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Abstract— This work combines several established regression
and meta-learning techniques to give a holistic regression model
and presents the proposed Learnt Topology Gating Artificial
Neural Networks (LTGANN) model in the context of a general
architecture previously published by the authors. The applied
regression techniques are Artificial Neural Networks, which are
on one hand used as local experts for the regression modelling
and on the other hand as gating networks. The role of the
gating networks is to estimate the prediction error of the local
experts dependent on the input data samples. This is achieved
by relating the input data space to the performance of the
local experts, and thus building a performance map, for each
of the local experts. The estimation of the prediction error is
then used for the weighting of the local experts predictions.
Another advantage of our approach is that the particular
neural networks are unconstrained in terms of the number
of hidden units. It is only necessary to define the range within
which the number of hidden units has to be generated. The
model links the topology to the performance, which has been
achieved by the network with the given complexity, using a
probabilistic approach. As the model was developed in the
context of process industry data, it is evaluated using two
industrial data sets. The evaluation has shown a clear advantage
when using a model combination and meta-learning approach
as well as demonstrating the higher performance of LTGANN
when compared to a standard combination method.

I. INTRODUCTION

The original idea of Artificial Neural Networks (ANN)

was to mimic the operation of biological neurons, as the

basic information processing units in the biological nervous

system. Probably the most common in terms of the reported

number of applications is the Multi-Layer Perceptron (MLP)

(e.g. [1]). MLPs are universal function approximators, which

means that provided enough training data and given a com-

plex enough structure, they can be trained to approximate

any possible function. Since the introduction of the back-

propagation learning algorithm to ANNs [2] and due to

their generalisation power and ability to solve non-linear

problems, MLPs have been applied to many practical classifi-

cation and regression problems. The drawback of MLPs and

of the back-propagation algorithm is that during the learning

phase they can get stuck in local minima, which results in

sub-optimal performance on the test data. Another problem

is the difficulty with the estimation of correct topology of the

networks since the generalisation power of MLPs depends to

a high extent on the complexity of the networks and thus an

appropriate choice of the topology is critical. There is also

an issue with the interpretability of the learnt knowledge as

it is distributed in the weights between particular neurons
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which can not be easily interpreted in terms of a human

understandable representation.

The problems listed above are not unique for ANNs. In

fact they are quite common to many computational learning

approaches. In the meta-learning terminology models such

as this learning input-output mappings given training data

sets often using a fixed model structure are called base-

learners. In contrast to the base-learners, the task of the meta-

learning approach is to extract high-level knowledge from

the base-learner and to use this knowledge to improve them.

One could therefore describe meta-learning as learning to

learn. This task can be approached from different directions.

Probably the most direct one is to link the performance of

the base-learners to meta-features and thus to identify their

areas of expertise. This corresponds to the regions of the

meta-feature space for which a particular algorithm or class

of algorithms perform well. The simplest examples of such

meta-features are statistics of the data, like mean value, vari-

ance, kurtosis, etc. [3], [4], [5]. Another way of using meta-

learning for model building is by combining the predictions

of several base learners to a global prediction. This approach

is known under many different names including ensembles

methods [6], multiple classifier systems [7], model stacking

[8] [9], etc. The aim of combining is to train a meta-learner,

whose input space is formed by the predictions of a set

of particular base-learners. The target feature of the meta-

learner is equivalent to the target feature of the base-learners.

There are several ways to build the combined predictions.

In general, one can distinguish between trainable and fixed

combiners. Typical examples of fixed combiners are the

building mean, or more outlier resistant median, values

of the predictions. In contrast to the fixed combiners, the

trainable combiners are much more powerful with the most

common example including weighted linear combinations

with trainable weights. Good reviews and discussions of

various combination methods can be found in [9], [10], [11],

[12].

In the context of this work a particularly relevant approach

to combination is discussed in [13] [14], where a gating

network is used to decide which of the models from a set

of available base-learner ANNs, or local experts in the ter-

minology of the cited work, is responsible for the prediction

of the given input sample. The predictions of the particular

local experts are weighted using weights, which are predicted

by the gating networks. In [13] Jordan and Jacobs proposed

a special algorithm for the training of the gating networks,

which learns and memorizes the experts responsible for a

significant improvement of the performance of the global

model. The work described in this paper motivated by the

Gating Artificial Neural Networks proposes a number of
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important modifications further discussed in Section III.

The next section gives a brief overview of the general

modelling architecture. Section III describes the LTGANN

meta-learning model as an instance of the architecture, which

is in Section IV evaluated on two real-life industrial data sets.

