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Abstract

In the Red-Blue Dominating Set problem, we are given a bipartite graph G =
(VB ∪ VR, E) and an integer k, and asked whether G has a subset D ⊆ VB of at most k
‘blue’ vertices such that each ‘red’ vertex from VR is adjacent to a vertex in D. We provide
the first explicit linear kernel for this problem on planar graphs.
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1 Introduction

Motivation. The field of parameterized complexity (see [6, 7, 15]) deals with algorithms for
decision problems whose instances consist of a pair (x, k), where k is known as the parameter. A
fundamental concept in this area is that of kernelization. A kernelization algorithm, or kernel,
for a parameterized problem takes an instance (x, k) of the problem and, in time polynomial in
|x|+ k, outputs an equivalent instance (x′, k′) such that |x′|, k′ ≤ g(k) for some function g. The
function g is called the size of the kernel and may be viewed as a measure of the “compressibility”
of a problem using polynomial-time preprocessing rules. A natural problem in this context is
to find polynomial or linear kernels for problems that admit such kernelization algorithms.

A notorious result in this area is the linear kernel for Dominating Set on planar graphs
by Alber et al. [2], which gave rise to an explosion of (meta-)results on linear kernels on planar
graphs [11] and other sparse graph classes [3, 8, 12]. Although of great theoretical importance,
these meta-theorems have two important drawbacks from a practical point of view. On the one
hand, these results rely on a problem property called Finite Integer Integer, which guarantees
the existence of a linear kernel, but nowadays it is still not clear how and when such a kernel can
be effectively constructed. On the other hand, at the price of generality one cannot hope that
general results of this type may directly provide explicit reduction rules and small constants
for particular graph problems. Summarizing, as mentioned explicitly by Bodlaender et al. [3],
these meta-theorems provide simple criteria to decide whether a problem admits a linear kernel
on a graph class, but finding linear kernels with reasonably small constant factors for concrete
problems remains a worthy investigation topic.

Our result. In this article we follow this research avenue and focus on the Red-Blue Dom-
inating Set problem (RBDS for short) on planar graphs. In the Red-Blue Dominating
Set problem, we are given a bipartite graph G = (VB ∪ VR, E) and an integer k, and asked
whether G has a subset D ⊆ VB of at most k ‘blue’ vertices such that each ‘red’ vertex from VR
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is adjacent to a vertex in D. This problem appeared in the context of the European railroad
network [16]. From a (classical) complexity point of view, finding a red-blue dominating set of
minimum size is NP-complete on planar graphs [1]. From a parameterized complexity perspec-
tive, RBDS parameterized by the size of the solution is W [2]-complete on general graphs and
FPT on planar graphs [6]. It is worth mentioning that RBDS plays an important role in the
theory of non-existence of polynomial kernels for parameterized problems [5].

The fact that RBDS involves a coloring of the vertices of the input graph makes it unclear
how to make the problem fit into the general frameworks of [3, 8, 11, 12]. In this article we
provide the first explicit (and quite simple) polynomial-time data reduction rules for Red-Blue
Dominating Set on planar graphs, which lead to a linear kernel for the problem.

Theorem 1 Red-Blue Dominating Set parameterized by the solution size has a linear ker-
nel on planar graphs. More precisely, there exists a poly-time algorithm that for each positive
planar instance (G, k) returns an equivalence instance (G′, k) such that |V (G′)| ≤ 47 · k.

This result complements several explicit linear kernels on planar graphs for other domination
problems such as Dominating Set [2], Edge Dominating Set [11], Efficient Dominating
Set [11], Connected Dominating Set [10,14], or Total Dominating Set [9]. It is worth
mentioning that our constant is considerable smaller that most of the constants provided by
these results. Since one can easily reduce the Face Cover problem on a planar graph to RBDS
(without changing the parameter)1, the result of Theorem 1 also provides a linear bikernel for
Face Cover (i.e., a polynomial-time algorithm that given an input of Face Cover, outputs
an equivalent instance of RBDS with a graph whose size is linear in k). To the best of our
knowledge, the best existing kernel for Face Cover is quadratic [13]. Our techniques are much
inspired from those of Alber et al. [2] for Dominating Set, although our reduction rules and
analysis are slightly simpler.

