4 research outputs found

    Partial and Simultaneous Transitive Orientations via Modular Decompositions

    Get PDF
    A natural generalization of the recognition problem for a geometric graph class is the problem of extending a representation of a subgraph to a representation of the whole graph. A related problem is to find representations for multiple input graphs that coincide on subgraphs shared by the input graphs. A common restriction is the sunflower case where the shared graph is the same for each pair of input graphs. These problems translate to the setting of comparability graphs where the representations correspond to transitive orientations of their edges. We use modular decompositions to improve the runtime for the orientation extension problem and the sunflower orientation problem to linear time. We apply these results to improve the runtime for the partial representation problem and the sunflower case of the simultaneous representation problem for permutation graphs to linear time. We also give the first efficient algorithms for these problems on circular permutation graphs

    Succinct Permutation Graphs

    Get PDF
    We present a succinct, i.e., asymptotically space-optimal, data structure for permutation graphs that supports distance, adjacency, neighborhood and shortest-path queries in optimal time; a variant of our data structure also supports degree queries in time independent of the neighborhood's size at the expense of an O(logn/loglogn)O(\log n/\log \log n)-factor overhead in all running times. We show how to generalize our data structure to the class of circular permutation graphs with asymptotically no extra space, while supporting the same queries in optimal time. Furthermore, we develop a similar compact data structure for the special case of bipartite permutation graphs and conjecture that it is succinct for this class. We demonstrate how to execute algorithms directly over our succinct representations for several combinatorial problems on permutation graphs: Clique, Coloring, Independent Set, Hamiltonian Cycle, All-Pair Shortest Paths, and others. Moreover, we initiate the study of semi-local graph representations; a concept that "interpolates" between local labeling schemes and standard "centralized" data structures. We show how to turn some of our data structures into semi-local representations by storing only O(n)O(n) bits of additional global information, beating the lower bound on distance labeling schemes for permutation graphs

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore