard notion in the theory of lambda-calculus: the length of a leftmost-outermost derivation to normal form is an invariant cost model. Such a theorem cannot be proved by directly relating lambda-calculus with Turing machines or random access machines, because of the size explosion problem: there are terms that in a linear number of steps produce an exponentially long output. The first step towards the solution is to shift to a notion of evaluation for which the length and the size of the output are linearly related. This is done by adopting the linear substitution calculus (LSC), a calculus of explicit substitutions modeled after linear logic proof nets and admitting a decomposition of leftmost-outermost derivations with the desired property. Thus, the LSC is invariant with respect to, say, random access machines. The second step is to show that LSC is invariant with respect to the lambda-calculus. The size explosion problem seems to imply that this is not possible: having the same notions of normal form, evaluation in the LSC is exponentially longer than in the lambda-calculus. We solve such an impasse by introducing a new form of shared normal form and shared reduction, deemed useful. Useful evaluation avoids those steps that only unshare the output without contributing to beta-redexes, i.e. the steps that cause the blow-up in size. The main technical contribution of the paper is indeed the definition of useful reductions and the thorough analysis of their properties.Comment: arXiv admin note: substantial text overlap with arXiv:1405.331

    Relational Parametricity and Control

    Full text link
    We study the equational theory of Parigot's second-order λμ-calculus in connection with a call-by-name continuation-passing style (CPS) translation into a fragment of the second-order λ-calculus. It is observed that the relational parametricity on the target calculus induces a natural notion of equivalence on the λμ-terms. On the other hand, the unconstrained relational parametricity on the λμ-calculus turns out to be inconsistent with this CPS semantics. Following these facts, we propose to formulate the relational parametricity on the λμ-calculus in a constrained way, which might be called ``focal parametricity''.Comment: 22 pages, for Logical Methods in Computer Scienc
    • …
    corecore