Organization of the paper. We first describe in Section 2 our reduction rules for Red-
Blue Dominating Set when the input graph is embedded in the plane, and in Section 3 we
prove that the size of a reduced plane Yes-instance is linear in the size of the desired red-blue
dominating set, thus proving Theorem 1.

2 Reduction rules

In this section we propose reduction rules for Red-Blue Dominating Set, which are largely
inspired from the rules that yielded the first linear kernel for Dominating Set on planar
graphs [2]. The idea is to replace the neighborhood of some blue vertices by appropriate gadgets.
We would like to point out that our rules have also some points in common with the ones for the
current best kernel for Dominating Set [4]. In Subsection 2.1 we present three easy elementary
rules that turn out to be helpful in simplifying the instance, and then in Subsections 2.2 and 2.3
we present the rules for a single vertex and a pair of vertices, respectively.

2.1 Elementary rules

The following simple rules enable us to simplify an instance of RBDS. For simplicity, we will
use the shorthand rbds to denote a red-blue dominating set in a graph.

Rule 1 If G is not bipartite, remove edges between two vertices of the same color.

1Just consider the radial graph corresponding to the input graph G and its dual G∗, and color the vertices of
G (resp. G∗) as red (resp. blue).
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Rule 2 Remove blue vertices whose neighborhood is included into the neighborhood of another
blue vertex.

Rule 3 Remove red vertices whose neighborhood includes the neighborhood of another red ver-
tex.

Lemma 1 Let G = (VB∪VR, E) be a graph. If G′ is the graph obtained from G by the application
of Rule 1, 2, or 3, then there is a rbds in G of size at most k if and only if there is one in G′.

Proof. For Rule 1, since blue vertices do not need to be dominated, edges between blue vertices
can be safely remove. Similarly, since red vertices cannot dominate, edges between red vertices
can also be removed.

For Rule 2, if N(b) ⊆ N(b′) for two blue vertices b and b′, then any solution containing b
can be transformed to a solution containing b′ in which the set of dominated red vertices may
have only increased.

For Rule 3, if N(r′) ⊆ N(r) for two red vertices r and r′, then any blue vertex dominating
r′ dominates also r. �

Because of Rule 1, we can indeed assume that the graph G is bipartite, with bipartition
VB ∪ VR.

2.2 Rule for a single vertex

We present a rule for reducing the size of the neighborhood of a blue vertex. For this we need
the definition of neighborhood and private neighborhood.

Definition 1 Let G = (VB ∪ VR, E) be a graph. The neighborhood of a vertex v ∈ VB ∪ VR

is the set N(v) = {u : {v, u} ∈ E}. The private neighborhood of a blue vertex b is the set
P (b) = {r ∈ N(b) : N(N(r)) ⊆ N(b)}.

Let us remark that for (classical) Dominating Set, each neighborhood is split into three
subsets [2]. The third one corresponds to our private neighborhood, but since non-private neigh-
bors can be used to dominate the private ones, an intermediary set is necessary for (classical)
Dominating Set. In our problem it does not occur because non-private vertices are red and
thus cannot belong to a rbds. This is one of the reasons why our rules are simpler.

Rule 4 Let v ∈ VB be a blue vertex. If P (v) 6= ∅:

• remove P (v) from G,

• add a new red vertex r and the edge {v, r}.

Note that if Rule 2 is applied to the vertices in N(N(b)), then for r ∈ P (b) it holds that
N(r) = {b}. Moreover, if Rule 3 is applied to the vertices in N(b), then it holds that |P (b)| ≤ 1.
That is, Rule 4 can also be obtained by first applying Rule 2 on N(N(b)) and then Rule 3 on
N(b). However, for the sake of the analysis it will be simpler to keep Rule 4 as a separate rule.
We provide the proof of the next lemma for completeness.

