Succinct Permutation Graphs

Konstantinos Tsakalidis* Sebastian Wild ${ }^{\dagger}$ Viktor Zamaraev ${ }^{\ddagger}$

October 9, 2020

Abstract

We present a succinct, i.e., asymptotically space-optimal, data structure for permutation graphs that supports distance, adjacency, neighborhood and shortest-path queries in optimal time; a variant of our data structure also supports degree queries in time independent of the neighborhood's size at the expense of an $O(\log n / \log \log n)$-factor overhead in all running times. We show how to generalize our data structure to the class of circular permutation graphs with asymptotically no extra space, while supporting the same queries in optimal time. Furthermore, we develop a similar compact data structure for the special case of bipartite permutation graphs and conjecture that it is succinct for this class. We demonstrate how to execute algorithms directly over our succinct representations for several combinatorial problems on permutation graphs: Clique, Coloring, Independent Set, Hamiltonian Cycle, All-Pair Shortest Paths, and others.

Moreover, we initiate the study of semi-local graph representations; a concept that "interpolates" between local labeling schemes and standard "centralized" data structures. We show how to turn some of our data structures into semi-local representations by storing only $O(n)$ bits of additional global information, beating the lower bound on distance labeling schemes for permutation graphs.

1 Introduction

As a result of the rapid growth of electronic data sets, memory requirements become a bottleneck in many applications, as performance usually drops dramatically as soon as data structures do no longer fit into faster levels of the memory hierarchy in computer systems. Research on succinct data structures has lead to optimal-space data structures for many types of data [23], significantly extending the size of data sets that can be analyzed efficiently.

Graphs are one of the most widely used types of data. In this paper, we study succinct representations of specific classes of graphs, namely permutation graphs and related families of graphs. A graph is a permutation graph (PG) if it can be obtained as the intersection graph of chords (line segments) between two parallel lines [25], i.e., the vertices corresponding to two such chords are adjacent, if and only if the chords intersect. PGs are a well-studied class of graphs; they are precisely the comparability graphs of two-dimensional partial orders, and the class of comparability graphs whose complement graph is also a comparability graph [9] (see Section 2 for definitions of these concepts). Many generally intractable graph problems can be solved efficiently on PGs, for instance Clique [19, 18] Independent Set [19, 18], Coloring [19, 18], Clique Cover [19, 18], Dominating Set [4], Hamiltonian Cycle [8],

[^0]and Graph Isomorphism [5]. All-Pair Shortest Paths on PGs can be solved faster than in general graphs [20, 2]. Moreover, PGs can be recognized in linear time [18].

In this paper we study how to succinctly encode permutation graphs, while supporting the following queries efficiently:

- adjacent (u, v) : whether vertices u and v are adjacent;
- degree (v) : the degree of vertex v, i.e., the number of vertices adjacent to v;
- neighborhood (v) : the vertices adjacent to vertex v;
- next_neighbor (u, v) : the successor of vertex v in the adjacency list of vertex u;
- $\operatorname{spath}(u, v)$: listing a shortest path from vertex u to vertex v;
- spath_succ (u, v) : the first vertex after vertex u on a shortest path from u to vertex v;
- distance (u, v) : the length of the shortest path from vertex u to vertex v.

Data structures. A succinct data structure is space-optimal in the sense that it stores a given combinatorial object using asymptotically only the information-theoretically needed amount of bits. We present the first succinct data structures that support these queries on a PG (Theorem 3.1), as well as on its generalization, a circular permutation graph (CPG, see Theorem 6.4). Moreover, we present the first compact data structure for the special case of a bipartite permutation graph (BPG, see Theorem 5.1), and provide the first lower bound for the space needed to store it. Table 1 summarizes these results. Throughout this paper, running times assume the word-RAM model with word size $w=\Theta(\log n)$, where n denotes the number of vertices of the input PG.

Table 1: Overview of our data structure results for (variants of) permutation graphs with n vertices. Space is in bits. Query times are Big-Oh asymptotic bounds; deg denotes the queried vertex' degree and dist the shortest-path distance between two queried vertices.

	permutation		bipartite permutation	circular permutation
	(a) by grid	(b) by array		
Space Lower Bound	$\begin{gathered} n \lg n+o(n \log n) \\ \sim n \lg n[2] \\ \hline \end{gathered}$	$\begin{gathered} n \lg n+O(n) \\ \sim n \lg n[2] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 n+o(n) \\ n(\S 5.2) \end{gathered}$	$\begin{gathered} n \lg n+O(n) \\ \sim n \lg n[2] \end{gathered}$
adjacent degree neighborhood next_neighbor spath spath_succ distance	$\log n / \log \log n$ $\log n / \log \log n$ $($ deg +1$) \log n / \log \log n$ $($ deg +1$) \log n / \log \log n$ $($ dist +1$) \log n / \log \log n$ $\log n / \log \log n$ $\log n / \log \log n$	$\begin{gathered} \hline 1 \\ \operatorname{deg}+1 \\ \operatorname{deg}+1 \\ 1 \text { (amortized) } \\ \text { dist }+1 \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 1 \\ \operatorname{deg}+1 \\ 1 \\ \text { dist }+1 \\ 1 \\ \text { dist }+1 \end{gathered}$	$\begin{gathered} 1 \\ \text { deg }+1 \\ \operatorname{deg}+1 \\ 1 \text { (amortized) } \\ \text { dist }+1 \\ 1 \\ 1 \end{gathered}$
Theorem	Thm. 3.1-(a)	Thm. 3.1-(b)	Thm. 5.1	Thm. 6.4

To our knowledge, the only centralized data structures that store PGs are presented by Gustedt et al. [14] and by Crespelle and Paul [6]. The former are not succinct (using $O(n \lg n)$ words of space), but are parallelizable [14]. The latter support only adjacent queries (in constant time), but are dynamic (supporting insertions and deletions of vertices/chords and edges). We are not aware of previous work on data structures for CPGs, or on data structures that use less space to store a BPG.

Bazzaro and Gavoille [2] present distance labeling schemes for PGs, a form of distributed distance oracle, where the distance of two vertices can be computed solely from the two labels of the vertices. Their scheme uses labels of $\sim 9 \lg n$ bits per vertex ${ }^{1}$, and their distance queries take constant time. By simply concatenating all labels, their labeling scheme implies a data structure with matching time complexity and total space of $\sim 9 n \lg n$ bits. Our data structures (Theorem 3.1) improve upon that space, while simultaneously supporting further queries besides distance.

Interestingly, Bazzaro and Gavoille [2] further show that in a fully distributed setting, labels of $3 \lg n-O(\lg \lg n)$ bits per vertex are necessary to support distance on PGs. Comparing our data structures to this lower bound reveals a separation in terms of total space between their distributed and our centralized model: giving up the distributed storage requirement, a data structure using the optimal $\sim n \lg n$ bits of space, i.e., $\lg n$ per vertex, becomes possible, proving that the centralized model is strictly more powerful.

Semi-local graph representations. To further explore the boundary of the above separation between standard centralized data structures and fully distributed labeling schemes, we introduce a semi-local model of computation for graph data structures that smoothly interpolates between these two extremes: in a $\langle L(n), D(n)\rangle$-space semi-local representation, each vertex locally stores a label of $L(n)$ bits, but all vertices also have access to a "global" data structure of $D(n)$ bits to support the queries. Such a representation uses a total of $n L(n)+D(n)$ bits of space, but apart from the global part, only the labels of queried vertices are accessible to compute the answer.

The lower bound from [2] implies that when $D(n)=0$, we must have $L(n) \geq 3 \lg n-$ $O(\lg \lg n)$ to support distance on PGs, making the total space at least a factor 3 worse than the information-theoretic lower bound. But what happens if we allow a small amount of global storage on top of the labels? Is access to global storage inherently more powerful, even if, by itself, it is insufficient even to just encode the entire PG? And if so, what is the least amount of global storage that is necessary to beat the $3 \lg n$ lower bound?

We do not have a comprehensive answer to the second question, however we settle the first one in the affirmative: we show that PGs admit a $\langle 2 \lg n, O(n)\rangle$-space semi-local representation that answers distance queries in constant time, i.e., although the global space cannot distinguish all possible PGs, it suffices to break the lower bound for labeling schemes in terms of total space and label size. Having access even to limited amounts of global space is inherently more powerful than a fully distributed data structure.

Applications. Our data structures can replace the standard (space-inefficient) representation by adjacency lists in graph algorithms. For several known algorithms on PGs that make explicit use of their special structure (namely, linear-time algorithms for computing minimum colorings, maximum cliques, maximum independent sets, or minimum clique covers), we show that they can be run with minimal extra space directly on top of our succinct representation.

Moreover, our data structures immediately yield an optimal-time all-pairs shortest-paths algorithm on PGs: For a PG with n vertices and m edges we can report all pairwise distances in $O\left(n^{2}\right)$ time, matching the result of Mondal et al. [20]; however, our approach is more flexible in that we can report the distances of any k specified pairs of vertices in just $O(n+m+k)$ total time. Furthermore, we can report the shortest paths (not just their lengths) in total time $O(n+m+s)$, where s is the size of the output; this does not immediately follow from [20]. The labeling scheme of [2] yields the same running times, but uses more space.

[^1]Further related work. Similar to our work on PGs, succinct data structures that support the considered set of queries have been presented for chordal graphs [21] and interval graphs [1, 16]. The latter also consider the special class of unit/proper interval graphs and the generalization of circular interval graphs.

Outline. The rest of this paper is organized as follows. Section 2 collects previous results on PGs and succinct data structures. In Section 3, we describe our main result: the succinct data structures for PGs. All our other results rely on the techniques established in that section. Section 4 describes how to simulate various algorithms on top of our succinct representation. Section 5 discusses our data structure for bipartite PGs, and Section 6 extends our approach to circular PGs. Finally, Section 7 introduces semi-local graph representations and our corresponding results. Section 8 concludes the paper.

2 Preliminaries

We write $[n . . m]$ for $\{n, \ldots, m\} \subset \mathbb{Z}$ and $[n]=[1 . . n]$. We use standard notation for graphs, in particular (unless stated otherwise) n denotes the number of vertices, m the number of edges. $N(v)$ is the neighborhood of v, i.e., the set of vertices adjacent to v. In a directed graph $G=(V, E)$, we distinguish out-neigborhood $N^{+}(v)=\{u:(v, u) \in E\}$ and in-neigborhood $N^{-}(v)=\{u:(u, v) \in E\}$ of a vertex $v \in V$. The complement graph of G is denoted by \bar{G}.

2.1 Permutation Graphs

It is easy to see from the intersection model of a permutation graph G (as intersections of chords between parallel lines) that only the relative order of upper (resp. lower) endpoints of the chords are relevant. Hence, a graph G is a permutation graph if there exists a permutation π and a bijection between the vertices of G and the elements of π, such that two vertices are adjacent if and only if the corresponding elements are reversed by π; that explains the name.

We carefully distinguish several related notions. First, given a permutation $\pi:[n] \rightarrow[n]$, the ordered permutation graph induced by π, denoted $G_{\pi}=(V, E)$, has vertices $V=[n]$ and (undirected) edges $\{i, j\} \in E$ for all $i>j$ with $\pi^{-1}(i)<\pi^{-1}(j)$, i.e., if π has an inversion (i, j). Note that given such an ordered permutation graph G, we can uniquely reconstruct the permutation π with $G_{\pi}=G$: By setting b_{j}, for each vertex j, to the number of its neighbors i with $i>j$, we obtain the inversion table b_{1}, \ldots, b_{n} of the permutation, from which there is a well-known bijection to π itself [17, §5.1.1]. Hence, ordered permutation graphs and permutations are in bijection. Moreover, this yields a simple recognition algorithm for ordered permutation graphs: Compute π as above and check if the given graph equals G_{π}. The ordered permutation graph G_{π} can be characterized by its grid representation, which is a collection of integer points in the plane associated with the vertices of G_{π} : a vertex v is associated with the unique point $\left(v, \pi^{-1}(v)\right)$ (see Fig. 1). A useful property of the grid representation is that the neighbors of the vertex v are exactly those vertices whose points are located in the top left or the lower right quadrant around the point of v.

A graph $G=([n], E)$ is a labeled permutation graph, written $G \in \mathcal{P}^{n}$, if there is set of n chords between two parallel lines and an assignment of vertices to chords, so that $\{i, j\} \in E$ iff chords i and j intersect. In other words, $G \in \mathcal{P}^{n}$ iff there are two permutations π and ρ so that $\rho(G)=([n], \rho(E))=G_{\pi}$, where $\rho(E)=\{\{\rho(u), \rho(v)\}:\{u, v\} \in E\}$; in short: G is isomorphic to an ordered permutation graph.

The set of unlabeled permutation graphs of size n, denoted by \mathcal{P}_{n}, is the family of equivalence classes of labeled graphs in \mathcal{P}^{n} under (graph) isomorphism.

Figure 1: Example permutation graph (top right) from [2] in different representations: a representation as intersections of chords between two parallels (top left), corresponding to the permutation $\pi=(5,7,2,6,1,11,8,10,4,3,9)$, and the points $\left(v, \pi^{-1}(v)\right)$ on a 2D grid (bottom right). A point in the grid can "see" (is adjacent to) all points in the top left resp. lower right quadrant around it as illustrated on the bottom left.

To illustrate the notions of ordered, labeled, and unlabeled permutation graphs, and to make the distinction between them clear, we consider a few simple examples. Both the empty or complete unlabeled graph correspond to a single ordered permutation graph, namely with π the sorted (resp. reverse sorted) permutation. Similarly, there is only one labeled empty or complete graph; in this case, the three notions coincide. However, the unlabeled graph with just a single edge corresponds to $n-1$ ordered permutation graphs, namely all $n-1$ permutations with a single inversion; and there are $\binom{n}{2}$ labeled graphs with a single edge. We can always select a representative (a labeled permutation graph) for an isomorphism class (the unlabeled permutation graph) that is an ordered permutation graph, but in general, there are more ordered permutation graphs than unlabeled permutation graphs.

A graph is comparability if its edges can be oriented such that if there are arcs (a, b) and (b, c), then there is an arc (a, c). We will use the following classical characterization of PGs.

Theorem 2.1 ([9]): A graph G is a permutation graph if and only if both G and \bar{G} are comparability graphs.

Finally, for the construction of our data structures, we will assume that an ordered PG G_{π} is given; the following result allows to compute such from a given PG in linear time.

Theorem 2.2 ([18]): There is an algorithm that given a graph $G=(V, E)$ on $n=|V|$ vertices and $m=|E|$ edges computes in $O(n+m)$ time two bijections $\pi:[n] \rightarrow[n]$ and $\rho: V \rightarrow[n]$ with $\rho(G)=G_{\pi}$, or determines that G is not a permutation graph.

2.2 Space Lower Bounds

Our data structures for PGs encode an input grid representation of an ordered PG. Since the number of ordered PGs is larger than the number of unlabeled PGs, the lower bound on the latter from [2], namely

$$
\left|\mathcal{P}_{n}\right| \geq n^{n(1-o(1))},
$$

implies that our data structures for PGs are asymptotically space-optimal.
Corollary 2.3: $\lg \left|\mathcal{P}_{n}\right| \sim n \lg n$ bits are necessary to represent an unlabeled permutation graph on n vertices.

We note that in the data structure and graph labeling scheme communities, a common approach for proving space optimality of graph representations is via lower bounds on the number of unlabeled graphs in the class [12,2,1,22]. A usual way of establishing a lower bound on the number $\left|\mathcal{X}_{n}\right|$ of unlabeled graphs in a given class \mathcal{X} is first to derive a lower bound on the number $\left|\mathcal{X}^{n}\right|$ of labeled graphs in the class, and then to apply the following obvious relation $\left|\mathcal{X}^{n}\right| \leq n!\left|\mathcal{X}_{n}\right|$. The non-trivial part in this approach is the former one and it usually boils down to an ad-hoc construction of a large family of labeled graphs in the class; see [12] for interval graphs and [2] for PGs. A recent work of Sauermann [28] provides a uniform framework for deriving tight lower bounds on the number of labeled graphs in semi-algebraic graph classes. The family of semi-algebraic graph classes contains many geometric intersection graphs classes, including interval graphs and PGs.

2.3 Succinct Data Structures

We collect a few results on succinct data structures here that we will use in this paper. First, we cite the compressed bit vectors of Pǎtraşcu [24].

Lemma 2.4 (Compressed bit vector): Let $B[1 . . n]$ be a bit vector of length n, containing m 1-bits. For any constant $c>0$, there is a data structure using $\lg \binom{n}{m}+O\left(\frac{n}{\log ^{c} n}\right) \leq m \lg \left(\frac{n}{m}\right)+$ $O\left(\frac{n}{\log ^{c}{ }^{n}}+m\right)$ bits of space that supports in $O(1)$ time operations (for $\left.i \in[1, n]\right)$:

- access (B, i) : return $B[i]$, the bit at index i in B.
- $\operatorname{rank}_{\alpha}(B, i):$ return the number of bits with value $\alpha \in\{0,1\}$ in $B[1 . . i]$.
- $\operatorname{select}_{\alpha}(B, i)$: return the index of the i-th bit with value $\alpha \in\{0,1\}$.

Remark (Simpler bitvectors): The result of Pǎtraşcu has the best theoretical guarantees, but requires rather complicated data structures. Compressed bitvectors with space

$$
\begin{aligned}
\lg \binom{n}{m}+O\left(\frac{n \log \log n}{\log n}\right) & \leq n H\left(\frac{m}{n}\right)+O\left(\frac{n \log \log n}{\log n}\right) \\
& =m \lg \left(\frac{n}{m}\right)+O\left(\frac{n \log \log n}{\log n}+m\right)
\end{aligned}
$$

have been proposed by Raman, Raman, and Rao [26] and implemented [13]. For our application, indeed a plain (uncompressed) bitvector with $O(1)$-time support for rank and select is sufficient.

Given an array $A[1 . . n]$ of comparable elements, (e.g., numbers), range-minimum queries (resp. range-maximum queries) are defined by

$$
\begin{aligned}
\operatorname{rmq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \min } A[k] \\
\operatorname{rMq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \max } A[k]
\end{aligned}
$$

for all $1 \leq i \leq j \leq n$. In both cases, ties are broken by the index, i.e., the index of the leftmost minimum (resp. maximum) is returned.

Lemma 2.5 (RMQ index, [10, Thm. 3.7]): Given a static array $A[1 . . n]$ of comparable elements, for any constant $\varepsilon>0$, there is a data structure using ε n bits of space on top of A that answers range-minima queries in $O(1 / \varepsilon)$ time (making as many queries to A).

Clearly, the same data structure can also be used to answer range-maxima queries by building the data structure w.r.t. the reverse ordering.

Remark (Sublinear RMQ): Indeed, ε can be chosen smaller than constant, yielding sublinear extra space, at the cost of increasing the query time to superconstant; we only need $\varepsilon=\Omega\left(n^{-1+\delta}\right)$ for some $\delta>0$.

Given a static set of points in the plane, orthogonal range reporting asks to find all points in the point set that lie inside a query rectangle $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$. Range counting queries only report the number of such points.

Lemma 2.6 (Succinct point grids, [3, Thm. 1]): A set N of n points in an $n \times n$ integer grid can be represented using $n \lg n+o(n \log n)$ bits of space so that

1. orthogonal-range-counting queries are answered in $O(\log n / \log \log n)$ time, and
2. orthogonal-range-reporting queries are answered in $O((k+1) \log n / \log \log n)$ time, where k is the output size.

