
Lambda Calculus in Core Aldwych
HUNTBACH, MM; Communicating Process Architectures

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10994

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30698208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10994

Communicating Process Architectures 2015 1
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2015
© 2015 The authors and Open Channel Publishing Ltd. All rights reserved.

Lambda Calculus in Core Aldwych
Matthew Huntbach

School of Electronic Engineering and Computer Science
 Queen Mary University of London, UK

Abstract. Core Aldwych is a simple model for concurrent computation, involving
the concept of agents which communicate through shared variables. Each variable
will have exactly one agent that can write to it, and its value can never be changed
once written, but a value can contain further variables which are written to later. A
key aspect is that the reader of a value may become the writer of variables in it. In
this paper we show how this model can be used to encode lambda calculus.
Individual function applications can be explicitly encoded as lazy or not, as required.
We then show how this encoding can be extended to cover functions which
manipulate mutable variables, but with the underlying Core Aldwych
implementation still using only immutable variables. The ordering of function
applications then becomes an issue, with Core Aldwych able to model either the
enforcement of an ordering or the retention of indeterminate ordering, which allows
parallel execution.

Keywords. Computational model, single-assignment variables, single-writer
variables, lambda calculus, lazy evaluation, mutable variables, multi-agent systems.

Introduction

This paper moves on from our previous work on establishing a core language for
concurrent programming. The core language has a simple operational model, and can be
used as a real programming language (an implementation exists). The examples we give
are executable code, although in an abstract form, we do not discuss how to map it onto
actual computer architecture. The principle is that programs should be naturally
concurrent, with sequentiality only when a necessary part of what is being coded. One of
the aims of our model is to expose the ways in which parallel execution could take place.

The model is based on the idea that computation should be about communicating
agents which proceed at their own pace without a central co-ordinator or a central clock, an
agent suspending only when it needs information from another agent. It is necessarily non-
determinate, as an agent which has alternative paths to follow should be able to choose one
of them when it receives sufficient information to make that feasible without having to wait
to see if other paths become feasible. A model that can be described precisely needs a strict
limit on possible communication, in ours that is done by all communication through
variables which may be shared, but always with only one agent having write access. In
addition, our model has immutable variables, thus avoiding the complexity which stems
from multiple agents making multiple changes to shared variables.

So a key aim is to give something that has predictable and provable behaviour.
However, directly programming in such a language is verbose, and may seem limited in its
capabilities. One aspect is that it does not have the higher order capabilities seen as an
important part of the appeal of functional languages, another is that modeling the real world
would seem to need mutable variables as the real world is mutable. We show in this paper
how both of these can be represented in our core language.

2 M. Huntbach / Lambda Calculus in Core Aldwych

1. Back Communication and Linear Variables

In our previous papers we first described a general model for concurrent computation using
the concept of single-writer single-assignment variables [1] and then showed how this
could be expressed in a graphical format to give a more intuitive feel for how it worked [2].
The history of this model is that it derived from attempts to put a syntactic sugar on
concurrent logic programming, building on identification of common patterns used when
writing code directly in concurrent logic languages, in particular putting an object-oriented
style syntax over the logic layer [3]. From this a very simple model of computation
emerged, with the key idea of having variables which were guaranteed exactly one writer
and could never be re-written. Although the value of this “logic variable” [4] concept had
been previously identified, and the suggestion of read-and-write modes [5] on logic
variables had been made, this tended to be seen as a convenience somewhat at odds with
logic programming idealism. In our work we extended modes from being associated just
with predicate arguments to being associated also with the tuples to which logic variables
are bound. We also broke down the complex unification concept of logic programming to
explicit matching and assignment of each variable.

A necessary part of this was to distinguish between linear and non-linear variables [6].
In our model, every variable must have exactly one writer, however, a variable designated
as linear must also have exactly one reader. The reason for this is the concept of “back
communication” [7], a feature of concurrent logic programming which distinguishes it from
first order functional programming. In functional programming a computation will create a
structure and set up computations to construct the components of that structure. Back
communication means setting up a structure which may contain components which are
supplied by a computation which accepts the structure: that is the reader of the structure
becomes the writer of parts of it, and the writer of the structure becomes a reader of those
parts. We have added the requirement that if back communication is to take place, it can
only be when it can be guaranteed there is exactly one reader for the structure, thus
maintaining the single writer property for the variables inside that structure. So, in our
model, computations explicitly assign values to variables, and may only do so to variables
to which they have write access. A value is a structure which may contain further
variables, and the assignment indicates whether the assigning computation (the writer) is to
be the reader or writer of each of those variables. Only a variable designated as linear may
be assigned a structure which contains variables where the read/write mode is reversed, and
only a variable which is designated as linear may be assigned a structure which contains
any further variables designated as linear.

With conventional functional programming no distinction is made between a value and
a variable which refers to it, but a distinction is introduced in some forms of concurrent
functional programming with the concept of a “future” [8], meaning in effect a variable
which is currently unassigned as another computation is its writer and has not yet written to
it. In our model the explicit use of variables is needed to enable the linear/non-linear
distinction to be made and to facilitate back-communication, but also because every
variable works in effect as a future but without explicit future handling syntax.

We have noted here the flexibility given by back communication in the logic
programming model, but this is countered by the flexibility given by higher order
programming in the functional model. Functional programming makes no distinction
between the values held by variables and functions, whereas our model shows its logic
programming origins in the way that variables can only hold structures, they cannot hold
references to computations. There has been a revived interest in functional programming in
recent years, in part due to a realisation that its model of computation based on immutable

 M. Huntbach / Lambda Calculus in Core Aldwych 3

structures is a solution to many of the problems of large scale programming, particularly
when combined with concurrency, stemming from mutable values [9]. However, the ability
to write generalised code using higher order features also contributes, as it fits closely with
modern principles of good design structure. Our model has the immutability, and in the rest
of this paper we shall show that it can model the features of higher order functional
programming, so indicating that an explicit higher order model is no needed to provide this
flexibility.

We have retained the name “Core Aldwych” for our model, but the emphasis here is
on it as a model for general concurrent computation rather than for any specific
programming language. It gives a model of a computational structure as executable code,
but it is not our intention to promote it as a programming language for direct human use.
Higher level forms can be used as a shorthand to give less verbose code [3], but at the
expense of having to show how the higher level forms translate to the operational model we
use here. Our original Aldwych language compiled into the concurrent logic programming
language Strand [10] (hence its name from famous London streets: Aldwych turns into
Strand) with the mode concept originating in Parlog [7]. The list notation we use
(summarised in section 2.7) is that established as a convention in the logic programming
language Prolog [11], which was carried into the concurrent logic languages. The
establishment of a guaranteed mode and single writer for every variable through the use of
linearity is our own contribution in the logic programming context.

