3,017 research outputs found

    A Linear Kernel for Planar Total Dominating Set

    Full text link
    A total dominating set of a graph G=(V,E)G=(V,E) is a subset DVD \subseteq V such that every vertex in VV is adjacent to some vertex in DD. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most 410k410k vertices, where kk is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.Comment: 33 pages, 13 figure

    A linear kernel for planar red-blue dominating set

    Get PDF
    In the Red-Blue Dominating Set problem, we are given a bipartite graph G = (V B ∪ V R , E) and an integer k, and asked whether G has a subset D ⊆ V B of at most k 'blue' vertices such that each 'red' vertex from V R is adjacent to a vertex in D. We provide the first explicit linear kernel for this problem on planar graphs

    Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

    Full text link
    In this paper we consider kernelization for problems on d-degenerate graphs, i.e. graphs such that any subgraph contains a vertex of degree at most dd. This graph class generalizes many classes of graphs for which effective kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and H-topological-minor free graphs. We show that for several natural problems on d-degenerate graphs the best known kernelization upper bounds are essentially tight.Comment: Full version of ESA 201

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    The effect of girth on the kernelization complexity of Connected Dominating Set

    Get PDF
    In the Connected Dominating Set problem we are given as input a graph GG and a positive integer kk, and are asked if there is a set SS of at most kk vertices of GG such that SS is a dominating set of GG and the subgraph induced by SS is connected. This is a basic connectivity problem that is known to be NP-complete, and it has been extensively studied using several algorithmic approaches. In this paper we study the effect of excluding short cycles, as a subgraph, on the kernelization complexity of Connected Dominating Set. Kernelization algorithms are polynomial-time algorithms that take an input and a positive integer kk (the parameter) and output an equivalent instance where the size of the new instance and the new parameter are both bounded by some function g(k)g(k). The new instance is called a g(k)g(k) kernel for the problem. If g(k)g(k) is a polynomial in kk then we say that the problem admits polynomial kernels. The girth of a graph GG is the length of a shortest cycle in GG. It turns out that Connected Dominating Set is ``hard\u27\u27 on graphs with small cycles, and becomes progressively easier as the girth increases. More specifically, we obtain the following interesting trichotomy: Connected Dominating Set (a) does not have a kernel of any size on graphs of girth 33 or 44 (since the problem is W[2]-hard); (b) admits a g(k)g(k) kernel, where g(k)g(k) is kO(k)k^{O(k)}, on graphs of girth 55 or 66 but has no polynomial kernel (unless the Polynomial Hierarchy (PH) collapses to the third level) on these graphs; (c) has a cubic (O(k3)O(k^3)) kernel on graphs of girth at least 77. While there is a large and growing collection of parameterized complexity results available for problems on graph classes characterized by excluded minors, our results add to the very few known in the field for graph classes characterized by excluded subgraphs

    On the Kernel and Related Problems in Interval Digraphs

    Get PDF
    Given a digraph GG, a set XV(G)X\subseteq V(G) is said to be absorbing set (resp. dominating set) if every vertex in the graph is either in XX or is an in-neighbour (resp. out-neighbour) of a vertex in XX. A set SV(G)S\subseteq V(G) is said to be an independent set if no two vertices in SS are adjacent in GG. A kernel (resp. solution) of GG is an independent and absorbing (resp. dominating) set in GG. We explore the algorithmic complexity of these problems in the well known class of interval digraphs. A digraph GG is an interval digraph if a pair of intervals (Su,Tu)(S_u,T_u) can be assigned to each vertex uu of GG such that (u,v)E(G)(u,v)\in E(G) if and only if SuTvS_u\cap T_v\neq\emptyset. Many different subclasses of interval digraphs have been defined and studied in the literature by restricting the kinds of pairs of intervals that can be assigned to the vertices. We observe that several of these classes, like interval catch digraphs, interval nest digraphs, adjusted interval digraphs and chronological interval digraphs, are subclasses of the more general class of reflexive interval digraphs -- which arise when we require that the two intervals assigned to a vertex have to intersect. We show that all the problems mentioned above are efficiently solvable, in most of the cases even linear-time solvable, in the class of reflexive interval digraphs, but are APX-hard on even the very restricted class of interval digraphs called point-point digraphs, where the two intervals assigned to each vertex are required to be degenerate, i.e. they consist of a single point each. The results we obtain improve and generalize several existing algorithms and structural results for subclasses of reflexive interval digraphs.Comment: 26 pages, 3 figure

    Twin-Width and Polynomial Kernels

    Get PDF
    We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP\u2721] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c?|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1
    corecore