Corollary 2.7 (Permutation grid): Given a permutation $\pi:[n] \rightarrow[n]$, we can represent the point set $P=P(\pi)=\{(x, \pi(x)): x \in[n]\}$ using $n \lg n+o(n \log n)$ bits of space so that we can answer the following queries:

1. orthogonal-range-counting queries, $\operatorname{RCount}_{P}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=\left|P \cap\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]\right|$ in $O(\log n / \log \log n)$ time;
2. orthogonal-range-reporting queries, RPoints ${ }_{P}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=P \cap\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ in $O((k+1) \log n / \log \log n)$ time, where $k=\operatorname{RCount}_{P}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)$;
3. application of π, $\operatorname{YFor}_{P}(\pi)(x)=\pi(x)$ for $x \in[n]$ in $O(\log n / \log \log n)$ time;
4. inverse of $\pi, \operatorname{XFor}_{P(\pi)}(y)=\pi^{-1}(y)$ for $y \in[n]$ in $O(\log n / \log \log n)$ time.

Proof: We use the grid data structure from Lemma 2.6 on P; counting and reporting queries are immediate, and for others we use that $\operatorname{YFor}_{P(\pi)}(x)=\operatorname{RPoints}_{P}(x, x ; 1, n)$.y and $\operatorname{XForY}_{P(\pi)}(y)=$ RPoints $_{P}(1, n ; y, y)$.x. Here we write $Q . \mathrm{x}$ to denote the projection of point set Q to the x coordinates of the points.

Remark 2.8 (Iterate over range): It is not clear if we can iterate over the result of RPoints with $O(\log n / \log \log n)$ time per point instead of obtaining all points in one go.

Remark (Simpler alternatives): At the slight expense of increasing running times by a $O(\log \log n)$ factor, we can replace the grid data structure by a wavelet tree, which is likely to be favorable for an implementation $[23,1]$.

Finally, a last ingredient for our data structures is a recent result on succinct distance oracles for proper interval graphs. Here, an interval graph is the intersection graph of a set of intervals on the real line, and a proper interval graph is one that has an interval realization where no interval strictly contains another one.

Lemma 2.9 (Succinct proper interval graphs [16, Thm. 12]): A proper interval graph on n vertices can be represented in $3 n+o(n)$ bits of space so that distance (u, v) for $u, v \in[n]$ can be computed in $O(1)$ time, and vertices are identified by the rank of the left endpoints of their interval in some realization of the proper interval graph. We can also answer adjacent, degree, neighborhood in $O(1)$ time and $\operatorname{spath}(u, v)$ in $O($ distance $(u, v))$ time. For connected graphs, the space can be reduced to $2 n+o(n)$ bits.

Remark 2.10 ($O(1)$ time neighborhood): It might sound impossible to do neighborhood in constant time independent of the output size; this is possible in proper interval graphs since neighborhoods are contiguous intervals (of vertex labels) and thus can be encoded implicitly in a constant number of words.

Remark 2.11 (Routing): By instruction of the proof, the data structure from [16] can also support spath_succ (u, v) in constant time. Thus, not just can $\operatorname{spath}(u, v)$ be answered in optimal overall time, but we can output the path step by step in optimal time per edge. \triangleleft

3 Data Structures for Permutation Graphs

We describe our data structures for ordered permutation graphs; throughout this section, we assume a permutation $\pi:[n] \rightarrow[n]$ is given and we describe how to answer queries on G_{π}. Our two solutions differ in how π is represented: the first solution uses a grid data structure that can support all queries, albeit with superconstant running time; the second solution stores π plainly in an array and hence achieves optimal query times, but it cannot support degree queries. Our formal result is as follows.

Theorem 3.1 (Succinct permutation graphs): A permutation graph can be represented
(a) using $n \lg n+o(n \lg n)$ bits of space while supporting adjacent, degree, distance, spath_succ in $O(\log n / \log \log n)$ time, neighborhood (v) in $O((\operatorname{degree}(v)+1)$. $\log n / \log \log n)$ time, and $\operatorname{spath}(u, v)$ in $O(($ distance $(u, v)+1) \log n / \log \log n)$ time; or
(b) using $n \lg n+(7.17+\varepsilon) n$ bits of space (for any constant $\varepsilon>0$) while supporting adjacent, distance, spath_succ, next_neighbor in $O(1)$ time, neighborhood (v), degree (v) in $O($ degree $(v)+1)$ time, and $\operatorname{spath}(u, v)$ in $O($ distance $(u, v)+1)$ time.

3.1 Grid-Based Data Structure

We store the point set $P(\pi)=\left\{\left(v, \pi^{-1}(v)\right): v \in[n]\right\}$ in the data structure of Corollary 2.7. We identify vertices with the x-coordinates of these points (the rank of the vertex' chord endpoint on the upper line).

Adjacent. Given two vertices u and v, w.l.o.g. $u<v$. We compute $\pi^{-1}(u)=\operatorname{YForX}(u)$ and $\pi^{-1}(v)=\operatorname{YForX}(v)$; Then adjacent $(u, v)=\left[\pi^{-1}(u)>\pi^{-1}(v)\right]$.

Neighborhood. For a vertex v, we separate its neighbors into neighborhood $(v)=N^{-}(v) \cup$ $N^{+}(v)$ where $N^{-}(v)=$ neighborhood $(v) \cap[1 . . v-1]$ and $N^{+}(v)=$ neighborhood $(v) \cap[v+1 . . n]$. Using the graphical representation of neighborhoods from [2] (see also Figure 1), we immediately obtain $N^{-}(v)=\operatorname{RPoints}(1, v-1 ; \operatorname{YForX}(v), n)$ and $N^{+}(v)=\operatorname{RPoints}(v+1, n ; 1, \operatorname{YForX}(v))$.

Degree. Replacing the range-reporting queries from neighborhood by range-counting queries yields degree $(v)=\left|N^{-}(v)\right|+\left|N^{+}(v)\right|$.

3.2 Array-Based Data Structure

The first key observation is that we never have to compute π; only π^{-1} will be needed. We hence simply store an array $\Pi[1 . . n]$ with $\Pi[i]=\pi^{-1}(i)$ using $n\lceil\lg n\rceil \leq n \lg n+n$ bits of space. For legibility, we continue to write $\pi^{-1}(i)$ in operations, but it is understood that this is indeed an access to $\Pi[i]$.

Adjacency. Adjacency tests only use π^{-1}, thus they are solved as in our previous approach.
Neighborhood. Like in our previous approach, we separately handle the neighbors u of v with $u<v$ (in $\left.N^{-}(v)\right)$ and with $u>v\left(\right.$ in $\left.N^{+}(v)\right)$. Even though we do not explicitly store the point set $P(\pi)$ in our data structure, we can still answer the above range queries, because these are effectively two-sided range queries (dominance queries):

For $N^{-}(v)=\operatorname{RPoints}\left(1, v-1 ; \pi^{-1}(v), n\right)$, we maintain the range-maximum index from Lemma 2.5 on $\Pi[1 . . n]$ using εn bits of space. We can then iterate through the vertices in $N^{-}(v)$ using the standard algorithm for three-sided orthogonal range reporting that uses priority search trees: We compute $i=\mathrm{rMq}_{\Pi}(1, v-1)$; if $\pi^{-1}(i) \geq \pi^{-1}(v)$, we report i as a neighbor and recursively continue in the ranges $[1 . . i-1]$ and $[i+1 . . v-1]$. Otherwise, if $\pi^{-1}(i)<\pi^{-1}(v)$, we terminate the recursion. (We also terminate recursive calls on empty ranges). Each recursive call only takes constant time and either terminates or outputs a new neighbor of v, so we can iterate through $N^{-}(v)$ with constant amortized time per vertex.

For $N^{+}(v)=\operatorname{RPoints}\left(v+1, n ; 1, \pi^{-1}(v)\right)$, we use the same technique, reflected: we store a range-minimum index on $\Pi[1 . . n]$, starting with the range $[v+1, n]$ and continue as long as the returned minimum is at most $\pi^{-1}(v)$.

Next neighbor. The above method can easily be used to iterate over neighbors one at a time, instead of generating and returning the full neighborhood. The order of iteration is implementation-defined (ultimately by the RMQ index), but fixed for any G_{π}. An easy argument shows that reporting the k th neighbor with the above algorithm can take $\Theta(k)$ time, but amortized over the entire neighborhood of a vertex, iteration takes constant time per neighbor. However, if done naively, it would require $O(k)$ extra working space to store the k ranges wherein the k th neighbor might be found.

We can improve the extra space and support starting at an arbitrary given neighbor w to find next_neighbor (v, w) by looking into the black box of the RMQ index ${ }^{2}$. A $2 \varepsilon n+o(n)$ bit RMQ index for an array $A[1 . . n]$ can be obtained by (conceptually) dividing A into εn blocks of $\lceil 1 / \varepsilon\rceil$ elements each and storing the Cartesian tree $[11,32]$ of the block maxima as a succinct

[^2]binary tree [7, Thm. 3] in $2 \varepsilon n+o(n)$ bits. This tree data structure allows in constant time to (a) map between nodes and their corresponding block index in A, (b) map between nodes to preorder index, (c) find the lowest common ancestor (LCA) of two nodes, and (d) return the number of descendants of a node. To iterate through all indices $i \in[\ell, r]$ with $A[i] \geq y$, we will now show how to compute the next such index given only a current such index i (and ℓ, r and y). As first index, we take $i_{0}=\mathrm{rMq}_{A}(\ell, r)$; when no further index i with $A[i] \geq y$ exists, next-index returns null.

We first discuss how to solve the problem for $\varepsilon=1$, i.e., when all elements are part of the tree. We will identify nodes in the Cartesian tree T with their inorder number, i.e., the index in A. We will report all $i \in[\ell, r]$ with $A[i] \geq y$ in the (relative) order of a preorder traversal of T. The first step is to find the next candidate index $s \in[\ell, r]$, for which $A[s] \geq y$ might hold, given the current index i. We initialize s to the successor of i in preorder.