Lemma 2 Let G = (VB ∪ VR, E) be a graph and let v ∈ VB. If G′ is the graph obtained from
G by the application of Rule 4 on a vertex v, then there is a rbds in G of size at most k if and
only if there is one in G′.

Proof. Let D be a rbds in G with |D| ≤ k. Since P (v) needs to be dominated, necessarily
v ∈ D. Hence D is also a rbds of G′. Conversely, let D′ be a rbds in G′ with |D| ≤ k. Since
the new vertex r needs to be dominated, necessarily v ∈ D. Hence D′ is also a rbds of G. �
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2.3 Rule for a pair of vertices

We now provide a rule for reducing the size of the neighborhood of a pair of blue vertices. For
this, we first define the neighborhood and the private neighborhood of a pair of blue vertices.

Definition 2 Let G = (VB ∪ VR, E) be a graph. The neighborhood of a blue pair of vertices
v, w ∈ VB is the set N(v, w) = N(v)∪N(w). The private neighborhood of a blue pair of vertices
v, w ∈ VB is the set P (v, w) = {r ∈ N(w, v) : N(N(r)) ⊆ N(v, w)}.

We would like to note that the definition of private neighborhood is similar to that of the
third subset of neighbors defined for (classical) Dominating Set [2].

Rule 5 Let b, c be two distinct blue vertices. If |P (b, c)| > 1 and there is no blue vertex d 6= b, c
which dominates P (b, c):

1. if P (b, c) * N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add two new red vertices rb, rc and the edges {b, rb}, {c, rc};

2. if P (b, c) ⊆ N(b) and P (b, c) ⊆ N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edges {b, r}, {c, r};

3. if P (b, c) ⊆ N(b) and P (b, c) * N(c):

• remove P (b, c) from G,

• add a new red vertex r and the edge {b, r};

4. if P (b, c) * N(b) and P (b, c) ⊆ N(c):

• symmetrically to Case 3.

Lemma 3 Let G = (VB ∪ VR, E) be a graph and let b, c ∈ VB. If G′ is the graph obtained from
G by the application of Rule 5 on b, c, then there is a rbds in G of size at most k if and only if
there is one in G′.

Proof. We distinguish the four possible cases of Rule 5:

1. Let D be a rbds in G. Since there is no single vertex which dominates P (b, c), we need at
least two vertices in order to dominate P (b, c). By definition of the private neighborhood,
we can assume that b, c ∈ D. Hence D is a rbds in G′. Conversely, let D′ be a rbds in G′.
Since rb, rc need to be dominated, we have that b, c ∈ D′. Hence D′ is a rbds in G.

2. Let D be a rbds in G. By definition of the private neighborhood, we have that b ∈ D or
c ∈ D. Hence D is a rbds in G′. Conversely, let D′ be a rbds in G′. Since r needs to be
dominated, we have that b ∈ D′ or c ∈ D′. Hence D′ is a rbds in G.

3. Let D be a rbds in G. By definition of the private neighborhood, we can assume that
b ∈ D. Hence D is a rbds in G′. Conversely, let D′ be a rbds in G′. Since r needs to be
dominated, we have that b ∈ D′. Hence D′ is a rbds in G.

4. Symmetrically to Case 3. �
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3 Analysis of the kernel size

We will show that a graph reduced under our rules (that is, a graph for which none of the rules
can be applied anymore) has size linear in |D|, the size of a solution. To this aim we assume
that the graph is plane (that is, given with a fixed embedding) and we will define a notion of
region adapted to our definition of neighborhood. Then we will show that, given a solution D,
there is a maximal region decomposition < such that:

• < has O(|D|) regions,

• < covers all vertices but O(|D|) of them,

• each region of < has size O(1).

The three following propositions treat respectively each of the above claims.

Definition 3 Let G = (VB ∪ VR, E) be a plane graph and let v, w ∈ VB. A region R(v, w)
between v and w is a closed subset of the plane such that:

• the boundary of R(v, w) is formed by two simple paths connecting v and w, each of them
having at most 4 edges;

• all vertices (strictly) inside R(v, w) belong to N(v, w) or N(N(v, w)).