2. The Core Aldwych Model

2.1 Agents and Variables

In the Core Aldwych model we have a network of agents, and a set of variables through
which they communicate. An agent has read access to 0 or more variables and write access
to 0 or more variables. For every variable there must be exactly one agent which has write
access to it. For every linear variable there must be exactly one agent which has read
access to it. For any non-linear variables, any number of agents may have read access to it,
including 0. It is possible for an agent to have both read and write access to a variable, and
these count as separate accesses, so if any agent has both read and write access to a linear
variable no other agent can have access to it. A variable may only be written to once, prior
to that its value is undefined. An agent which is a reader of a variable may pass the
variable’s value as the value to be written to another variable of which it is the writer while
that value is still undefined, this is termed an “alias”. An undefined variable only causes a
reader agent to suspend if that reader agent requires its value in the guard to one of its
possible commitments (discussed further in section 3).

2.2 Primitive Agents (Assignment, Back-communication and Aliasing)

An agent may be simply an unguarded assignment or alias. An assignment is written
textually in the form:

x=tag(y1,…,yn)
representing an assignment of the tuple tag(y1,…,yn) to the variable x. This has write
access to the variable x and read access to each of the variables y1 to yn, which are its input
variables. An assignment with back-communication takes the form:

X=tag(Y1,…,Yn)->(Z1,…,Zm)
where Z1 to Zm represent the back-communication variables. This has write access to the
variable X and the variables Z1 to Zm and read access to each of the variables Y1 to Yn. We

4 M. Huntbach / Lambda Calculus in Core Aldwych

employ the convention that linear variables are shown with initial upper case letters, and
non-linear variables are show with initial lower case letters. Although we have shown all
the variables in the back-communication structure as linear, this is not a requirement. The
tag of an agent is a string, and can be the empty string. The (and) surrounding the back-
communication variables may be omitted if there is just one output variable. An alias takes
the form:

x<-y
and always has exactly one variable with read access, y in this case, and exactly one with
write access, x in this case. Both assignment and aliasing pass the read and write access to
variables to other processes. Aliasing passes read access to y to the reader of x and write
access to x to the writer of y. With assignment, read access to the tuple’s input variables
and write access to its back communication variables is passed to the reader of the variable
being assigned.

2.3 Process Agents

An agent may be a process, which is a set of rules together with the variables to which it
has read and write access. An example is given in section 3.1, showing how its is similar to
an ALT construct in occam. A rule has a left-hand side (lhs) and a right-hand side (rhs), the
lhs is like a guard. A rhs is itself an agent, and can take any agent form. The lhs consists of
a set of matches, where each match takes the same textual form as an assignment. The
variable which is being matched, x or X above, must be either one of the variables to which
the process has read access, or one of the read access variables in another of the matches for
the same rule. No variable may be matched more than once in the same rule. Every
variable to which an agent has write access must be in a write access position in the rhs of
each rule, and any variable in write access position in a match on the lhs must be in a write
access position on the rhs. Every linear variable to which an agent has read access must
occur either as a variable being matched on the lhs of each rule or once in a read position on
the rhs, but not both. Every linear variable in a read access position in a match in the lhs
must occur either as a variable being matched in another match on the lhs or once in a read
position on the rhs, but not both.

2.4 Compound Agents

An agent may take the form of a compound of agent, which is a collection of agents. The
collection may contain additional variables which are neither read nor write variables of the
overall agent so long as each is in a write position, and for a linear variable also in a read
position, in the internal agents. Although variables are given names for textual display of
Core Aldwych code, we can use a purely graphical notation without explicit names. As
there are no explicit names, there is no notion of name capture. For convenience we can
have named templates for sets of rules, but this is just a representation convenience as well.

2.5 Recursive Agents

For fully anonymous Core Aldwych, we have a recursive agent as a form of process agent.
The reason for this is to dispense with what would otherwise be a global aspect, that is, a
global set of names for patterns of rules where an agent could be an instantiation of a
named pattern.

An agent on the rhs side of a rule may be a recursive agent, in which case it has the
same number of read and write access variables as its enclosing process and is treated as
having identical rules. As an agent on the rhs could also be a process which is not recursive

 M. Huntbach / Lambda Calculus in Core Aldwych 5

so it has its own set of rules, we also have agents which are recursive not to their
immediately enclosing set of rules but to a set of rules which encloses that set. This is
discussed briefly in section 6.

2.6 The World is an Agent

With anonymous Core Aldwych there is no aspect of the model which involves global co-
ordination. The model does not require any additional aspects to model interaction with the
world, since the world can be treated as just another agent. Agents can interact with
anything so long as what they are interacting with has a Core Aldwych interface consisting
of a set of variables to which it has write access and a set to which it has read access.

2.7 Notation Shorthands

For convenience, we introduce the following shorthands. If a tuple is written in the place of
a variable inside another tuple, that is a shorthand for an intermediate variable with an
assignment, so X=tag(pair(Y,Z),T) is shorthand for the two assignments
X=tag(P,T), P=pair(Y,Z). We use the list notation of standard Prolog [11], where
X=[Head|Tail] is equivalent to X=cons(Head,Tail). Also X=[V1,V2|Tail] is a
further shorthand for X=[V1|[V2|Tail]] which in turn is shorthand for
X=cons(V1,Rest), Rest=cons(V2,Tail). When the | is omitted it indicates a final
cons(Head,Tail) structure where Tail is assigned the empty list, so X=[V1,V2] is
shorthand for X=cons(V1,Rest), Rest=cons(V2,Tail), Tail=[]. The symbol []
represents the empty list in isolation, it is a tuple with no input or back-communication
variables. These shorthands apply to both matches on the lhs of rules and assignments on
the rhs.

2.8 Operational Semantics

The operational aspects of Core Aldwych can be summarised as follows (see our previous
paper [2] for more detail). If a process has read access to a variable, and the agent which
has write access to the variable is an assignment, any match on the lhs of its rules which
matches the assignment is removed. This may result in a rule having an empty lhs. If a
process has a rule with an empty lhs, it may “commit”, meaning that the process is replaced
by the agent which forms its rhs. Assignments on the rhs are then released to make further
matches with other processes. If more than one rule has an empty lhs, an indeterminate
choice is made between them, similar to the ALT construct in occam. Once a commitment
is made, it may not be reversed. If a process is able to commit, it must eventually commit,
but there may be an arbitrary amount of time between at least one rule acquiring an empty
lhs and actual commitment, which is the principle of unbounded non-determinism used in
the Actors model of computation [12]. If another rule acquires an empty lhs in this time,
there is no requirement that commitment is to the first rule to acquire an empty lhs.