Now, we repeat the following steps until we have either found the next index or determined none exists. If s is not a descendant of the LCA of ℓ and r in T (the node where we started; this can be computed from v in constant time using preorder and subtree size), then there are no more indices to report and we return null. Otherwise, we check if $s \in[\ell, r]$; if not, s is too far left or too far right, and we have to find the next (in preorder) that lies inside $[\ell, r]$: If $s<\ell$, we update s to the LCA of ℓ and $i-1$; if $s>r$ we set s to LCA of $i+1$ and r. In all cases, after $O(1)$ time, we arrive at the next candidate node s. If $A[s] \geq y$ we return s and are done. Otherwise, i.e., if $A[s]<y$, then s and its entire subtree have to be skipped; we do so by advancing from s (in preorder) by as many nodes as s has descendants; the tree data structure supports this in constant time. Then we repeat the above steps with the new s.

We note that the accesses to A are the same as in the naive implementation of three-sided range reporting, and only constant time is needed between two such accesses; hence the same time bounds hold.

When we use blocks of $c=\lceil 1 / \varepsilon\rceil$ elements and only construct T based on the block minima, we modify this procedure as follows. When we are given a current index i, we first check the indices $j>i$ in i 's block. If any j has $A[j] \geq y$, we return it. Only if none of the indices in i 's block are returned, we continue with the above procedure to find the next candidate node s. When we compare the candidate node " $A[s] \geq y$ ", we now iterate through the block corresponding to node s and compare each array entry with y. When we find i with $A[i] \geq y$, we return this index; if none of the elements in the block where big enough, we continue as if $A[s]<y$ held.

Remark 3.2 (Easy degrees): We can always compute degree (v) as \mid neighborhood $(v) \mid$ in $O($ degree $(v)+1)$ time, although this is not particularly efficient for high-degree vertices. We can obviously also add support for degree in constant time by storing the degrees of all vertices explicitly in an array. This occupies an additional $n\lceil\lg n\rceil$ bits of space and is thus not succinct, but might in implementations be preferable to the grid data structure (and offers all queries with optimal complexity).

3.3 Distance and Shortest Paths

Both of the above data structures can be augmented to support distance and shortest-path queries; the only difference will be the running time to compute $\pi^{-1}(v)$.

For distance and shortest-path queries, we follow the idea of [2]; we sketch the approach here and give a more formal definition below. A shortest path from u to v in a PG can always be found using only left-to-right maxima ("type A" vertices) and right-to-left minima ("type B " vertices) as intermediate vertices; moreover, these are strictly alternating. Hence, after
removing an initial segment of at most 2 edges on either end of the path, such a shortest path has either type $A(B A)^{*} A$ or $B(A B)^{*} B$. For example, a shortest path from vertex 15 to vertex 25 in Figure 2 is $15-14-23-22-25$. Finally, how many intermediate B-vertices are needed to move from one A vertex to another is captured by a proper interval graph G_{A}, and likewise for B-vertices in G_{B}. We can hence reduce the shortest-path queries to proper interval graphs and use Lemma 2.9. We present the details below.

Figure 2: Example of a permutation graph with $n=30$ vertices, shown as the points $P(\pi)$. A vertices are shown red, B-vertices are green and vertices that have both type A and B (isolated vertices) are shown blue. Edges in G_{π} are drawn yellow.

Distance. A vertex $v \in[n]$ is a type- A vertex iff π^{-1} has a left-to-right maximum at position v, i.e., when $\pi^{-1}(v) \geq \pi^{-1}(u)$ for all $u<v$. Note that 1 is always a left-to-right maximum. Similarly, a vertex $v \in[n]$ is type B iff π^{-1} has a right-to-left minimum at v, i.e., $\pi^{-1}(v) \leq$ $\pi^{-1}(u)$ for all $u>v$; vertex n is always type B. As in [2], we use A and B to denote the set of A-vertices and B-vertices, respectively, and we define:

$$
\begin{aligned}
& a^{-}(v)=\min (\text { neighborhood }(v) \cap A), \\
& a^{+}(v)=\max (\text { neighborhood }(v) \cap A),
\end{aligned}
$$

Figure 3: Another example of a permutation graph; the drawing is as in Figure 2. This graph is a typical graph when the π is chosen uniformly at random.

$$
\begin{aligned}
b^{-}(v) & =\min (\text { neighborhood }(v) \cap B), \\
b^{+}(v) & =\max (\text { neighborhood }(v) \cap B) .
\end{aligned}
$$

If we are computing a shortest path from u to v, then either u and v are adjacent, or there is a shortest path whose first vertex after u is one of $a^{+}(u)$ and $b^{+}(u)$, if $v>u$, or one of $a^{-}(u)$ and $b^{-}(u)$, if $v<u$. It is therefore vital to be able to compute these four functions. For that, we store four bitvectors with rank/select support (Lemma 2.4) that encode which points belong to A (resp. B) given an x - (resp. y-)coordinate:

$$
\begin{array}{lll}
\mathrm{A}_{x}[1 . . n] & \text { with } & \mathrm{A}_{x}[u]=[u \in A], \\
\mathrm{B}_{x}[1 . . n] & \text { with } & \mathrm{B}_{x}[u]=[u \in B], \\
\mathrm{A}_{y}[1 . . n] & \text { with } & \mathrm{A}_{y}[i]=[\pi(i) \in A], \\
\mathrm{B}_{y}[1 . . n] & \text { with } & \mathrm{A}_{y}[i]=[\pi(i) \in B] .
\end{array}
$$

Figure 2 and Figure 3 show examples of these bitvectors. We can now use these to compute the extremal A and B neighbors of a vertex v as follows:

$$
\begin{aligned}
a^{+}(v) & =\operatorname{select}_{1}\left(\mathrm{~A}_{x}, \operatorname{rank}_{1}\left(\mathrm{~A}_{x}, v\right)\right) \\
a^{-}(v) & =\operatorname{select}_{1}\left(\mathrm{~A}_{x}, \operatorname{rank}_{1}\left(\mathrm{~A}_{y}, \pi^{-1}(v)-1\right)+1\right) \\
b^{+}(v) & =\operatorname{select}_{1}\left(\mathrm{~B}_{x}, \operatorname{rank}_{1}\left(\mathrm{~B}_{y}, \pi^{-1}(v)\right)\right) \\
b^{-}(v) & =\operatorname{select}_{1}\left(\mathrm{~B}_{x}, \operatorname{rank}_{1}\left(\mathrm{~B}_{x}, v-1\right)+1\right)
\end{aligned}
$$

The computation takes $O(1)$ time plus at most one evaluation of $\pi^{-1}(v)$.
Remark 3.3 ($\boldsymbol{\pi}^{-1}$ for $\boldsymbol{A} / \boldsymbol{B}$-vertices): We note here (for later reference) that for $a \in A$ we can compute $\pi^{-1}(a)=\operatorname{select}_{1}\left(\mathrm{~A}_{y}, \operatorname{rank}_{1}\left(\mathrm{~A}_{x}, a\right)\right)$ just from the bitvectors without access to Π, because π^{-1} is monotonically increasing on A; similarly for $b \in B: \pi^{-1}(b)=$ select ${ }_{1}\left(\mathrm{~B}_{y}, \operatorname{rank}_{1}\left(\mathrm{~B}_{x}, b\right)\right)$.

In [2, Thm. 2.1], Bazzaro and Gavoille show that the distances/shortest paths in a PG can now be found by testing for the special cases of distance at most 3 (using $a^{ \pm}$or $b^{ \pm}$) or by asking a distance query in a proper interval graph. More specifically for $u<v$,

1. if adjacent (u, v), the distance is 1 and we are done.
2. Otherwise, if adjacent $\left(a^{+}(u), v\right)$ or adjacent $\left(b^{+}(u), v\right)$, which can equivalently be written as $a^{-}(v) \leq a^{+}(u) \vee b^{-}(v) \leq b^{+}(u)$, the distance is 2 and we are done.
3. Otherwise, if adjacent $\left(a^{+}(u), b^{-}(v)\right)$ or $\operatorname{adjacent}\left(b^{+}(u), a^{-}(v)\right)$, which is equivalent to $a^{-}(v) \leq a^{+}\left(b^{+}(u)\right) \vee b^{-}(v) \leq b^{+}\left(a^{+}(u)\right)$, the distance is 3 and we are done.
4. Otherwise, the distance is the minimum of the following four cases:

$$
\begin{array}{lc}
2+2 \cdot \operatorname{distance}_{G_{B}}\left(b^{+}(u), b^{-}(v)\right), & 3+2 \cdot \operatorname{distance}_{G_{B}}\left(b^{+}\left(a^{+}(u), b^{-}(v)\right),\right. \\
2+2 \cdot \operatorname{distance}_{G_{A}}\left(a^{+}(u), a^{-}(v)\right), & 3+2 \cdot \operatorname{distance}_{G_{A}}\left(a^{+}\left(b^{+}(u), a^{-}(v)\right) .\right.
\end{array}
$$

Here G_{A} is the interval graph (intersection graph) defined by intervals $\left[b^{-}(v), b^{+}(v)\right]$ for all $v \in A$ and G_{B} by intervals $\left[a^{-}(v), a^{+}(v)\right]$ for all $v \in B$. In general, these intervals share endpoints, but they can be transformed into a proper realization by breaking ties by vertex v, e.g., for G_{A}, we use $\left[b^{-}(v)-(n-v) \cdot \varepsilon, b^{+}(v)+v \cdot \varepsilon\right]$ instead of $\left[b^{-}(v), b^{+}(v)\right]$ for, say, $\varepsilon=1 / n^{2}$. Then all endpoints are disjoint and no interval properly contains another; moreover, the i th smallest left endpoint corresponds to the i th smallest vertex in A.

We compute the data structure of Lemma 2.9 for G_{A} and G_{B}; to map vertex $v \in A$ to the corresponding vertex in G_{A}, we simply compute $\operatorname{rank}_{1}\left(\mathrm{~A}_{x}, v\right)$; recall that the data structure of Lemma 2.9 identifies vertices with the rank of their left endpoints. With that, we can compute the four distances above and return the minimum.