We denote by ∂R(v, w) the boundary of R(v, w) and by V (R(v, w)) the set of vertices in the
region (that is, vertices strictly inside, on the boundary, and the two extremities v, w).

We say that an edge crosses a region R if it sits strictly inside R (except for its endpoints
which can be on ∂R). Similarly a region (resp. a path) crosses a region R if there is an edge in
the region (resp. the path) which crosses R.

Definition 4 Let G = (VB ∪ VR, E) be a plane graph and let D ⊆ VB. A D-decomposition of
G is a set of regions < between pairs of vertices in D such that:

• any region between v,w does not contain vertices in D \ {v, w};
• any two regions have only the boundary in common.

We note V (<) =
⋃

R∈< V (R). A D-decomposition is maximal if there is no region R /∈ <
such that < ∪ {R} is a D-decomposition with V (<) ( V (< ∪ {R}).

Proposition 1 Let G be a reduced plane graph and let D be a rbds in G. There is a maximal
D-decomposition of G such that |<| ≤ 3 · |D| − 6.

Proof. The proof strongly follows the one of Alber et al. [2, Lemma 5 and Proposition 1].
Even if our definition of region is different, we shall show that the same algorithm can be used
to construct such a D-decomposition.

We consider the algorithm which, for each vertex u, adds greedily to the decomposition
< a region R between any two vertices v, w ∈ D, containing u, not containing any vertex of
D \{v, w}, not crossing any region of <, and of maximal size; if it exists. By definition, <∪{R}
is a region decomposition, and by greediness it is maximal.

We will now prove that for each pair of regions R1(v, w), R2(v, w) between an identical pair
of vertices v, w, there is a vertex of D in both open sets defined by the complement of the two
regions in the plane. This property allows to apply [2, Lemma 5], implying that the constructed
decomposition has at most 3 · |D| − 6 regions.

Indeed, let R1, R2 be two regions and let O be one of the open sets. Let us assume, for the
sake of contradiction, that there is no vertex of D in O. We distinguish two cases.
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• If O does not contain any blue vertex, then the red vertices in O (if any) must be dominated
by v or w. Hence R1 ∪ R2 ∪ O is a larger region which must have been chosen by the
algorithm. We have a contradiction with the maximality of the regions R1 and R2.

• If O contains at least one blue vertex b /∈ D, then, since Rule 2 has been applied, b
is a neighbor of red vertices r and r′ respectively dominated by v and w. The path
{v, r, b, r′, w} is a degenerated region which has not been chosen by the algorithm. We
have a contradiction with the maximality of the decomposition <. �

Proposition 2 Let G = (VB ∪ VR, E) be a reduced plane graph and let D be a rbds in G. If <
is a maximal D-decomposition, then |V \ (V (<) ∪D)| ≤ 2 · |D|.

Proof. The proof again follows that of Alber et al. [2, Lemma 6 and Proposition 2], where
similar arguments are used to bound the number of vertices which are not included in a maximal
region decomposition. We bound separately the number of vertices in VR and VB which do not
belong to V (<). Since N(D) covers VR, it holds that VR =

⋃
v∈D N(v), which we rewrite for

convenience as VR =
⋃

v∈D P (v) ∪ (N(v) \ P (v)).
We first bound P (v) for all v ∈ D. By Rule 4, |P (v)| ≤ 1, so |

⋃
v∈D P (v)| ≤ |D|.

We now show that N(v) \P (v) ⊆ V (<) for all v ∈ D. Let u ∈ N(v) \P (v). By definition of
P (v), there is a blue vertex b ∈ N(u) and another red vertex r ∈ N(b) \N(v). We distinguish
two cases.

• If b ∈ D, the (degenerated) region defined by the path {v, u, b} crosses < (since < is
maximal). Hence u ∈ V (<).

• If b /∈ D, then there is a blue vertex w ∈ D∩N(r) which dominates r. The (degenerated)
region defined by the path {v, u, b, r, w} crosses < (since < is maximal). We distinguish
three cases.

◦ If any of the edges {v, u} or {u, b} crosses <, then u ∈ V (<).