3. Streams and Continuations in Core Aldwych

3.1 Representation of Streams as Merged Lists

The assignment of a variable S=[Mess|S1] can be considered as sending a message,
which is whatever Mess is assigned to, on a stream represented by S, with the variable S1
taking over representation of that stream. There is no requirement that Mess is already

6 M. Huntbach / Lambda Calculus in Core Aldwych

assigned to do this, the process which reads S can take the message with a matching match,
and commit before Mess is assigned if it does not need the value of the message. Using
this, we can write a process which merges two streams as:

(Left,Right)->Stream
{
 Left=[] || Stream<-Right;
 Right=[] || Stream<-Left;
 Left=[Mess|Left1] || *(Left1,Right)->Stream1, Stream=[Mess|Stream1];
 Right=[Mess|Right1] || *(Left,Right1)->Stream1, Stream=[Mess|Stream1];
}

The || separates the lhs from the rhs of a rule, and ; indicates the end of a rule. The *
indicates a recursive agent. The first two rules represent the case when one of the input
streams is closed by being set by its writer to []. Messages from the other stream are then
forwarded, which can be done by setting Stream to alias it rather than separately reading
and forwarding each message.

If the merge process given above is combined with the assignment Left=[V|ContL],
the result is that the combination evaluates to

Stream=[V|Stream1], *(ContL,Right)->Stream1
and the recursive call *(ContL,Right)->Stream1 is replaced by the same set of rules
with Left replaced by ContL and Stream replaced by Stream1. The release of the
assignment Stream=[V|Stream1] means the process which has read access to Stream
may similarly commit and release further assignments and so on.

If the assignment Right=[U|ContR] were available, the process could commit using
the fourth rule instead of the third rule, meaning the reader of Stream gets the message in
U rather than the message in V. This shows how non-determinacy is a natural aspect of the
Core Aldwych model, there is no special syntax for it. In Core Aldwych a commitment can
be made without waiting to see if another commitment could have been possible. If both
Left=[V|ContL] and Right=[U|ContR] were available, a commitment to either rule is
possible. We have not added a mechanism for expressing a priority since this introduces a
considerable extra complexity to the semantics of the language. For similar reasons there is
no equivalent to an occam SEQ structure, as that would require mechanisms to maintain
dependence between processes beyond the variable reading and writing described here.

3.2 Core Aldwych and CSP: Similarities and Differences

Thinking of programming in what was originally a concurrent logic language in terms of
streams on which messages are sent brings it close to the CSP model [13]. In this paper we
show how other core computational models, in particular lambda calculus [14], can also be
translated to Core Aldwych, thus establishing it as a flexible model for general computation
with concurrency as a natural aspect rather than an added-on extra to a purely sequential
core as still tends to be the case with conventional programming languages [15].

Note, however, that whereas CSP is synchronous, Core Aldwych is asynchronous.
When a process in Core Aldwych commits to a rule containing the assignment
S=[Mess|S1] with S an output variable of the process, there is no suspension waiting for
the reader of S to commit to a rule with a lhs containing the match S=[Mess|S1]. It could
be that the reader of S is suspended waiting for that assignment, but it could be that it is
suspended waiting for the assignment of another variable and cannot read S until that
happens. As with the merge example above, it could be suspended on more than one
variable, so it could commit on the assignment of another variable whether or not S is

 M. Huntbach / Lambda Calculus in Core Aldwych 7

assigned. Another possible pattern is that it is suspended on S and another variable and
cannot commit until both are assigned, this is shown in an alternative stream merger:

(Left,Right)->Stream
{
 Left=[] || Stream<-Right;
 Right=[] || Stream<-Left;
 Left=[MessL|Left1], Right=[MessR|Right1] ||
 *(Left1,Right)->Stream1, Stream=[MessL,MessR|Stream1];
}

These process rules would give a merged stream in which the messages from the two
streams are strictly alternated, and a message from one stream cannot be sent on until either
a message has also been received on the other stream, or the other stream has been closed.

4. Representation of Expressions and Functions

4.1 The Continuation Passing Style of Programming

The use of the * notation for a recursive call encourages the idea of seeing the call as a
continuation of the overall process. When a process commits to a rule it terminates by
creating a compound agent from its rhs. However, if the rhs includes a recursive call, we
can see that call as a continuation of the same process. We can see the arguments to the
recursive call as a mutable state. Setting the head of an output list to a message, with the
tail in the same position in the recursive call writing the rest, is the process sending a
message. Thinking in this way is the Continuation Passing Style of programming [16],
which is well established in functional programming. This technique was the basis on
which object-oriented programming was previously modelled in concurrent logic languages
[17], although as the emphasis was on objects as concurrently communicating entities
rather than aspects such as inheritance it resembled the Actors model of computation [12].

In section 4 we show how the technique used for representing mutable objects in
concurrent logic languages can be used as a general computational model, leading up to its
use to represent lambda calculus. The aim is to establish a standard computational model
which can be used to establish clear semantics for programming languages in general,
including concurrent aspects. The point of representing lambda calculus is that it has long
been established as a computational model for this purpose itself [14], but it is an
insufficient model for handling concurrency and interaction. We then show how various
different ways in which a single lambda calculus expression could be interpreted in a
concurrent and interactive environment can all be represented in Core Aldwych.

4.2 Representation of an Entity by an Input Stream

To use Core Aldwych as a general model for computation, we represent computational
entities by an agent with one linear input variable. This input variable represents a stream of
messages sent to the entity, in the form as given above. If we wanted to model the idea of
separate “views” of an object, that could be done through an agent with several linear input
variables, one for each view, but we will not consider that possibility further here. If an
entity contains references to other computational entities, those references are represented
by a linear output variable for each of them.

This representation is counter-intuitive. A general notion of computational entities is
that one is created by taking some inputs, putting them together, and producing an output
representing the entity. Here, to represent an entity which contains references to other

8 M. Huntbach / Lambda Calculus in Core Aldwych

entities, we take some output streams which represent those references. We put them
together and construct an agent writing to them to represent the entity. The agent has a
single input stream, and this input stream is now the access to the representation of the
entity to other entities. So, it is the reverse of the general notion, as here we take some
outputs, put them together and end up with an input representing the entity. If many agents
need shared access to one particular agent, each will output its own stream of message to it,
and the streams are merged using the process given in section 3.1 into the single stream
which is read by that particular agent.