The running time for distance is the time needed for a constant number of extremal neighbor queries $(O(1)$ for the array-based data structure, $O(\log n / \log \log n)$ for the grid-based one), a constant number of adjacency checks (same running times), a constant number of rankqueries (using constant time), and finally a constant number of distance queries in proper interval graphs (again using constant time). The running time for distance is thus dominated by the time for evaluating π^{-1}.

Shortest paths. Suppose $u<v$. As noted by Bazzaro and Gavoille [2], the above case distinction does not only determine the distance, but also determines in each case a next vertex w after u on a shortest path from u to v. We output u and unless $u=v$, we recursively call $\operatorname{spath}(w, v)$.

Since the running time for all checks above is dominated by $\pi^{-1}(v)$, we can iterate through the vertices on $\operatorname{spath}(u, v)$ in $O(1)$ time per vertex for the array-based data structure, and in $O(\log n / \log \log n)$ time per vertex for the grid-based data structure.

Space. The four bitvectors $\mathrm{A}_{x}, \mathrm{~B}_{x}, \mathrm{~A}_{y}$, and B_{y} require no more than $4 n+o(n)$ bits of space including the support for rank and select operations.

When we allow to modify π, we can slightly improve upon this: We first move all isolated vertices to the largest indices. Note that any connected components can be freely permuted without changing the graph; in the point grid this has to be done by shifts along the $y=x$ line. We now store the number w of isolated vertices. Each of the remaining nodes, $[n-w]$, can either be an A-node, a B-node, or neither, which can be encoded as a string over $\{A, B, N\}$ using at most $\lg 3 n+o(n)$ of space per dimension (x and y), for a total of at most $3.16993 n+o(n)$ bits.
G_{A} and G_{B} have no more than n vertices in total, so the data structures from Lemma 2.9 will use at most $3 n+o(n)$ bits of space.
This concludes the proof of Theorem 3.1.

4 Algorithms on Succinct Permutation Graphs

Clearly, next_neighbor is equivalent to an adjacency-list based representation of a graph, so our succinct data structures can replace them in standard graph algorithms, like traversals. Beyond that, there are a few more properties specific to PGs that known algorithms for this class build on and which are not reflected in our list of standard operations. Fortunately, as we will show in the following, our data structures are capable of providing this more specialized access, as well; we formulate these as remarks for later reference.

Remark 4.1 (Transitive orientations \& topological sort): A graph is a comparability graph iff it admits a transitive orientation, i.e., an orientation of all its edges so that if there is a directed path from u to v, we must also have the "shortcut edge" (u, v). In any ordered permutation graph G_{π}, orienting all edges $\{u, v\}$ with $u<v$ as (u, v) yields such a transitive orientation as is immediate from the point-grid representation. Denote the resulting directed graph by G_{π}^{\rightarrow}.

It follows that the partition of the neighborhood into $N^{-}(v)$ and $N^{+}(v)$ introduced above coincides with in-neighborhood and out-neighborhood of v in G_{π}, respectively. Since both our data structures for PGs handle $N^{-}(v)$ and $N^{+}(v)$ separately, our data structure can indeed answer adjacent, neighborhood, degree, distance, and spath queries w.r.t. digraph G_{π}^{\rightarrow} instead of G_{π} at no extra cost and in the same running time. (Note that distance and spath are trivial in a transitively oriented digraph: All shortest directed paths are single edges.)

It is immediate from the definition that $1, \ldots, n$, i.e., listing the vertices by (increasing) x coordinate in the point grid, is a topological sort of the vertices in G_{π}. It is also easy to see that the same is true for decreasing y-coordinate, i.e., $\pi(n), \pi(n-1), \ldots, \pi(1)$ is a second topological sort of G_{π}^{\rightarrow}. Indeed, PGs are exactly the comparability graphs of posets of dimension two, i.e., the edge set of G_{π} is obtained as the (set) intersection of two linear orders (namely $1, \ldots, n$ and $\pi(n), \ldots, \pi(1))$.

Remark 4.2 (One data structure for G and \bar{G}): PGs are exactly the graphs where both G and the complement graph \bar{G} are comparability graphs. That immediately implies that \bar{G} is also a PG, when G is such.

We can extend our data structure with just $O(n)$ additional bits of space so that we can also answer all queries in \bar{G} that the data structure could answer for G; in fact, only the distance-related data structures ($\mathrm{A}_{x}, \mathrm{~A}_{y}, \mathrm{~B}_{x}, \mathrm{~B}_{y}$ and G_{A}, G_{B}) need to be duplicated for \bar{G}. \triangleleft

With these preparations, we can show how several known algorithms for PGs $[18,19]$ can efficiently run directly on top of our data structure (without storing G separately).

Maximum Clique \& Minimum Coloring. While computing (the size of) a maximal clique is NP-complete for general graphs, in comparability graphs, they can be found efficiently: we transitively orient the graph and then find a longest (directed) path. Note that any directed path in the transitive orientation is actually a clique in the comparability graph.

Since our data structures already maintain G_{π} in oriented form (Remark 4.1), the textbook dynamic-programming algorithm for longest paths in DAGs [29] suffices: For each vertex v, we store the length of the longest directed path ending in v seen so far in an array $L[v]$. We iterate through the vertices in a topological sort; say $v=1, \ldots, n$ (in that order). To process vertex v, we iterate through its in-neighbors $N^{-}(v)$ and compute $L[v]=\max (\{L[u]+1: u \in$ $\left.\left.\mathbb{N}^{-}(v)\right\} \cup\{1\}\right)$. Then, $\ell=\max _{v} L[v]$ is the length of the longest path in G_{π}^{\rightarrow}, and the path can be compute by backtracing. The same ℓ vertices then form a clique in G. As McConnell and Spinrad [18] noted, $L[v]$ is simultaneously a valid coloring for G with ℓ colors, so no larger clique can possibly exist.

The running time of above algorithm is $O(n+m)$, where m is the number of edges in G_{π}; the extra space on top of our data structure is just n words to store the colors.

Maximum Independent Set \& Minimum Clique Cover. Clearly, a maximum independent set in G is a maximum clique in \bar{G}, and similarly, a minimum clique cover of G equals a minimum coloring of \bar{G}. As discussed in Remark 4.2, our data structure can without additional space support to iterate through $N^{-} \bar{G}(v)$, the in-neighbors of v in \bar{G}, which is enough to run the above max-clique/min-coloring algorithm on \bar{G}.

5 Bipartite Permutation Graphs

Bipartite permutation graphs (BPGs) are permutation graphs that are also bipartite. While our data structures for general PGs clearly apply to BPGs, their special structure allows to substantially reduce the required space.

Theorem 5.1 (Data structure for Bipartite PGs): A bipartite permutation graph can be represented
(a) using $2 n+o(n)$ bits of space while supporting adjacent, degree, spath_succ in $O(1)$ time and neighborhood (v) in $O($ degree $(v))$ time,
(b) using $O(n)$ bits of space while supporting adjacent, degree, spath_succ, distance in $O(1)$ time and neighborhood (v) in $O(\operatorname{degree}(v))$ time.

By iterating spath_succ, we can answer $\operatorname{spath}(u, v)$ in optimal $O($ distance $(u, v)+1)$ time.

5.1 Data Structure

As already observed in [2], BPGs consist of only A and B vertices. Isolated vertices are formally of both type A and B; thus it is convenient to assign them to the highest possible indices and to exclude them from further discussion. (All operations on them are trivial.)

All vertices being of type A or B means that every vertex corresponds to a left-to-right maximum or a right-to-left minimum. The permutation π^{-1} thus consists of two shuffled increasing subsequences and can be encoded using the bitvectors A_{x} and A_{y} (introduced in Section 3.3) in just $2 n$ bits. We add rank and select support to both bitvectors (occupying $o(n)$ additional bits of space). Figure 4 shows an example.

Figure 4: An exemplary bipartite permutation graph, shown as the grid $P(\pi)$.
The key operation is to simulate access to $\pi^{-1}(v)$ based on the above representation:

$$
\pi^{-1}(v)= \begin{cases}\operatorname{select}_{1}\left(\mathrm{~A}_{y}, \operatorname{rank}_{1}\left(\mathrm{~A}_{x}, v\right)\right) & \text { if } \mathrm{A}_{x}[v]=1 \\ \operatorname{select}_{0}\left(\mathrm{~A}_{y}, \operatorname{rank}_{0}\left(\mathrm{~A}_{x}, v\right)\right) & \text { if } \mathrm{A}_{x}[v]=0\end{cases}
$$

Computation of π^{-1} is thus supported in constant time. That immediately allows to compute adjacent (u, v) as before; moreover, $a^{-}(v), a^{+}(v)$, are directly supported, too. For $b^{-}(v)$,
$b^{+}(v)$, we exploit that in BPGs, $\mathrm{B}_{x}[v]=1-\mathrm{A}_{x}[v]$ so $b^{+}(v)=\operatorname{select}_{0}\left(\mathrm{~A}_{x}, \operatorname{rank}_{0}\left(\mathrm{~A}_{y}, \pi^{-1}(v)\right)\right)$, and similarly for $b^{-}(v)$.

It is easy to see that for a B-vertex v, its neighbors are exactly all A-vertices in $\left[a^{-}(v), a^{+}(v)\right]$; similarly for B-vertex v, we have $N(v)=\left[b^{-}(v), b^{+}(v)\right] \cap B$. We can iterate through these (in sorted order) using rank/select on A_{x}, so neighborhood can be answered in constant time per neighbor.

The degree of a vertex can computed in $O(1)$ time. If v is a B-vertex, degree $(v)=$ $\operatorname{rank}_{1}\left(\mathrm{~A}_{x}, a^{+}(v)\right)-\operatorname{rank}_{1}\left(\mathrm{~A}_{x}, a^{-}(v)\right)-1$, and similarly for an A-vertex.

