648,933 research outputs found

    Learnt Topology Gating Artificial Neural Networks

    Get PDF
    This work combines several established regression and meta-learning techniques to give a holistic regression model and presents the proposed Learnt Topology Gating Artificial Neural Networks (LTGANN) model in the context of a general architecture previously published by the authors. The applied regression techniques are Artificial Neural Networks, which are on one hand used as local experts for the regression modelling and on the other hand as gating networks. The role of the gating networks is to estimate the prediction error of the local experts dependent on the input data samples. This is achieved by relating the input data space to the performance of the local experts, and thus building a performance map, for each of the local experts. The estimation of the prediction error is then used for the weighting of the local experts predictions. Another advantage of our approach is that the particular neural networks are unconstrained in terms of the number of hidden units. It is only necessary to define the range within which the number of hidden units has to be generated. The model links the topology to the performance, which has been achieved by the network with the given complexity, using a probabilistic approach. As the model was developed in the context of process industry data, it is evaluated using two industrial data sets. The evaluation has shown a clear advantage when using a model combination and meta-learning approach as well as demonstrating the higher performance of LTGANN when compared to a standard combination method

    Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

    Full text link
    We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features

    FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA

    Full text link
    Federated Learning (FL) has emerged as a promising approach for privacy preservation, allowing sharing of the model parameters between users and the cloud server rather than the raw local data. FL approaches have been adopted as a cornerstone of distributed machine learning (ML) to solve several complex use cases. FL presents an interesting interplay between communication and ML performance when implemented over distributed wireless nodes. Both the dynamics of networking and learning play an important role. In this article, we investigate the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks which employ CSMA/CA to schedule its transmissions. Our FL over CSMA/CA (FLCC) model is designed to eliminate untrusted devices and harness frequency reuse and spatial clustering techniques to improve the throughput required for coordinating a distributed implementation of FL in the wireless network. In our proposed model, frequency allocation is performed on the basis of spatial clustering performed using virtual cells. Each cell assigns a FL server and dedicated carrier frequencies to exchange the updated model's parameters within the cell. We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss while considering the networking dynamics. We benchmark the proposed approach using a well-known MNIST dataset for performance evaluation. We demonstrate that the proposed approach outperforms the baseline FL algorithms in terms of explicitly defining the chosen users' criteria and achieving high accuracy in a robust network

    Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph Embeddings Augmentation

    Full text link
    Graph Neural Networks (GNNs) have shown remarkable merit in performing various learning-based tasks in complex networks. The superior performance of GNNs often correlates with the availability and quality of node-level features in the input networks. However, for many network applications, such node-level information may be missing or unreliable, thereby limiting the applicability and efficacy of GNNs. To address this limitation, we present a novel approach denoted as Ego-centric Spectral subGraph Embedding Augmentation (ESGEA), which aims to enhance and design node features, particularly in scenarios where information is lacking. Our method leverages the topological structure of the local subgraph to create topology-aware node features. The subgraph features are generated using an efficient spectral graph embedding technique, and they serve as node features that capture the local topological organization of the network. The explicit node features, if present, are then enhanced with the subgraph embeddings in order to improve the overall performance. ESGEA is compatible with any GNN-based architecture and is effective even in the absence of node features. We evaluate the proposed method in a social network graph classification task where node attributes are unavailable, as well as in a node classification task where node features are corrupted or even absent. The evaluation results on seven datasets and eight baseline models indicate up to a 10% improvement in AUC and a 7% improvement in accuracy for graph and node classification tasks, respectively.Comment: 22nd IEEE International Conference on Machine Learning and Applications 202

    Deep Reinforcement Learning with Swin Transformers

    Full text link
    Transformers are neural network models that utilize multiple layers of self-attention heads and have exhibited enormous potential in natural language processing tasks. Meanwhile, there have been efforts to adapt transformers to visual tasks of machine learning, including Vision Transformers and Swin Transformers. Although some researchers use Vision Transformers for reinforcement learning tasks, their experiments remain at a small scale due to the high computational cost. Experiments conducted at a large scale, on the other hand, have to rely on techniques to cut the costs of Vision Transformers, which also yield inferior results. To address this challenge, this article presents the first online reinforcement learning scheme that is based on Swin Transformers: Swin DQN. Swin Transformers are promising as a backbone in neural networks by splitting groups of image pixels into small patches and applying local self-attention operations inside the (shifted) windows of fixed sizes. They have demonstrated state-of-the-art performances in benchmarks. In contrast to existing research, our novel approach is reducing the computational costs, as well as significantly improving the performance. We demonstrate the superior performance with experiments on 49 games in the Arcade Learning Environment. The results show that our approach, using Swin Transformers with Double DQN, achieves significantly higher maximal evaluation scores than the baseline method in 45 of all the 49 games ~92%, and higher mean evaluation scores than the baseline method in 40 of all the 49 games ~82%

    Panoptic Out-of-Distribution Segmentation

    Full text link
    Deep learning has led to remarkable strides in scene understanding with panoptic segmentation emerging as a key holistic scene interpretation task. However, the performance of panoptic segmentation is severely impacted in the presence of out-of-distribution (OOD) objects i.e. categories of objects that deviate from the training distribution. To overcome this limitation, we propose Panoptic Out-of Distribution Segmentation for joint pixel-level semantic in-distribution and out-of-distribution classification with instance prediction. We extend two established panoptic segmentation benchmarks, Cityscapes and BDD100K, with out-of-distribution instance segmentation annotations, propose suitable evaluation metrics, and present multiple strong baselines. Importantly, we propose the novel PoDS architecture with a shared backbone, an OOD contextual module for learning global and local OOD object cues, and dual symmetrical decoders with task-specific heads that employ our alignment-mismatch strategy for better OOD generalization. Combined with our data augmentation strategy, this approach facilitates progressive learning of out-of-distribution objects while maintaining in-distribution performance. We perform extensive evaluations that demonstrate that our proposed PoDS network effectively addresses the main challenges and substantially outperforms the baselines. We make the dataset, code, and trained models publicly available at http://pods.cs.uni-freiburg.de
    • …
    corecore