◦ Otherwise, if edge {b, r} crosses a region R(x, y) ∈ <, then b is on ∂R(x, y), as
otherwise edge {u, v} would cross R(x, y). Let r′ be a vertex on ∂R(x, y) such that
r′ ∈ N(b) ∩N(x). Then the (degenerated) region defined by the path {v, u, b, r′, x}
could be added to <, which contradicts the maximality of <.

◦ Finally, necessarily edge {r, w} crosses a region R(w, x) ∈ <. Then r is on ∂R(w, x),
as otherwise edge {b, r} would cross R(w, x). If r ∈ N(w), edge {r, w} would not
cross R(w, x), so r ∈ N(x). Then the (degenerated) region defined by the path
{v, u, b, r, x} could be added to <, which contradicts again the maximality of <.

So
⋃

v∈D N(v) \ P (v) ⊆ V (<), as we want to prove.
We finally show that VB\D ⊆ V (<). Let b ∈ VB\D. Since G is reduced, by Rule 2 b is neither

isolated, nor pendant, nor neighbor of a private vertex of v ∈ D. Hence b is neighbor of two red
vertices r′ and r′′ dominated respectively by v and w. We consider the (degenerated) region
{v, r′, b, r′′, w}, and with an argument similar to the previous one, we obtain a contradiction.
So VB \D ⊆ V (<)).

Therefore, vertices not belonging to the decomposition are blue vertices in D and red vertices
in

⋃
v∈D P (v), that is, at most 2 · |D| vertices overall. �

Proposition 3 Let G = (VB ∪ VR, E) be a reduced plane graph, let D be a rbds in G, and let
v, w ∈ D. A region R between v and w contains at most 15 vertices distinct from v, w.
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Proof. We bound separately the number of (red) non-private neighbors, (red) private neighbors
of v and w, and blue vertices in the region. We distinguish the cases where Rule 5 is applied on
v, w, and the case where there is a single blue vertex dominating P (v, w). It will become clear
from the proof that the worst bound is given by the case where ∂R contains 8 vertices, which
will be henceforth denoted by v, rv, b, rw, w, r

′
w, b

′, r′v. In order to bound the total number of
vertices, we need the following two simple facts.

Fact 1 If there is a blue vertex b in the region R, then there is a path contained in R connecting
v and w through b.

Proof. Since Rule 2 has been applied, N(b) is neither included in N(v) nor in N(w). Since
all red vertices in R belong to N(v, w), vertex b has a neighbor belonging to N(v) \N(w) and
another one belonging to N(w) \N(v), which implies the existence of the desired path. �

Fact 2 Given two pairs of red vertices in ∂R, there are at most 3 blue vertices in R with
incomparable neighborhoods which are neighbors of at least one red vertex from each pair, and
such that the edges joining them to the red vertices are drawn entirely in R.

Proof. If all blue vertices have degree 2, it can be easily checked (see left-hand side of
Figure 1) that there can be at most 3 blue vertices respecting planarity and the constraints of
the statement of the fact. On the other hand, if there is a blue vertex adjacent to at least 3 red
vertices (see right-hand side of Figure 1), there can be at most 2 such blue vertices. �

Figure 1: Examples in Fact 2. Blue (resp. red) vertices are depicted with � (resp. •).

By definition the vertices in N(v, w) \ P (v, w) sit on ∂R. Hence |N(v, w) \ P (v, w)| ≤ 4.
The number of (red) private neighbors depends on whether Rule 5 has been applied to the

pair v, w or not:

• Assume first that Rule 5 has been applied. Therefore P (v, w) consists only of newly added
vertices, and therefore |P (v, w)| ≤ 2 (see Figure 2(a)).