Finally, shortest paths in BPGs are particularly simple since there is only one candidate successor vertex left: Let $u<v$ and assume u is an A-vertex. Then either u and v are adjacent, or spath_succ $(u, v)=b^{+}(u)$. The situation where u is a B-vertex is symmetric. Computing distance (u, v) faster than Θ (distance $(u, v))$ seems only possible using the distance oracles for G_{A} (resp. G_{B},) which require $O(n)$ additional bits of space. The query itself is as for general PGs.

This concludes the proof of Theorem 5.1.

5.2 Lower Bound

Let b_{n} be the number of unlabeled bipartite permutation graphs. A simple argument shows that $\lg b_{n} \geq n-4$, and hence at least $n-4$ bits are necessary to encode an unlabeled BPG on n vertices. Indeed, it is easy to see that every caterpillar (i.e., a graph that becomes a path after removing all its vertices of degree 1) is a BPG. Thus, the aforementioned lower bound follows from the fact that there are $2^{n-4}+2^{\lfloor n / 2\rfloor-2} n$-vertex unlabeled caterpillars [15].

Comparing this lower bound to the space usage of our data structure leaves a gap of $\sim n$ bits; an open problem is to improve either the upper or lower bound. We conjecture that indeed $\sim 2 n$ bits are necessary:

Conjecture 5.2 (BPG lower bound): The number b_{n} of unlabeled bipartite permutation graphs satisfies $\lg b_{n} \sim 2 n$, and hence our data structure from Theorem 5.1 is succinct.

5.3 Algorithms

Our data structure for BPGs can be used to solve the Hamiltonian Path and the Hamiltonian Cycle problems in $O(n)$ time with no extra space. A Hamilton path (resp. Hamiltonian cycle) in a graph is a simple path (resp. simple cycle) which contains every vertex of the graph. Given a graph G, the Hamiltonian Path (resp. Hamiltonian Cycle) problem asks whether the graph G contains a Hamiltonian path (resp. Hamiltonian cycle). These problems are NP-complete even when restricted to several special classes of bipartite graphs, but can be solved efficiently in the class of BPGs (see [30] and references therein). We will show how our data structure can be used to execute the algorithms from [30] in $O(n)$ time without using extra space.

In order to explain the algorithms and their execution on the data structure, we need to introduce some preliminaries from [30]. A strong ordering of the vertices of a bipartite graph $G=(A, B, E)$ consists of an ordering of A and an ordering of B such that for all $\{a, b\},\left\{a^{\prime}, b^{\prime}\right\}$ in E, where a, a^{\prime} are in A and b, b^{\prime} are in $B, a<a^{\prime}$ and $b>b^{\prime}$ imply $\left\{a, b^{\prime}\right\}$ and $\left\{a^{\prime}, b\right\}$ are in E. The algorithms are based on the following characterization of BPGs.

Theorem 5.3 (Strong ordering, [30]): A graph $G=(A, B, E)$ is bipartite permutation graph if and only if there exists a strong ordering of $A \cup B$.

Let $G=(A, B, E)$ be a BPG, where $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$, and the vertices are indexed according to a strong ordering of $A \cup B$. Then using the characterization from Theorem 5.3, the following results were proved in [30].
Theorem 5.4 (Hamiltonian path, [30]): Graph G contains a Hamiltonian path if and only if

- either $s=k-1$ and $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, b_{k-1}, a_{k}$ is a Hamiltonian path,
- or $s=k$ and $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, b_{k-1}, a_{k}, b_{k}$ is a Hamiltonian path,
- or $s=k+1 b_{1}, a_{1}, b_{2}, a_{2}, \ldots, a_{k}, b_{k+1}$ is a Hamiltonian path,
- or $s=k$ and $b_{1}, a_{1}, b_{2}, a_{2}, \ldots, a_{k-1}, b_{k}, a_{k}$ is a Hamiltonian path.

Theorem 5.5 (Hamiltonian cycle, [30]): Graph G contains a Hamiltonian cycle if and only if $k=s \geq 2$ and $a_{i}, b_{i}, a_{i+1}, b_{i+1}$ is a cycle of length four for $1 \leq i \leq k-1$.

In order to make use of these results, we will show that in our data structure, vertices of a given ordered BPG are stored in a strong ordering. Recall, that given a permutation $\pi:[n] \rightarrow[n]$, the ordered PG induced by π, denoted $G_{\pi}=(V, E)$, has vertices $V=[n]$ and edges $\{i, j\} \in E$ for all $i>j$ with $\pi^{-1}(i)<\pi^{-1}(j)$.
Claim 5.6: Let $G_{\pi}=(A, B, E)$ be an ordered bipartite permutation graph, then the ordering $1<2<\ldots<n-1<n$ (restricted to A and B, respectively) is a strong ordering of $A \cup B . \triangleleft$
Proof: As before, we assume that A is the set of A-vertices and B is the set of B-vertices of G. Let $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$ be such that $\{a, b\}$ and $\left\{a^{\prime}, b^{\prime}\right\}$ are in E, and $a<a^{\prime}$ and $b>b^{\prime}$. We will show that in this case $\left\{a, b^{\prime}\right\}$ and $\left\{a^{\prime}, b\right\}$ are also in E. By definition, we need to establish:
(1) $a<b^{\prime}$ and $\pi^{-1}(a)>\pi^{-1}\left(b^{\prime}\right)$; and
(2) $a^{\prime}<b$ and $\pi^{-1}\left(a^{\prime}\right)>\pi^{-1}(b)$.

We will show only (1), as (2) is proved similarly. Since $\left\{a^{\prime}, b^{\prime}\right\} \in E$ and a^{\prime} is an A-vertex, we have that $a^{\prime}<b^{\prime}$ and hene $a<b^{\prime}$ (as, by assumption, $a<a^{\prime}$). To prove the second part of (1), we note that $\pi^{-1}(b)<\pi^{-1}(a)$ and $b>a$ because $\{a, b\} \in E$. Furthermore, since $\left\{b^{\prime}, b\right\} \notin E$ and $b^{\prime}<b$, we have that $\pi^{-1}\left(b^{\prime}\right)<\pi^{-1}(b)$. Consequently, $\pi^{-1}\left(b^{\prime}\right)<\pi^{-1}(a)$.

Hamiltonian Path. Using Theorem 5.4 and Claim 5.6 the problem can be solved by going in constant time from the first A-vertex a_{1} to its first B-neighbor $b_{1}=b^{-}\left(a_{1}\right)$, then going in constant time from b_{1} to its first A-neighbor $a_{2}=a^{-}\left(b_{1}\right)$, and so on until we can no longer move. If we made n moves, then we have visited all the vertices of the graph following the Hamiltonian path. Otherwise, we try to do the same but starting from the first B-vertex. Similarly, if we made n moves, then the graph has a Hamiltonian path. Otherwise the graph contains no Hamiltonian paths. This algorithm works in $O(n)$ time.

Hamiltonian Cycle. First, we check that the number of A-vertices is equal to the number of B-vertices. If yes, we check next if the graph contains a Hamiltonian path using the previous algorithm (this will ensure that A - and B-vertices alternate). In the case of success, at the final stage of the algorithm, we iterate through A-vertices following the strong ordering and for every A-vertex a_{i} claculate in constant time the vertices $b_{i, 1}=b^{-}\left(a_{i}\right), a_{i, 2}=a^{-}\left(b_{i, 1}\right), b_{i, 2}=b^{-}\left(a_{i, 2}\right)$ and check if the vertices a_{i} and $b_{i, 2}$ are adjacent, (i.e., whether all the four vertices induce a cycle on four vertices), which is equivalent to $\pi^{-1}\left(a_{i}\right)>\pi^{-1}\left(b_{i, 2}\right)$. Theorem 5.5 and Claim 5.6 imply that the the graph contains a Hamiltonian cycle if and only if all stages of the algrithm were successful. Overall, algorithm works in $O(n)$ time.

6 Circular Permutation Graphs

Circular permutation graphs (CPGs) are a natural generalization of PGs first introduced by Rotem and Urrutia [27]. In this section, we show how to extend our data structure to CPGs.

6.1 Preliminaries

CPGs results from PGs by allowing circular/cyclic permutation diagrams, i.e., in the intersecting chords representation, we connect the right and left end of the gray ribbon to form a cylinder. The cylinder can be smoothly transformed into two concentric circles with chords in the annular region between them; Figure 5 shows an example.

Figure 5: Small circular permutation graph on 7 vertices (left) that is not a standard permutation graph, shown as the intersection of chords between concentric circles (middle), and as intersections of chords on a cylinder that has been cut open (note that chord 2 wraps around the cut).

By cutting the annulus open again, we obtain the permutation diagram with crossings, i.e., where some chords cross the cut and continue from the opposite end; (Figure 5 right). This induces a linear order of the endpoints on both circles (in counterclockwise direction starting at the cut) and hence a permutation $\pi:[n] \rightarrow[n]$ as before; e.g., for Figure 5, we have $\pi=(4,1,6,3,2,7,5)$. Note that for CPGs, though, π no longer uniquely determines a graph because chords between circles can wrap around the inner circle in clockwise or counterclockwise direction and this affects intersections. The representation becomes unique again upon adding an assignment of chord types $t:[n] \rightarrow\{N, F, B\}$ to π with the following meaning: N-chords do not cross the cut at all. F-chords do cross the cut, namely in forward direction, i.e., when following the chord from the upper endpoint to the lower endpoint, we move to the right. Finally, B-chords also cross the cut, but in backward direction, i.e., following the chord top down moves us to the left. A larger example with all types of crossings is shown in Figure 7 (page 23).

Note that every PG is also a CPG (setting $t(v)=N$ for all vertices), so the lower bounds from Section 2.2 applies here as well.