The syntactic sugar we introduced in earlier papers leading to the language we called
just “Aldwych” [3] hid this reversal and hid the explicit merger of streams used to create
multiple references to objects. Getting to grips with this reversal of modes is the key to
understanding how Core Aldwych works as a representation.

4.3 Representation of Constants

We represent a constant by an agent which takes a stream of messages, for each just
returning the value of the constant. From now on we will in most cases give names to
patterns of processes rather than use the anonymous notation shown above, so with name
constant this is:

constant(S,val)
{
 S=empty() ||;
 S=[Mess|S1], Mess=()->ret || ret<-val, constant(S1,val);
}

The first rule shows how an entity is removed when the stream of messages to it is an
empty list. The process representing the constant reads the tuple empty() on its input
variable S, and as empty() is a tuple with no linear input variables and no output variables
nothing else can be done, so the rhs is empty. In the rest of this paper, following the
shorthand given in section 2.7, we will use [] where here we used empty().

The second rule shows the double variable matching explicitly to indicate more clearly
the underlying operational model, but in our further examples we will employ the syntactic
sugar which means the lhs side of the second rule would be written S=[()->ret|S1].
Here ()->ret is a tuple with no input variables and one back-communication variables,
that is tag(Y1,…,Yn)->(Z1,…,Zm) as in section 2.2 with n having value 0, m having value
1 and the empty string as its tag. The alias ret<-val sets ret to whatever value val was
or will be given by its writer. There is no requirement that val has already been assigned a
value for this rule to operate, since though the constant process is a reader of val, there is
nothing on the lhs of its rules which checks val for any value.

4.4 Representation of Expressions

Here is how the arithmetic expression z=x+y is represented:
addex(Z)->(X,Y)
{
 || X=[()->xval], Y=[()->yval], zval<-xval+yval, constant(Z,zval);
}

This is a process agent with one input stream Z and two output streams X and Y. The
different font for x, y and z here indicates an expression in some language being
represented in Core Aldwych rather than a Core Aldwych expression. The intention is that
these are functional style variables, so it is a definition of the value of z and not an

 M. Huntbach / Lambda Calculus in Core Aldwych 9

assignment of a mutable variable. It is a process with one rule that has no matches,
meaning that wherever it occurs it can be immediately replaced by the rhs of the rule. Core
Aldwych incorporates standard arithmetic expressions, so zval<-xval+yval is just
setting zval to the sum of xval and yval, the single-assignment principle applies, so this
is the one write position of zval.

The reversal of modes technique can be seen clearly here. The streams X, Y and Z
represent the variables x, y and z respectively. The representation of a calculation which
takes x and y as input and gives z as output is a process which takes Z as an input stream
and produces X and Y as output streams.

The wrapping of values in processes here has similarities to the functional
programming style of wrapping values in monads [18]. The value zval has to be wrapped
in a process rather than returned directly for the stream Z to represent the output in order to
fit in with the principle of all entities represented by streams with each individual request
for its value represented by a separate message. Clearly it is not efficient to represent a
constant value in this way, however, as noted in section 4.1 the point of this work is to
establish clear semantics, not to give an efficient implementation.

The unwrapping of a value from a process is done by sending a message to the process
in the form ()->value. That is done only when the actual value is needed, as for
arithmetic calculations. It can be done once for multiple uses of the same constant, for
example w=x*x is represented by:

squareex(W)->X
{
 || X=[()->xval], wval<-xval*xval, constant(W,wval);
}

The output streams are closed off in these expression representations by setting them to lists
of a fixed length, but in a wider context they would be merged with other streams
representing aliases, so z=x+y, w=x*x with further uses of x is represented by:

addex(Z)->(X1,Y), squareex(W)->X2, merge(X1,X2)->X3, merge(X3,X4)->X

where X4 is the representation of x following the expressions. Another use of x would be
represented by X5 being output from the agent representing it, merge(X5,X6)->X4 being
added, and X6 is then the representation for further uses of x.

As a minor point, arithmetic expressions in Core Aldwych are written using the alias
symbol rather than then assignment symbol, so zval<-xval+yval rather than
zval=xval+yval and so on, because the right hand side of an assignment is always a tuple.
If we had zval=xval+yva , it would be interpreted as setting zval to a tuple with tag + and
two variables set to the values of xval and yval.

4.5 Representation of Functions

Section 4.4 shows one-off expressions, but for a function we need an agent which can be
used repeatedly. Here is how a square function is represented, it is the equivalent of λx.x*x
as a lambda expression:

square(S)
{
 S=[] || ;
 S=[(Res)->X|S1] || X=[()->xval], wval<-xval*xval,
 constant(Res,wval), square(S1);
}

10 M. Huntbach / Lambda Calculus in Core Aldwych

In general a function is represented by a process which reads a stream of messages of the
form (Res)->Arg. In this example we have used X rather than Arg, as it represents the
argument to the function which was named x. This is a tuple with back communication as
described in section 2.2 with an empty string as its tag and n and m both 1, that is one input
variable and one back-communication variable. We can see the mode reversal again: the
argument to the function is represented by an output of a stream of messages X to the agent
representing the argument x, the result of applying the function to the argument is
represented by an input of a stream of messages Res to the agent representing the result.
The recursion enables the function to be used again. Processes which use a function have
as their representation of it an output stream on which messages are sent, with streams from
several processes which access one function merged into the one which it reads.

To apply a function to an expression, we need to send a (Res)->Arg message on a
stream read by the process which represents the function. In this message, the output
stream Arg represents the argument to the function call and the input stream Res represents
the results of the function call. So the functional programming style expression z=f x where
f is a function, is represented by

apply(Z)->(F,X)
{
 || F=[(Z)->X];
}

This sets the output stream F to a stream with a single message (Z)->X. As previously, if
we wish to make further use of f and x the streams output here need to be merged with
streams representing the further use. The output stream X is not closed off instead the
reader of F will become the writer of X. So if we had

apply(Z)->(F,X), square(F)

the process square(F) will set X to [()->xval]. That is, F is a stream of messages
representing calls to the square function read by the process given by the rules named
square, this stream could be merged with other streams from other processes which access
the same square function. The process which reads F reads a (Z)->X message from it,
sends a ()->xval message on the stream X to get the value of x, calculates the square of
that value, and sets up a process given by the pattern of rules named constant making
that the reader of the stream Z with the calculated value in wval as its non-linear input.