• Otherwise, the vertices in P (v, w) are dominated by a vertex u, so for any vertex r ∈
P (v, w) it holds that r ∈ N(u) ∩ (N(v) ∪ N(w)). Since G is reduced, by Rule 3 all red
vertices have incomparable neighborhoods (with respect to inclusion). If there is another
blue vertex in R distinct from v, b, w, b′, by Fact 1 this vertex is contained in a path from v
to w, which disconnects u from either b or b′. This path separates R into two subregions,
and since u dominates P (v, w), all vertices in P (v, w) are in the subregion containing u.
This argument applies to any blue vertex in R distinct from v, b, w, b′. Therefore, in order
to bound the number of private neighbors, without loss of generality we can assume that
the blue vertices (in the subregion containing u) are exactly u, v, b, w, b′, but note that the
red vertices in the border of this subregion may also be counted as private (and in that
case, they are necessarily dominated by u). Out of the possible neighborhoods of a red
vertex r ∈ P (v, w) ∩ V (R), the reader can check that, while preserving planarity and the
incomparability of neighborhoods (Rule 3), there can be at most 4 private vertices, and
this case is attained with the neighborhoods {u, v, b}, {u, v, b′}, {u,w, b}, and {u,w, b′}.
Hence |P (v, w)| ≤ 4 (see Figure 2(b-c-d), where the considered subregion containing u is
the darker one).
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Figure 2: Examples in the proof of Proposition 3. Blue (resp. red) vertices are depicted with
� (resp. •). In (a), Rule 5 has been applied on the pair v, w. In (b)-(c)-(d), the red vertices in
P (v, w) are dominated by a blue vertex u, which is contained in the darker subregion.

It just remains to bound the number of blue vertices. Since G is reduced by Rule 2, blue
vertices have incomparable neighborhoods, in particular with N(v) and N(w), so for any blue
vertex b it holds that N(b) ∩N(v) 6= ∅ and N(b) ∩N(w) 6= ∅. In the sequel we will bound the
number of blue vertices by using Fact 2 for appropriately chosen quadruples of red vertices. We
distinguish whether Rule 5 has been applied to the pair v, w or not:

• Assume that Rule 5 has been applied. Since G is reduced, by Rule 2 all blue vertices have
incomparable neighborhoods. Recall that R contains 6 red vertices rv, r

′
v, v

′ ∈ N(v) and
rw, r

′
w, w

′ ∈ N(w), where v′, w′ are the newly added vertices. Note that the neighborhoods
of the new vertices are included in {v, w}. So the neighborhood of a blue vertex in R can
contain at most 4 red vertices rv, r

′
v ∈ N(v) and rw, r

′
w ∈ N(w). We now apply Fact 2 on

the red quadruple rv, r
′
v, rw, r

′
w (note that b and b′ are necessarily neighbors of rv, rw and

rv′ , rw′ , respectively), yielding that |VB ∩ V (R)| ≤ 3 (see again Figure 2(a)).

• Otherwise, the vertices in P (v, w) can be dominated by a vertex u. If P (v, w) = ∅, then
we can apply Fact 2 on the 4 red vertices in ∂R, and deduce that there can be at most
3 blue vertices in R distinct from b, b′. Otherwise, according to Fact 1, the region R can
be split into at most 3 subregions by at most 2 paths (since u dominates P (v, w); see
Figure 2(b) (resp. (c), (d)) for an example with 0 (resp. 1, 2) separating paths). Note
that, by Rule 2 and Fact 1, the subregion containing u (the darker one in Figure 2) cannot
contain any blue vertex strictly inside. We can now apply Fact 2 to each of the (at most)
2 subregions not containing u (the white subregions in Figure 2(c-d)), and deduce that
|VB ∩ V (R)| ≤ 3 + 3 + 1, where we have also counted the blue vertex u.

Thus, the region R contains at most 4 + max(2 + 5, 4 + 7) = 15 vertices distinct from v, w. �
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We are finally ready to piece everything together and prove Theorem 1.

Proof of Theorem 1. Let G be the plane input graph and let G′ be the reduced graph obtained
from G. According to Lemmas 1, 2, and 3, G admits a rbds with size at most k if and only if
G′ admits one. It is easy to see that the same time analysis of [2] implies that our reduction
rules can be applied in time O(|V (G)|3). According to Propositions 1, 2, and 3, if G′ admits a
rbds with size at most k, then G′ has size at most 15 · (3k − 6) + 2k ≤ 47k. �
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