Remark 6.1 (Improper diagrams): The original definition of CPGs required the permutation diagram to be "proper", meaning that no two chords intersect more than once. All our permutation diagrams are required to be proper in this sense. (Later works [31] achieved a similar effect by defining vertices adjacent iff their chords intersect exactly once.)

Note that monotonic/straight chords and forbidding double crossings of the cut are not sufficient: not all combinations of π and t lead to a proper permutation diagram. Indeed, the
pair (π, t) is valid iff no pair of chords u, v has one of the following forbidden combinations of crossing type and relative location:

1. $u<v, \pi^{-1}(u)>\pi^{-1(v)}$ (inversion), $t(v)=N$, and $t(u)=F$.
2. $u<v, \pi^{-1}(u)>\pi^{-1(v)}$ (inversion), $t(v)=B$, and $t(u)=N$.
3. $u<v, \pi^{-1}(u)<\pi^{-1(v)}$ (no inversion), and $N \neq t(v) \neq t(u) \neq N$.

Each of these cases implies a double crossing and a chord length $>n$ after "pulling one chord straight" (by turning the two circles against each other).

Sritharan [31] gave a linear-time algorithm for recognizing CPGs, which also computes the circular permutation diagram if the input is a CPG.

6.2 Ordered CPGs and the Thrice-Unrolled PG

In analogy to ordered PG G_{π}, we define the ordered $C P G G_{\pi, t}$ for a (valid combination of) permutation $\pi:[n] \rightarrow[n]$ and chord types $t:[n] \rightarrow\{N, F, B\}$.

Figure 6: The circular permutation graph from Figure 5 and its thrice-unrolled PG G_{3} as a permutation diagram and in the grid representation.

From now on, we assume such a graph $G_{\pi, t}$ is given. In preparation of our succinct data structure for CPGs, we again define a planar point set based on which we support all queries:

$$
\begin{aligned}
& P(\pi, t)=\left\{\left(v+k n, \pi^{-1}(v)+k n\right): v \in[n], k \in\{0,1,2\}, t(v)=N\right\} \\
& \cup\left\{\left(v+k n, \pi^{-1}(v)+(k+1) n\right): v \in[n], k \in\{0,1\}, t(v)=F\right\} \\
& \cup\left\{\left(v+k n, \pi^{-1}(v)+(k-1) n\right): v \in[n], k \in\{1,2\}, t(v)=B\right\}
\end{aligned}
$$

$P(\pi, t)$ lies in a $3 n \times 3 n$ grid and $2 n \leq|P(\pi, t)| \leq 3 n$. Intuitively, $P(\pi, t)$ is obtained by unrolling the circular permutation diagram of $G_{\pi, t}$ three times: We record the times at which we see a chord's endpoints during this unrolling process and output a point for these times. We only output chords when we have seen both endpoints during this process, so each noncrossing chord is output three times, whereas the crossing chords are only present twice. See Figure 6 for an example.

Clearly, $P(\pi, t)$ corresponds to the grid representation of a (larger) PG, denoted by $G_{3}=$ $G_{3}(\pi, t)$, which "contains" $G_{\pi, t}$ in the sense detailed in Lemma 6.2 below. Denote the vertices in G_{3} by ℓ_{j}, c_{j}, and $r_{j}, j \in[n]$, respectively, where ℓ_{j} is the vertex corresponding to point (x, y) with $x=j \in[n], c_{j}$ is the vertex for (x, y) with $x=j+n \in(n . .2 n]$ and r_{j} is the vertex for (x, y) with $x=j+2 n \in(2 n . .3 n]$. (Note that in general not all ℓ_{j} (resp. r_{j}) will be present.) We call c_{v} the main copy of vertex v in $G_{\pi, t}$, and ℓ_{v} and r_{v} are the left (resp. right) copies of v.

Lemma 6.2 (Neighborhood from $\boldsymbol{G}_{\mathbf{3}}$): Let v be a vertex in $G_{\pi, t}$ and c_{v} its main copy in $G_{3}(\pi, t)$. Then v 's neighbors (in $G_{\pi, t}$) can be deduced from c_{v} 's neighbors in in $G_{3}(\pi, t)$ as follows:

$$
\begin{aligned}
& N^{-}(v)=\left\{w: c_{w} \in N^{-}\left(c_{v}\right) \vee \ell_{w} \in N^{-}\left(c_{v}\right)\right\}, \\
& N^{+}(v)=\left\{w: c_{w} \in N^{+}\left(c_{v}\right) \vee r_{w} \in N^{+}\left(c_{v}\right)\right\} .
\end{aligned}
$$

Proof: First note that by construction, any edge in G_{3} between copies of u and v in G_{3} (i.e., any edge between ℓ_{u}, c_{u}, r_{u}, resp. ℓ_{v}, c_{v}, r_{v}) implies an edge in G between u and v. Hence we never report non-neighbors in the set for $N^{-}(v)$ and $N^{+}(v)$ above. Moreover, for any combination of ℓ, c, r where both copies of u and v exist, these copies are adjacent in G_{3}. It remains to show that any edge in G is witnessed by at least one pair of copies. For that, consider the permutation diagram of G_{3} and note that it contains a complete copy of the permutation diagram with crossings of G in its middle third (see Figure 6), so every neighbor of v in G can be witnessed from c_{v} in G_{3}.

Remark 6.3 (Thrice or twice?): It follows directly from the definition of a proper permutation diagram that the upper endpoints of all backward-crossing chords must precede all upper endpoints of forward-crossing chords, and vice versa for lower endpoints. As a consequence, we can remove further copies from G_{3} without affecting Lemma 6.2; one can show that at most two copies of every noncrossing chord are always sufficient. Since the size of G_{3} will only affect lower-order terms of space, we omit this optimization here for ease of presentation.

6.3 Succinct CPGs

With this preparation, we can now describe our succinct data structure for CPGs. Conceptually, we store our succinct PG data structure for G_{3} and reduce the queries to it. For the spacedominant part, i.e., the inverse permutation π^{-1}, we store it implicitly, exploiting the special structure of G_{3}.

Theorem 6.4 (Succinct CPGs): An (unlabeled) circular permutation graph on n vertices can be represented using $n \lg n+O(n)$ bits of space while supporting adjacent, distance, spath_succ in $O(1)$ time and neighborhood (v) and degree (v) in $O($ degree $(v)+1)$ time. \triangleleft

As always, we can add constant-time degree support at the expense of another $n\lceil\lg n\rceil$ bits of space.

We are now ready to give the proof of Theorem 6.4. Let a valid pair (π, t) be given and consider $G_{\pi, t}$. As for PGs, we store the array $\Pi[1 . . n]$ with $\Pi[i]=\pi^{-1}(i)$; additionally, we store the sequence $t=t(1), \ldots, t(n)$ over alphabet $\{N, F, B\}$ for constant-time access; (two bitvectors suffice for the claimed space).

For the operations, we will show how to simulate access to the grid representation of G_{3}; the reader will find it useful to consult the larger example CPG in Figure 7 when following the description.

Mapping between vertex v in G and the x-coordinates of ℓ_{v}, c_{v}, r_{v} in G_{3} is trivial. To access the y-coordinate for a point $(x, y), y(x)$, we consult the type of the corresponding vertex v :

$$
\begin{aligned}
& y\left(\ell_{v}\right)= \begin{cases}\Pi[v] & \text { if } t[v]=N \\
\Pi[v]+n & \text { if } t[v]=F\end{cases} \\
& y\left(c_{v}\right)= \begin{cases}\Pi[v]+n & \text { if } t[v]=N \\
\Pi[v]+2 n & \text { if } t[v]=F \\
\Pi[v] & \text { if } t[v]=B\end{cases} \\
& y\left(r_{v}\right)= \begin{cases}\Pi[v]+2 n & \text { if } t[v]=N \\
\Pi[v]+n & \text { if } t[v]=B\end{cases}
\end{aligned}
$$

All can be answered in $O(1)$ time. Based on that, we can answer the main queries.
Adjacency. $\quad u<v$ are adjacent (in $\left.G_{\pi, t}\right)$ iff $y\left(c_{u}\right)>y\left(c_{v}\right) \vee y\left(\ell_{v}\right)>y\left(c_{u}\right) \vee y\left(c_{v}\right)>y\left(r_{u}\right)$; if any of the involved copies does not exist, that part of the condition is considered unfulfilled.

Neighborhood. Given a vertex v, we use Lemma 6.2 to reduce the query to neighborhood queries on G_{3}. To compute the neighborhood of c_{v} in the PG G_{3}, we use the same method as in Section 3.2; for that we store the range-minimum/maximum index from Lemma 2.5 for the sequence of y-values of all vertices in G_{3} (filling empty slot from missing copies with $+\infty$, resp. $-\infty$, values). Note that this index only requires access to individual values in the sequence of y-values (which we can provide in constant time); it does not require the values to be stored explicitly in an array. The additional space cost for constant-time range-min/max queries is only εn bits. The time stated for degree follows from counting the neighbors one by one.

Distance and shortest paths. As for neighborhood, we augment our data structure with the additional data structures from Section 3.3 for the PG G_{3}, i.e., we define $A, B, a^{ \pm}(v), b^{ \pm}(v)$, and G_{A}, G_{B} as before for G_{3}. All now have up to $3 n$ vertices instead of n, but only occupy $O(n)$ bits in total.

By construction, two vertices u and v in G_{3} are only adjacent if the corresponding vertices in G are adjacent. Therefore, the distance between u and v can be found as the minimum over all combinations of copies of u and v in G_{3} (at most 9).

For (the first vertex on) a shortest path, the minimal distance pair of copies can be used with the spath_succ query on G_{3}.
This concludes the proof of Theorem 6.4.