A free variable in a lambda expression is represented by an output stream, so λx.x+a
with the free variable a is represented by:

add1(S)->A
{
 S=[] || A=[];
 S=[(Res)->X|S1] || X=[()->xval], A1=[()->aval],
 rval<-xval+aval, constant(Res,rval),
 merge(A1,A2)->A, add1(S1)->A2;
}

The free variable a is shared between its use in the expression x+a of the function and its
use in further applications of the lambda expression, so the two separate streams A1 and A2
representing these uses are merged into one which is output to be read by whatever process
represents a. When no further uses are made of the function, represented by its input
stream set to the empty list, it is necessary to set the variable representing a to the empty
list to show that it will not be used further in the function. The output stream A could be
merged with other streams representing other processes sharing access to a.

The standard functional programming idea of currying can be used to give functions

 M. Huntbach / Lambda Calculus in Core Aldwych 11

with multiple arguments, so λy.λx.x+y is represented, using add1 as above, by:
add(S)
{
 S=[] || ;
 S=[(Res)->Y|S1] || add1(Res)->Y, add(S1);
}

More generally, if E with exp(E)->(A,V1,…,Vn) is the representation of an expression
exp, which takes a single argument A with V1,…,Vn representing its free variables, then
λx.exp is represented by S with:

lambda(S)->(V1,…,Vn)
{
 S=[] || V1=[], …, Vn=[];
 S=[(Res)->X|S1] || exp(Res)->(X,V11,…,V1n),
 lambda(S1)->(V21,…,V2n),
 merge(V11,V21)->V1, … , merge(V1n,V2n)->Vn;
}

4.6 The Y combinator

The fixed point operator or Y-combinator is a function Y which has the property that for
any f, the expression Y f evaluates to f (Y f). It is used to provide recursion in lambda
calculus while maintaining the principle of anonymous functions. A fixed point operator
like this can easily be defined in Core Aldwych, here it is:

fixedpoint(S)
{
 S=[] || ;
 S=[(Res)->F|S1] || F=[(R1)->F1], merge(Res,F1)->R1, fixedpoint(S1);
}

If we have fixedpoint(Y), apply(Res)->(Y,F) this will evaluate to the assignment
and merge process F=[(R1)->F1], merge(Res,F1)->R1. Here Res, which is the
stream of messages directed to the representation of Y f, is merged with F1 into one stream,
R1. This means R1 represents applying what F represents to what F1 represents. F is the
representation of f and the merger means F1 and Res both represent Y f which through R1 is
also f (Y f).

4.7 Lazy Evaluation

The representation of function application given above causes the message (Res)->Arg to
be sent to the agent representing the function. As described in section 4.5, if the agent were
a square process this would lead to Arg being set to [()->xval], the square of xval
being calculated and a constant process being set up to wrap it. However, there is the
idea of lazy evaluation, which means carrying out the work of a computation is delayed
until the result is needed. If the result is never needed, the work need not be carried out at
all. This can be modelled with an alternative form of apply:

lazyapply(Res)->(F,X)
{
 Res=[] || F=[], X=[];
 Res=[Mess|Res1] || F=[(Z)->X], Z=[Mess|Res1];
}

12 M. Huntbach / Lambda Calculus in Core Aldwych

If we have constant(T,3), square(S), lazyapply(Res)->(S,T), which sets Res
as the stream of messages to the representation of square 3 applied lazily, then if Res is set
to [], meaning no use is made of the result, T and S will be set to [], closing the
constant and square processes with no calculation taking place. If one message is
received, the calculation will take place and all further messages are directed to the result,
so the calculation is only done once, which is correct lazy evaluation behaviour.

So, we have shown here that not only can Core Aldwych be used to represent lambda
calculus, it can also represent it in a way in which there is a programmable run-time choice
between lazy and eager evaluation in any function application. It is not an efficient
representation, and the representation of constants as a stream of messages each of which
just returns the same result may seem in particular to be unnecessarily verbose. However,
an important point is that the representation would still work even if what we have called
constants were not constant.

5. Mutability

5.1 Interaction with Changing Values

Consider that if instead of the constant process of section 4.3 we had the following:
count(S,val)
{
 S=[] ||;
 S=[Mess|S1], Mess=()->ret || ret<-val, val1<-val+1, count(S1,val1);
}

The representation of expression and functions as given above would still work, but if
S=[()->val1,()->val2] were combined with a reader of S that was a count process
rather than a constant process, val1 and val2 would no longer have the same value
when assigned. We now have the incorporation of mutable values into what was a lambda
calculus framework. As anything can be incorporated into a Core Aldwych universe so
long as it is given a Core Aldwych interface (interaction through single assignment
variables), the mutability need not itself be defined by Core Aldwych as it is in count
above, it could link to some external factor. Note that when it is defined in Core Aldwych,
it is a representation of mutability and not actual mutability. It is still based on a universe
where agents interact through single-assignment, that is immutable variables.

Once we have accepted the possibilities of this representation of mutability, possible
variations in the representation are opened. If we have multiple uses of a mutable value,
one variation is to obtain a fixed value once through one message, as we did in square in
section 4.5, another is to make multiple requests for the value. The version of square which
did it this way would be:

squarem(S)
{
 S=[] || ;
 S=[(Res)->X|S1] || X=[()->xval1,()->xval2], wval<-xval1*xval2,
 constant(Res,wval), squarem(S1);
}

Although it makes no difference here, under other circumstances changing the order in
which the ()->val messages are sent would create more versions. Lambda calculus does
not take into account order of function application, our representation does, and it is
essential when we consider an agent as interacting rather than just calculating a final value.

 M. Huntbach / Lambda Calculus in Core Aldwych 13

5.2 Representation of Mutable Variables

What we saw with count is the use of Core Aldwych to represent agents with a state. This
originates from the insight that an object with state can be represented in concurrent logic
programming by a clause with a recursive call, the change in arguments to the recursive call
from the enclosing call representing the change in state [17]. To consider this further, we
can add a representation of mutable variables to our previous representations:

var(S)->Val
{
 S=[] || Val=[];
 S=[()->Val1|S1] || Val=[], var(S1)->Val1;
 S=[(Val1)|S1] || merge(Val1,Val2)->Val, var(S1)->Val2;
}

A call var(V)->Val represents the declaration of a variable which is initialised to the
expression represented by the reader of the stream Val. As previously, Val could be
merged with other streams to become the input to the representation of one expression. The
first rule represents the termination of the variable when no further messages are sent to it,
the process must indicate it will send no more messages to the current value of the variable
by setting its output stream to []. The second rule, taking the message ()->Val1,
represents the assignment of the variable to a new value given by the output stream Val1.
As the process no longer accesses its old value, its stream to the old value is terminated by
setting it to [], and the continuation of the process has a stream to the new value as its
output stream. The third rule, taking the message (Val1), represents obtaining the value
stored in the variable, with Val1 a stream of messages sent to the agent representing that
value merged with Val2 which is the stream of messages coming from further access to the
variable.

