12 research outputs found

    Secure Beamforming For MIMO Broadcasting With Wireless Information And Power Transfer

    Full text link
    This paper considers a basic MIMO information-energy (I-E) broadcast system, where a multi-antenna transmitter transmits information and energy simultaneously to a multi-antenna information receiver and a dual-functional multi-antenna energy receiver which is also capable of decoding information. Due to the open nature of wireless medium and the dual purpose of information and energy transmission, secure information transmission while ensuring efficient energy harvesting is a critical issue for such a broadcast system. Assuming that physical layer security techniques are applied to the system to ensure secure transmission from the transmitter to the information receiver, we study beamforming design to maximize the achievable secrecy rate subject to a total power constraint and an energy harvesting constraint. First, based on semidefinite relaxation, we propose global optimal solutions to the secrecy rate maximization (SRM) problem in the single-stream case and a specific full-stream case where the difference of Gram matrices of the channel matrices is positive semidefinite. Then, we propose a simple iterative algorithm named inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams. We proves that the IBCD algorithm can monotonically converge to a Karush-Kuhn-Tucker (KKT) solution to the SRM problem. Furthermore, we extend the IBCD algorithm to the joint beamforming and artificial noise design problem. Finally, simulations are performed to validate the performance of the proposed beamforming algorithms.Comment: Submitted to journal for possible publication. First submission to arXiv Mar. 14 201

    Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems

    Full text link
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang et al where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace based on the transmitter's knowledge of LR's channel in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and non-reciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. {For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals,} we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and hence the data detection performances at LR and UR.Comment: 1

    Two-way training for discriminatory channel estimation in wireless MIMO systems

    No full text
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances (and, thus, the effective received signal qualities) at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace, based on the transmitter's knowledge of LR's channel, in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and nonreciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals, we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and, hence, the data detection performances at LR and UR.This work was supported in part by the National Science Council, Taiwan, by Grant NSC 100-2628-E-007-025-MY3 and Grant NSC 101-2218-E-011-043, and in part by the Australian Research Council's Discovery Projects Funding Scheme (Project no.DP110102548)

    Secrecy Wireless Information and Power Transfer with MISO Beamforming

    Full text link
    The dual use of radio signals for simultaneous wireless information and power transfer (SWIPT) has recently drawn significant attention. To meet the practical requirement that energy receivers (ERs) operate with significantly higher received power as compared to information receivers (IRs), ERs need to be deployed in more proximity to the transmitter than IRs. However, due to the broadcast nature of wireless channels, one critical issue arises that the messages sent to IRs can be eavesdropped by ERs, which possess better channels from the transmitter. In this paper, we address this new secrecy communication problem in a multiuser multiple-input single-output (MISO) SWIPT system where one multi-antenna transmitter sends information and energy simultaneously to an IR and multiple ERs, each with one single antenna. To optimally design transmit beamforming vectors and their power allocation, two problems are investigated with different aims: the first problem maximizes the secrecy rate for IR subject to individual harvested energy constraints of ERs, while the second problem maximizes the weighted sum-energy transferred to ERs subject to a secrecy rate constraint for IR. We solve these two non-convex problems optimally by reformulating each of them into a two-stage problem. First, by fixing the signal-to-interference-plus-noise ratio (SINR) target for ERs (for the first problem) or IR (for the second problem), we obtain the optimal beamforming and power allocation solution by applying the technique of semidefinite relaxation (SDR). Then, the original problems are solved by a one-dimension search over the optimal SINR target for ERs or IR. Furthermore, for each of the two studied problems, suboptimal solutions of lower complexity are also proposed in which the information and energy beamforming vectors are separately designed with their power allocation.Comment: accepted by IEEE Transactions on Signal Processing. Longer version of arXiv:1306.096

    Finite-Alphabet MMSE Equalization for All-Digital Massive MU-MIMO mmWave Communication

    Full text link
    We propose finite-alphabet equalization, a new paradigm that restricts the entries of the spatial equalization matrix to low-resolution numbers, enabling high-throughput, low-power, and low-cost hardware equalizers. To minimize the performance loss of this paradigm, we introduce FAME, short for finite-alphabet minimum mean-square error (MMSE) equalization, which is able to significantly outperform a naive quantization of the linear MMSE matrix. We develop efficient algorithms to approximately solve the NP-hard FAME problem and showcase that near-optimal performance can be achieved with equalization coefficients quantized to only 1-3 bits for massive multi-user multiple-input multiple-output (MU-MIMO) millimeter-wave (mmWave) systems. We provide very-large scale integration (VLSI) results that demonstrate a reduction in equalization power and area by at least a factor of 3.9x and 5.8x, respectively.Comment: Appeared in the IEEE Journal on Selected Areas in Communication

    Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming

    Full text link
    In recent years there has been growing interest in study of multi-antenna transmit designs for providing secure communication over the physical layer. This paper considers the scenario of an intended multi-input single-output channel overheard by multiple multi-antenna eavesdroppers. Specifically, we address the transmit covariance optimization for secrecy-rate maximization (SRM) of that scenario. The challenge of this problem is that it is a nonconvex optimization problem. This paper shows that the SRM problem can actually be solved in a convex and tractable fashion, by recasting the SRM problem as a semidefinite program (SDP). The SRM problem we solve is under the premise of perfect channel state information (CSI). This paper also deals with the imperfect CSI case. We consider a worst-case robust SRM formulation under spherical CSI uncertainties, and we develop an optimal solution to it, again via SDP. Moreover, our analysis reveals that transmit beamforming is generally the optimal transmit strategy for SRM of the considered scenario, for both the perfect and imperfect CSI cases. Simulation results are provided to illustrate the secrecy-rate performance gains of the proposed SDP solutions compared to some suboptimal transmit designs.Comment: 32 pages, 5 figures; to appear, IEEE Transactions on Signal Processing, 201

    Convex Optimisation for Communication Systems

    No full text
    In this thesis new robust methods for the efficient sharing of the radio spectrum for underlay cognitive radio (CR) systems are developed. These methods provide robustness against uncertainties in the channel state information (CSI) that is available to the cognitive radios. A stochastic approach is taken and the robust spectrum sharing methods are formulated as convex optimisation problems. Three efficient spectrum sharing methods; power control, cooperative beamforming and conventional beamforming are studied in detail. The CR power control problem is formulated as a sum rate maximisation problem and transformed into a convex optimisation problem. A robust power control method under the assumption of partial CSI is developed and also transformed into a convex optimisation problem. A novel method of detecting and removing infeasible constraints from the power allocation problem is presented that results in considerably improved performance. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. The concept of cooperative beamforming for spectrum sharing is applied to an underlay CR relay network. Distributed single antenna relay nodes are utilised to form a virtual antenna array that provides increased gains in capacity through cooperative beamforming. It is shown that the cooperative beamforming problems can be transformed into convex optimisation problems. New robust cooperative beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. Conventional beamforming to allow efficient spectrum sharing in an underlay CR system is studied. The beamforming problems are formulated and transformed into convex optimisation problems. New robust beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    corecore