7 Semi-Local Graph Representations

While Bazzaro and Gavoille [2] showed that no distance labeling scheme for PGs exists with less than $3 \lg n(1-o(1))$ bits per label, our succinct data structure with overall $n \lg n(1+o(1))$

Figure 7: A larger circular permutation graph with $n=15$ vertices, represented by the permutation diagram with crossings (top) and the grid representation of the thrice-unrolled PG (bottom). In the permutation diagram, noncrossing chords are drawn black, forward crossing chords are green (vertices $9,11,14,15$) and backward crossing chords are brown (vertices 1, 6).
bits of space shows that this bound does not apply to "centralized" data structures.
An interesting question is whether this lower bound can still be beaten when only allowing a small amount of global memory on top of the local labels. More formally, a semi-local (distance) oracle consists of a vertex labeling $\ell: V \rightarrow\{0,1\}^{\star}$ and a data structure \mathcal{D}, so that distance (u, v) can be computed from $(\ell(u), \ell(v), \mathcal{D})$. If we allow arbitrary data structures \mathcal{D}, this notion is not interesting; one could simply ask \mathcal{D} to compute queries. But if we restrict \mathcal{D} to use less space than necessary to encode the graph, we obtain an interesting model of computation that interpolates between standard data structures and labeling schemes.

Let us call a representation an $\langle L(n), D(n)\rangle$-space semi-local representation if for every n-vertex graph we have $|\ell(v)| \leq L(n)$ for all vertices v and $|\mathcal{D}| \leq D(n)$. Our question can then be formulated as follows: What is the smallest $D(n)$ that permits a $\langle(3-\varepsilon) \lg n, D(n)\rangle$ space semi-local distance oracle for permutation graphs?

The known distance labeling scheme from [2] implies a $\langle 9 \lg n, 0\rangle$-space semi-local representation, and our succinct data structure constitutes a $\langle\lg n, n \lg n(1+o(1))\rangle$-space semi-local representation.

Remark 7.1 (Who stores the labels): Note that in our succinct data structures, we identify vertices with the (left-to-right) ranks of the upper endpoints of their chords in the permutation diagram. That means that the user of our data structure is willing to let (the construction algorithm of) our succinct data structure decide how to label vertices, and vertices are henceforth referred to using these labels. In a (semi-)local representation, we have to assign and store a unique label for each vertex, because queries are computed only from the labels of the vertices (and potentially \mathcal{D}). The semi-local scheme derived from our succinct representation therefore takes up a total of $\sim 2 n \lg n$ bits.

A second look at Section 3 reveals that the dominant space in our (array-based) data structure comes from storing π^{-1}. In particular, all further data structures required to answer distance queries occupy only $O(n)$ bits of space. Moreover, all computations to determine distances, and even the entire shortest path, require only π^{-1} of the original endpoints (cf. Remark 3.3). We can thus move $\pi^{-1}(v)$ into the label of node v, thereby making it inaccessible from any other vertex without affecting the queries. We have thus shown the following result:

Theorem 7.2 (Semi-local PGs): Permutation graphs admit a $\langle 2 \lg n, O(n)\rangle$-space semi-local representation that allows to answer the following queries: adjacent, distance, and spath_succ in $O(1)$ time and $\operatorname{spath}(u, v)$ in $O($ distance $(u, v)+1)$ time.

Proof: The label $\ell(v)$ consists of the pair of $\left(v, \pi^{-1}(v)\right)$, i.e., the x - and y-coordinate in the grid representation of G. All remaining data structures from Section 3 occupy $O(n)$ bits of space. As discussed above, for the listed operations access to π^{-1} is only needed for the queried vertices.

This $\langle 2 \lg n, O(n)\rangle$ scheme beats the lower bound for distance labelings in label length and overall space; it thus gives an novel trade-off beyond the fully distributed and fully centralized representations. In particular, it shows that access to global storage, even a fairly limited amount, is inherently more powerful than a pure labeling scheme.

8 Conclusion

We presented the first space-efficient data structures for permutation graphs, circular permutation graphs, and bipartite permutation graphs, that use space close to the information-theoretic
lower bound for these classes of graphs, while supporting many queries in optimal time. The use of our data structures as space-efficient exact distance oracles improves the state of the art and proves a separation between standard centralized data structures and distributed graph labeling schemes for distance oracles in permutation graphs. Our notion of semi-local graph representations interpolates between these two extremes; an initial result shows that access to global memory is inherently more powerful even if we cannot store the entire graph there.

Some questions remain open from this work.

- Is it possible to support degree queries in constant time and succinct space, together with the queries covered by our data structures? With our current approach, this seems to require improvements to range searching in succinct grids, but the queries are of a restricted form.
- What is the least amount of global storage in a semi-local distance representation for permutation graphs that beats the lower bound for distance labeling schemes? Is there a smooth trade-off between the "degree of distribution" and total space, or does it exhibit a sharp phase transition?

Acknowledgements. We thank the TCS Open Problem Group of University of Liverpool for creating the productive environment from which this project originated.

References

[1] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct encodings for families of interval graphs. Algorithmica, April 2020. doi: 10. 1007/s00453-020-00710-w.
[2] Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure for comparability graphs. Discrete Mathematics, 309(11):3465-3484, June 2009. doi: 10. 1016/j. disc. 2007. 12. 091 .
[3] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range search structures on a grid with applications to text indexing. In Workshop on Algorithms and Data Structures (WADS), pages 98-109. Springer Berlin Heidelberg, 2009. doi: 10. 1007/978-3-642-03367-4_9.
[4] H.S. Chao, F.R. Hsu, and R.C.T. Lee. An optimal algorithm for finding the minimum cardinality dominating set on permutation graphs. Discrete Applied Mathematics, 102(3):159173, June 2000. doi: 10. 1016/s0166-218x (98) 00145-0.
[5] Charles J. Colbourn. On testing isomorphism of permutation graphs. Networks, 11(1):1321, 1981. doi:10.1002/net. 3230110103.
[6] Christophe Crespelle and Christophe Paul. Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica, 58(2):405-432, 2010.
[7] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations of binary trees. Mathematics in Computer Science, 11(2):177-189, March 2017. doi: 10. 1007/s11786-017-0294-4.
[8] Jitender S. Deogun and George Steiner. Polynomial algorithms for hamiltonian cycle in cocomparability graphs. SIAM Journal on Computing, 23(3):520-552, June 1994. doi: 10. 1137/s0097539791200375.
[9] Ben Dushnik and Edwin W. Miller. Partially ordered sets. American journal of mathematics, 63(3):600-610, 1941.
[10] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM Journal on Computing, 40(2):465-492, January 2011. doi:10.1137/090779759.
[11] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related techniques for geometry problems. In Symposium on Theory of Computation (STOC). ACM Press, 1984. doi:10.1145/800057. 808675.
[12] Cyril Gavoille and Christophe Paul. Optimal distance labeling for interval graphs and related graph families. SIAM Journal on Discrete Mathematics, 22(3):1239-1258, January 2008. doi:10. 1137/050635006.
[13] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play with succinct data structures. In International Symposium on Experimental Algorithms (SEA), pages 326-337, 2014. doi:10. 1007/978-3-319-07959-2_28.
[14] Jens Gustedt, Michel Morvan, and Laurent Viennot. A compact data structure and parallel algorithms for permutation graphs. In Graph-Theoretic Concepts in Computer Science, pages 372-380. Springer Berlin Heidelberg, 1995. doi:10. 1007/3-540-60618-1_89.
[15] Frank Harary and Allen J. Schwenk. The number of caterpillars. Discrete Mathematics, 6(4):359-365, 1973.
[16] Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Breadth-first rank/select in succinct trees and distance oracles for interval graphs, 2020. arXiv: 2005. 07644.
[17] Donald E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison Wesley, 2nd edition, 1998.
[18] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics, 201(1-3):189-241, April 1999. doi:10. 1016/s0012-365x(98) 00319-7.
[19] Rolf H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In Graphs and Order, pages 41-101. Springer Netherlands, 1985. doi:10. 1007/978-94-009-5315-4_2.
[20] Sukumar Mondal, Madhumangal Pal, and Tapan K. Pal. An optimal algorithm to solve the all-pairs shortest paths problem on permutation graphs. Journal of Mathematical Modelling and Algorithms, 2(1):57-65, 2003.
[21] J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th International Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, pages 67:1-67:12, 2018. doi:10.4230/LIPIcs. ISAAC. 2018. 67.
[22] J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
[23] Gonzalo Navarro. Compact Data Structures - A practical approach. Cambridge University Press, 2016.
[24] Mihai Patrascu. Succincter. In Symposium on Foundations of Computer Science (FOCS). IEEE, October 2008. doi:10.1109/focs. 2008. 83.
[25] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of permutation graphs. Canadian Journal of Mathematics, 23(1):160-175, February 1971. doi:10. 4153/cjm-1971-016-5.
[26] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4):43-es, nov 2007. doi:10.1145/1290672. 1290680.
[27] D. Rotem and J. Urrutia. Circular permutation graphs. Networks, 12(4):429-437, 1982. doi:10. 1002/net. 3230120407.
[28] Lisa Sauermann. On the speed of algebraically defined graph classes, 2019. arXiv: 1908. 11575.
[29] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 4th edition, 2011.
[30] Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs. Discrete Applied Mathematics, 18(3):279-292, 1987.
[31] R. Sritharan. A linear time algorithm to recognize circular permutation graphs. Networks, 27(3):171-174, May 1996. doi:10.1002/(sici) 1097-0037(199605) 27:3<171: :aid-net1>3.0. co; 2-f.
[32] Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229-239, April 1980. doi:10.1145/358841. 358852.

[^0]: *University of Liverpool, UK, K.Tsakalidis @liverpool.ac.uk
 ${ }^{\dagger}$ University of Liverpool, UK, Sebastian.Wild @liverpool.ac.uk
 ${ }^{\ddagger}$ University of Liverpool, UK, Viktor. Zamaraev @liverpool.ac.uk

[^1]: ${ }^{1} \mathrm{By} \sim$ we denote a leading-term asymptotic approximation, i.e., $f(n) \sim g(n)$ iff $f(n) / g(n) \rightarrow 1$.

[^2]: ${ }^{2}$ What we describe here is a modification of the construction of Fischer and Heun [10, Thm. 3.7].