The process template var has no dependency on the type of messages in the streams
representing values, so it can be used to represent variables which refer to functions or to
other variables as well as constant values. For an example:

var(N)->Val1, constant(Val1,3), var(Ptr)->N1, merge(N1,N2)->N

represents what would be written in the C language as int n=3; int *ptr=&n with N2 the
stream of messages representing further access to n, and Ptr the stream of messages
representing access to the variable ptr. Compare this with:

var(N)->Val1, constant(Val1,3), var(M)->Val2, merge([(Val2)],N2)->N
representing int n=3; int m=n. So ptr is set to refer to the variable n, not its value as m is.

5.3 Call by Value and Call by Reference

Having introduced mutable variables, we can now represent functions whose arguments are
variables, and have both call-by-value and call-by-reference forms, and do it within the
lambda calculus framework. If we use the lambda process of section 4.5 we get call-by-
reference, with the expression of the function having direct get and set access to the
variable passed to it. The expression f v, where v is a mutable variable, could be
represented by obtaining the value stored in v and applying f to it. If F and V are streams
with readers representing f and v respectively, that is done by

apply(Res)->(F,Val),V=[(Val)]

where Res is the stream representing the result and apply is as in section 4.5. It also would
work using lazyapply from section 4.7.

However, more in line with standard procedural programming, if exp is an expression

14 M. Huntbach / Lambda Calculus in Core Aldwych

containing use of a mutable variable m, and exp(Res)->M represents it with M the output
of a stream of messages to the representation of M, then what we might write as λ*m.exp to
indicate that m is a variable passed by value is represented by:

vlambda(S)
{
 S=[] || ;
 S=[(Res)->M|S1] || M=[(Val)], var(M1)->Val, exp(Res)->M1, vlambda(S1);
}

That is, a local variable is set up and initialised to the value of the argument passed, and
here that argument is passed as a variable so its value is explicitly obtained. Free variables
in exp would be represented, as previously, by additional output streams.

5.4 Locked and Ordered Access

Below is the representation of a function which takes a variable set to an integer and passed
using call-by-reference, and changes its value by adding n to it. It could be written as
λ&x.x:=x+n. The free variable n is represented by an output stream assumed to have a
constant process as in section 4.3 as its reader. So the value of n is obtained directly by
sending the message ()->nval, whereas the value of x as a mutable variable has to be
obtained in two stages, first by sending the message (Val1), to get the value representation
in Val1, then by sending ()->xval1 to get the actual value in xval1.

addN(S)->N
{
 S=[] || N=[];
 S=[(Res)->X|S1] || X=[(Val1),()->Val2], merge(N1,N2)->N,
 Val1=[()->xval1], N1=[()->nval],
 sum<-xval1+nval, constant(Sum,sum),
 merge(Res,Val2)->Sum, addN(S1)->N2;
}

The function returns the new value of the variable x as well making the change, so Res is
the stream representing the return value and Val2 the stream representing access to the
value stored in x through the variable itself. As they are the same value, they are merged.
The getter message (Val1) then the setter message ()->Val2 are sent in that order to the
stream X with its reader the process representing the variable x. Now suppose we have the
following:

constant(0,Z), constant(1,N1), constant(2,N2), var(Z,X),
addN(S1)->N1, addN(S2)->N2, S1=[(Res1)->X1], S2=[(Res2)->X2],
merge(X1,X2)->X3, merge(X3,X4)->X

This represents setting up a variable x with initial value 0, and executing x:=x+1 and x:=x+2
concurrently. The stream Res1 can be sent ()->val messages to get the value of x after
executing x:=x+1 and the stream Res2 can be sent ()->val messages to get the value of x
after executing x:=x+2. The stream X4 is where further getter and setter messages can be
sent to the representation of x. What actually happens?

X1 and X2 are both set to lists containing two messages, a getter followed by a setter.
If we write this as X1=[(Val11),()->Val21], X2=[(Val12),()->Val22] we can
see that the indeterminate merger of the two streams can lead to several results, modeling
the classic concurrent access issue which means x could end up as set to 1, 2 or 3. The
merger to [(Val11),()->Val21,(Val12),()->Val22] leaves x set to 3, the merger
to [(Val11),(Val12),()->Val21,()->Val22] leaves x set to 2 and so on. In fact it
is worse than this, since X4 is indeterminately mixed with the result. When our functions

 M. Huntbach / Lambda Calculus in Core Aldwych 15

have side effects, the ordering of messages to them matters.
However, this can be managed. We can model sequential access by appending the

streams rather than merging them. So, with:
constant(0,Z), constant(1,N1), constant(2,N2), var(Z,X),
addN(S1)->N1, addN(S2)->N2, S1=[(Res1)->X1], S2=[(Res2)->X2],
append(X1,X2)->X3, append(X3,X4)->X

we represent x:=x+1; x=x+2 executed sequentially, with x left set to 3, and the messages on
X4 not dealt with until that is done. Note that unless we have need to retain access to older
values of x, Res1 and Res2 here can be set to []. The rules for the append process are:

append(Left,Right)->Stream
{
 Left=[] || Stream<-Right;
 Left=[Mess|Left1] || append(Left1,Right)->Stream1,
 Stream=[Mess|Stream1];
}

If E is a stream read by the representation of an expression, then append(E1,E2)->E
splits it into two references to the expression, E1 and E2, but with E1 locking it. The
messages on E2 will not go through to E until the writer of E1 has closed it by setting the
end of the list to []. Other ways of merging streams of messages could be employed, such
as the strict alternation between two streams we gave in section 3.2. This enables us to
consider and model variations in language behaviour. Use of append enforces sequential
handling. Use of the indeterminate merge gives handling of data communications from
two agents which would cover the two agents sending communications in parallel. Note
that because Core Aldwych is asynchronous, with append(E1,E2)->E the process
producing E2 may proceed in parallel with that producing E1 so long as it does not require
any back communication from the reader of E. The reader of a Core Aldwych variable
cannot enforce synchronization on its writer unless there is back communication and the
writer has a dependency on the back communication value. Synchronized interaction can
be implemented if required through the use of back communication.

