3 research outputs found

    Stabilization of systems with probabilistic interval input delays and its applications to networked control systems

    Get PDF
    Motivated by the study of a class of networked control systems, this correspondence paper is concerned with the design problem of stabilization controllers for linear systems with stochastic input delays. Different from the common assumptions on time delays, it is assumed here that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delays, criteria for the stochastic stability and stabilization controller design are derived. Traditionally, in the case that the variation range of the time delay is available, the maximum allowable bound of time delays can be calculated to ensure the stability of the time-delay system. It is shown, via numerical examples, that such a maximum allowable bound could be made larger in the case that the probability distribution of the time delay is known. © 2009 IEEE.published_or_final_versio

    A linear matrix inequality approach for guaranteed cost control of systems with state and input delays

    No full text

    Optimal L2-gain networked control design with Lyapunov Krasovskii functionals

    Get PDF
    [EN] This paper deals with the problem of optimal control design for linear network control systems (NCS) with L2-gain disturbance rejection. Networked control systems close the control loop using a communication network, that usually accounts for network-induced delays and packet dropouts. Resorting to Lyapunov Krasovskii functionals (LKF), the problem of stabilization of NCS with joint performance index optimization and L2- gain disturbance rejection is addressed. The paper initially develops a general solution for the problem, then an specific LKF is particularized to provide a solution in terms of linear matrix inequalities. Performance of the proposed control structure is shown by simulations comparing with LQR control on an intervehicle distance regulation problem.[ES] En el presente trabajo se estudia el control óptimo con rechazo de perturbaciones L2 para sistemas lineales controlados a través de red. En estos sistemas el lazo de control se cierra utilizando una red de comunicaciones. Entre los problemas que introduce la red se encuentran posibles retrasos, en general aleatorios, así como pérdidas de paquetes. Desde un enfoque basado en funcionales de Lyapunov- Krasovskii (LKF) se aborda el diseño de controladores óptimos que, dado un nivel deseado de atenuación de perturbaciones, estabilicen el sistema minimizando a su vez un funcional de coste. En el artículo se desarrolla, en primer lugar, una formulación y solución general para el problema. Posteriormente, se resuelve para un funcional de Lyapunov-Krasovskii particular. El comportamiento de los controladores obtenidos se compara con el dado por un control clásico LQR en un escenario de control de distancia en carretera.Los autores agradecen al proyecto CICYT (DPI2010-19154),y a la Comisión Europea (EC) (FeedNetBack Project, grant agreement 223866), por financiar este trabajo.Millán, P.; Orihuela, L.; Vivas, C.; Rubio, FR. (2012). Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii. Revista Iberoamericana de Automática e Informática industrial. 9(1):14-23. https://doi.org/10.1016/j.riai.2011.11.002OJS142391Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676-681.Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885Delfour, M. C., McCalla, C., & Mitter, S. K. (1975). Stability and the Infinite-Time Quadratic Cost Problem for Linear Hereditary Differential Systems. SIAM Journal on Control, 13(1), 48-88. doi:10.1137/0313004Dormido, S., Sánchez, J., & Kofman, E. (2008). Muestreo, Control y Comunicación Basados en Eventos. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(1), 5-26. doi:10.1016/s1697-7912(08)70120-1El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250Esfahani, S. H., Moheimani, S. O. R., & Petersen, I. R. (1998). LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems. IEE Proceedings - Control Theory and Applications, 145(6), 491-498. doi:10.1049/ip-cta:19982405Gupta, V., Hassibi, B., & Murray, R. M. (2007). Optimal LQG control across packet-dropping links. Systems & Control Letters, 56(6), 439-446. doi:10.1016/j.sysconle.2006.11.003Hale, J.C., Verduyn Lunel, S.M., 1993. Introduction of functional di_erential equations. Springer, New York.Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1), 138-162. doi:10.1109/jproc.2006.887288Hokayem, P.F., Abdallah, C.T., June 2004. Inherent issues in networked control systems: a survey. In: Proceedings of the American Control Conference. Boston, Massachusetts, USA, pp. 4897-4902.Jiang, X., & Han, Q.-L. (2008). New stability criteria for linear systems with interval time-varying delay. Automatica, 44(10), 2680-2685. doi:10.1016/j.automatica.2008.02.020Jiang, X., Han, Q.-L., Liu, S., & Xue, A. (2008). A New HH_{{\bm \infty}} Stabilization Criterion for Networked Control Systems. IEEE Transactions on Automatic Control, 53(4), 1025-1032. doi:10.1109/tac.2008.919547Kosmidou, O. I., & Boutalis, Y. S. (2006). A linear matrix inequality approach for guaranteed cost control of systems with state and input delays. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(5), 936-942. doi:10.1109/tsmca.2005.855788Mahmoud, M.S., 2000. Robust Control and Filtering for Time-delay Systems. Marcel Dekker, Inc., New York.Meng, X., Lam, J., & Gao, H. (2009). Network-basedH∞control for stochastic systems. International Journal of Robust and Nonlinear Control, 19(3), 295-312. doi:10.1002/rnc.1307Naghshtabrizi, P., Hespanha, J., December 2005. Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, pp. 848-853.Nikolakopoulos, G., Panousopoulou, A., & Tzes, A. (2008). Experimental controller tuning and QoS optimization of a wireless transmission scheme for real-time remote control applications. Control Engineering Practice, 16(3), 333-346. doi:10.1016/j.conengprac.2007.04.015Ross, D. W., & Flügge-Lotz, I. (1969). An Optimal Control Problem for Systems with Differential-Difference Equation Dynamics. SIAM Journal on Control, 7(4), 609-623. doi:10.1137/0307044Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2008). Sistemas de Control Basados en Red Modelado y Diseño de Estructuras de Control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(3), 5-20. doi:10.1016/s1697-7912(08)70157-2Shao, H. (2009). New delay-dependent stability criteria for systems with interval delay. Automatica, 45(3), 744-749. doi:10.1016/j.automatica.2008.09.010Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S., December 2005. An LQG optimal linear controller for control systems with packet losses. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Sevilla, Spain, pp. 458-463.Tatikonda, S., & Mitter, S. (2004). Control Under Communication Constraints. IEEE Transactions on Automatic Control, 49(7), 1056-1068. doi:10.1109/tac.2004.831187Xiong, J., & Lam, J. (2007). Stabilization of linear systems over networks with bounded packet loss. Automatica, 43(1), 80-87. doi:10.1016/j.automatica.2006.07.017Xu, S., & Lam, J. (2007). On Equivalence and Efficiency of Certain Stability Criteria for Time-Delay Systems. IEEE Transactions on Automatic Control, 52(1), 95-101. doi:10.1109/tac.2006.886495Xu, S., & Lam, J. (2008). A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 39(12), 1095-1113. doi:10.1080/00207720802300370Yue, D., Han, Q.-L., & Lam, J. (2005). Network-based robust H∞ control of systems with uncertainty. Automatica, 41(6), 999-1007. doi:10.1016/j.automatica.2004.12.011Zampieri, S., July 2008. Trends in networked control systems. In: Proceedings of the 17th World Congress IFAC. Seoul, Korea, pp. 2886-2894.Zhang, D., & Yu, L. (2008). Equivalence of some stability criteria for linear time-delay systems. Applied Mathematics and Computation, 202(1), 395-400. doi:10.1016/j.amc.2007.12.021Zhang, H., Duan, G., & Xie, L. (2006). Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica, 42(9), 1465-1476. doi:10.1016/j.automatica.2006.04.00
    corecore