5.5 Lockable Variables

If V is read by a stream representing a mutable variable, then append(V1,V2)->V gives us
two streams with a guarantee that messages sent on V2 will only be received after all
messages sent on V1 have been received. However, that does not guarantee freedom from
interference as it may be that V is indeterminately merged with another stream to give the
stream which the actual variable representation reads. To guarantee freedom from
interference we need to have the stream appending at the variable representation end. This
can be done with a variation of the process structure which represents mutable variables:

lockablevar(S)->Val
{
 S=[] || Val=[];
 S=[()->Val1|S1] || Val=[], lockablevar(S1)->Val1;
 S=[(Val1)|S1] || merge(Val1,Val2)->Val, lockablevar(S1)->Val2;
 S=[lock(S1)|S2] || append(S1,S2)->S3, lockablevar(S3)->Val;
}

The effect is that if V is read by a stream representing a lockable mutable variable, then
sending the message lock(V1) on V means V1 really is a stream which accesses the
variable and locks it so no other access is handled until access through V1 is complete.

16 M. Huntbach / Lambda Calculus in Core Aldwych

6. An Extended Example: the Twice Function

For a detailed example, consider the lambda expression λf.λx. f (f x), the twice function. The
Core Aldwych representation of this as standard lambda calculus is given below. Note, this
is a case where the rhs of a rule has a process which is given by an actual set of rules rather
than by a call to an external named set of rules. The rhs of the second rule sets up a
recursive call to twice, and an anonymous process call which has input T and output F,
with the rules for that process following. As it is anonymous, its own recursive call with
input T1 and output F1 is given by *(T1)->F1.

twice(S)
{
 S=[] ||;
 S=[(T)->F|S1] || twice(S1),
 (T)->F {
 T=[(Res)->X|T1] || *(T1)->F1,
 App1=[(Res1)->X],
 App2=[(Res)->Res1],
 merge(App1,App2)->F2,
 merge(F2,F1)->F;
 T=[] || F=[];
 };
}

Sending a message (T)->F on a stream S where the reader of S is a twice process and the
reader of F represents a function f results in the reader of T representing a function which
takes an argument, applies f to it, and then applies f to the result and returns what that gives.
This is a simple example of a higher order function, the anonymous inner process is the
representation of the function created by applying twice to a function f.

Note that if twice itself were anonymous, twice(S1) would be written *(S1), and
if it had been necessary to have an indirect recursive twice with an argument A inside the
internal anonymous process, that would have been written **(A).

The representation of (twice f) for some f needs to send a stream of messages to the
reader of F, representing calls of the function f. A call (twice f) x gives the same result as a
call f (f x). It is initiated by the process representing (twice f) receiving a message
(Res)->X, with X the stream read by the agent that represents x, and Res is the stream
which takes messages requesting the value of (twice f) x. There is no dependency on the
type of messages sent through Res, so they could take the form ()->val if f is a first order
function or (R)->Arg if f is also a higher order function.

Two messages are sent to F, they are (Res1)->X representing the call f x, and
(Res)->Res1 representing the result of the call of f x passed as the argument to a further
call of f. The variable Res1 holds the stream of messages which the agent representing the
further call of f sends to the agent representing the first call of f to get the value of the call.
However, there is no actual ordering of these calls, the merge(App1,App2)->F2 means
they could come in either order. They may not even come one after the other, as the
merge(F2,F1)->F merges them indeterminately with messages to f coming from further
calls of (twice f) applied to different arguments.

If there are no side effects the order to which calls of a function are made, this makes
no difference, so although the streams of messages to the function f are merged
indeterminately, the same overall result would be given if they were appended. It may
seem odd that the function f may have to handle a call to evaluate f (f x) when it has not yet
received the call which would evaluate f x, but all this means is that it sets up what it can to

 M. Huntbach / Lambda Calculus in Core Aldwych 17

evaluate f (f x) with a variable representing the value of f x on which are sent messages, and
when it receives the call to evaluate f x it sets up the reader of this variable.

However, if f were a function with a side effect it would matter. Here is the
representation of one such function:

addstore(S)->(Const,Var)
{
 S=[] || Const=[], Var=[];
 S=[(Res)->Arg|S1] || addstore(S1)->(Const1,Var1),
 Arg=[()->val], Const=[()->cval|Const1],
 sum<-val+cval, constant(sum,Sum),
 Var=[()->V|Var1], merge(Res,V)->Sum;
}

It adds a constant value to its argument, given by stream Const, but also sets a mutable
variable, given by stream Var, to the sum. If the mutable variable were initially set to 0
and the constant value was 5, evaluating twice f 20 would always give 30, but the variable
could be left set either to 25 or 30 depending on the order in which the messages to f were
sent. Note that this function representation is already constrained, since the assignment
Var=[()->V|Var1] means that the setter message ()->V always comes before setter
message from later calls of f. If we wanted to make it a general principle that calls of a
function should work so that the side effects of a call always have their effect before side-
effects of later calls of the same function, we need to change the way free variables are
dealt with in functions so that λx.exp with free variables V1,…,Vn is represented by S with:

lambda(S)->(V1,…,Vn)
{
 S=[] || V1=[], …, Vn=[];
 S=[(Res)->X|S1] || exp(Res)->(X,V11,…,V1n),
 lambda(S1)->(V21,…,V2n),
 append(V11,V21)->V1, … , append(V1n,V2n)->Vn;
}

that is, the streams to the free variable reader from the function calls are appended rather
than merged. However, this does mean that each function call locks the free variables it
accesses.

In the representation of twice above, each call of the function f is represented by a
separate list of one message, with the lists indeterminately merged so the messages could be
passed to the representation of f in either order. If the messages are put into one list, that
establishes a fixed order on multiple calls to one function in an expression. If the
assumption was that inner calls come first it would result in the twice function being
represented by:

twice(S)
{
 S=[] ||;
 S=[(T)->F|S1] || twice(S1),
 (T)->F {
 T=[(Res)->X|T1] || *(T1)->F1,
 App=[(Res1)->X],(Res)->Res1],
 append(App,F1)->F;
 T=[] || F=[];
 };
}

18 M. Huntbach / Lambda Calculus in Core Aldwych

This is an example of where attempting to encode a higher level feature in Core Aldwych
reveals an aspect which needs further definition to give an exact behaviour. To put it
formally, the Church-Rosser theorem [19] does not apply with interactive computation.

A further variation makes the function calls within the call of the twice function lazy,
as covered in section 4.7. This leads to the following representation:

twice(S)
{
 S=[] ||;
 S=[(T)->F|S1] || twice(S1),
 (T)->F {
 T=[([])->X|T1] || *(T1)->F, X=[];
 T=[([Mess|More])->X|T1] || *(T1)->F1,
 Res=[Mess|More],
 App=[(Res1)->X],(Res)->Res1],
 append(App,F1)->F;
 T=[] || F=[];
 };
}

In this case, the distinction between lazy and non-lazy evaluation is well understood. The
Core Aldwych encoding supports it being a choice that could be made by annotations on
individual function applications [20] rather than fixed in the higher level language.

7. Conclusions and Future Work

We have not introduced any new syntax or operational behaviour into Core Aldwych. The
language has the same simple operational semantics as when we first described it. It is no
more complex in those terms than other models of computation. It is naturally concurrent
and naturally handles interaction. We have not had to introduce explicit mutable cells on
top of an immutable model [21]. Our model remains immutable, developing by giving
values to variables but never changing those values once they are given. Yet we have
shown how mutable structures can be modelled, and followed the consequences. As we
have shown, lambda calculus on its own is not a sufficient model under these circumstances
because there are many different ways in which even quite a simple lambda expression can
be interpreted, with different interpretations having different behaviours. Core Aldwych
enables us to model those different interpretations and different behaviours explicitly. We
have not had to introduce different variations of our model to capture such things as lazy
and non-lazy evaluation, or call by reference against call by value. Our one model can be
used for all of these.

This paper has been written informally to give a feel for what can be covered using
Core Aldwych. We have concentrated on lambda calculus, as this is generally seen as the
core computational model, but we have also covered the core mutable variable aspect of
procedural programming. There is not space here to show how Core Aldwych could be
used to cover explicit models of concurrent computation, such as pi calculus, but it is hoped
some of the techniques given here can indicate how it could be done. In fact we have
already used Core Aldwych to cover various process calculi, with questions on exactly how
they should operate and possible variations established through the route of considering
exactly how how they could be implemented in executable Core Aldwych code. Some feel
for this may perhaps be obtained by seeing how the decision on how to join streams in the
representation of lambda calculus: indeterminate merge, or append, or something else, leads
to quite strong differences in actual operational behaviour.

 M. Huntbach / Lambda Calculus in Core Aldwych 19

An important aspect of future work with Core Aldwych is the establishment of a
normal form for Core Aldwych agents, which would establish a denotational as opposed to
an operational semantics. An aspect of Core Alwych which helps with this is that its
evaluation is by its nature partial evaluation. Core Aldwych evaluation handles unbound
variables and takes it as far as it can, until it has to suspend because it can go no further
without knowing their values. As Core Aldwych rules are themselves Core Aldwych
agents we can move from the assignment absorption discussed in our previous paper [2],
which partially evaluates an agent to a subset of its original rules to reflect its environment
and carry on evaluation inside the rules. The goal is to take it to the point where if two
Aldwych agents are identical in operational behaviour they will always partially evaluate to
the same normal form. To achieve this we need a composition process so that multi-
process agents can be composed into one process. We established the basis for how to do
this some time ago [22].

References
[1] M. Huntbach, The Core Language of Aldwych. Communicating Process Architectures 2007, pp 51-66,

IOS Press, Amsterdam, 2007.
[2] M. Huntbach, A Model for Concurrency Using Single-Writer Single-Assignment Variables.

Communicating Process Architectures 2011, pp 255-272, IOS Press, Amsterdam, 2011.
[3] M. Huntbach, Features of the Concurrent Programming Language Aldwych. 2003 ACM Symposium on

Applied Computing. ACM, pp 1048-1055, 2003.
[4] S. Haridi et al, Efficient Logic Variables for Distributed Computing. ACM Trans. on Programming

Languages and Systems 21 (3) pp 569-626, 1999.
[5] K. Ueda, Experiences with Strong Moding in Concurrent Logic/Constraint Programming. Int. Workshop

on Parallel Symbolic Languages and Systems (PSLS’95), pp 134-153. Springer LNCS 1068, 1996.
[6] U. Reddy, A Typed Foundation for Directional Logic Programming. Extensions of Logic Programming

(ELP’92), pp 282-318 Springer LNCS 660, 1993.
[7] S. Gregory, Parallel Logic Programming in Parlog. ISBN: 0201192412, Addison-Wesley 1987.
[8] J. Niehren, J. Schwinghammer and G. Smolka, A concurrent lambda calculus with futures. Theoretical

Computer Science 364 pp 338-356, 2006.
[9] R. Hickey, Are We There Yet? (Keynote speech) JVM Language Summit 2009 Sun Microsystems

http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey, 2009.
[10] I. Foster and S. Taylor, Strand: New Concepts in Parallel Programming. ISBN:0-13-850587-X,

Prentice Hall, 1990.
[11] W.F. Clocksin and C.S. Mellish, Programming in Prolog: Using the ISO Standard. Springer,

ISBN:978-3-540-00678-7, 2003.
[12] G. Agha and C.Hewitt, Actors: a Conceptual Foundation for Concurrent Object-Oriented Programming.

In Research Directions in Object-Oriented Programming, MIT Press, ISBN:0-262-19264-0, 1987.
[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall ISBN:0-13-153271-5, 1985.
[14] P. Landin, A Correspondence between Algol-60 and Church’s Lambda-Notation, Communications of

the ACM 8 (2) pp.89-101, 1965.
[15] D.Lea, Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley,

ISBN:0-201-31009-0, 1999.
[16] J.C. Reynolds. The Discovery of Continuations, Lisp and Symbolic Computation 6, pp.233-248, 1993.
[17] E.Y. Shapiro and A. Takeuchi, Object Oriented Programming in Concurrent Prolog, New Generation

Computing, 1, pp 25-48, 1983.
[18] M. Erwig and D. Ren, Monadification of Functional Programming. Science of Computer Programming

52 (1) pp 101-129, 2004.
[19] A.Church and J.Rosser Some Properties of Conversion, Trans. Am. Math Soc. 39 (3) pp.472-482, 1936.
[20] F.W. Burton, Annotations to Control Parallelism and Reduction Order in the Distributed Evaluation of

Functional Programs. ACM Trans. on Programming Languages and Systems 6 (2) pp 159-174, 1984.
[21] P. van Roy and S. Haridi. Concepts, Techniques and Models of Computer Programming. MIT Press,

ISBN 0-262-22069-5, 2004.
[22] M. Huntbach, Meta-interpreters and Partial Evaluation in Parlog. Formal Aspects of Computing 1 (1)

pp 193-211, 1989.