Finally, this work is summarised in Section V.

II. REGRESSION MODEL ARCHITECTURE

While more details can be found in [15], this section

provides a summary of the meta architecture previously

published by the authors. A broad overview of the archi-

tecture is shown in Fig. 1. A significant part of the proposed

architecture are the two pools, firstly the Pre-processing

Methods Pool (PPMP), which is further split into actual Pre-

Processing (PP) methods (e.g. filtering, normalisation), Fea-

ture Selection (FS) methods (e.g. correlation-based feature

selection) and Instance Selection (IS) methods (e.g. receptive

fields filtering). The second pool, Computational Learning

Methods Pool (CLMP), consists of various computational

learning methods (e.g. linear regression, multi-layer percep-

tron models, etc.). The two pools provide the methods to the

Path/Pool Management (PPM) module. Within this module

the methods are instantiated and linked to form transfor-

mation paths. A transformation path may be for example

built from the following elements: feature standardisation,

correlation-based feature selection and a multi-layer percep-

tron method. The particular transformation paths within this

module are managed within Path/Pool Management Control.

From here the paths can be created, adapted and eliminated.

The decisions are made on the basis of information coming

from high level decision making parts of the architecture

which are described later in this section.

Another key aspect of the architecture is the Path Com-

bination (PC) module. This module provides the possibility

to make use of model combination and selection techniques

which is beneficial for the performance of the final model

[12]. The combinations are performed at the transformation

path level which provides additional flexibility. One can

do the combination while including different methods from

PPMP (e.g. a combination of several paths consisting of

MLP with different approaches to feature selection as a pre-

processing step). Another advantage is that it is possible

to combine different methods from the CLMP, in this way

it is possible to do combinations across different types of

computational learning methods (e.g. a combination of MLPs

and RBF together with linear regression models). The path

combination module together with the instance selection

methods from PPMP provide also the possibility to combine

different local paths (local learning models) to a global path.

The Path Combination Control plays a similar role to the

control unit in the PPMP but at the combination level.

The architecture provides also the possibility of using

meta-learning approaches [10][16]. There are two modules in

the architecture for this purpose. The first one, Meta-Feature

Management, having information about the data together

with the performance of the particular paths builds the meta-

features. This module may e.g. extract the information about

the performance of the different paths in the different parts

of the input data space and pass this information further

to the Meta-Level Learning module which can, using the

provided information, control the Path/Pool Management and

Path Combination modules.

The Instance Selection Management module is responsible

for the filtering of the instances and thus providing the

possibility for building of local models, i.e. local experts,

[14][17][18][19]. The local approach to the model building

is, apart from the pool and path concepts and meta-learning

techniques, one of the key aspects of the proposed architec-

ture.

The next section describes an instance of this general

architecture using Artificial Neural Networks.

III. LEARNT TOPOLOGY GANN

The Learnt Topology Gating Artificial Neural Network

(LTGANN) approach presented in this Section is based on

[13] [14] but in contrast to the cited work the Gating ANNs

(GANNs) use the standard back-propagation algorithm for

the training of the gating networks. The next difference is

that there is one gating network trained for each of the local

experts. In this way it can be guaranteed that the GANN

becomes an expert for the performance prediction of the

assigned local expert.

The gating networks are trained to estimate the prediction

error of the assigned local expert. The aim of the GANN is

therefore to learn the performance of the experts dependent

on the input samples. This is achieved by training the GANN

using the local expert’s prediction error on a validation data

set as the target value, the training set for the ith GANN has

thus the following form: T i
train = {Xi

val, e
i
val}, where Xi

val

is the validation input samples of the ith local expert and

ei
val represents the prediction error of the same local expert

on the validation data.

After their training, the gating networks are able to

estimate the prediction errors of the local experts. This

estimation is then used to weight the predictions of the local

experts and to obtain the final prediction in the following

way:

yf
p =

N∑
i=1

wiyi
p =

N∑
i=1

1

1 + ei
p

yi
p, (1)

where N is the number of available experts, yf
p the final

output of the model, yi
p the prediction of the ith local expert

and wi the weight of the local expert i based on the local

expert’s predicted error ei
p.

Another advantage of the presented approach is that the

number of local experts can be changed dynamically, i.e. the

number of experts can be increased (or decreased) without

the need to change the other local experts and GANNs. We

exploit this feature and gradually increase the number of local

experts. While increasing the number of local experts, the

optimal network topologies for both, the local experts and

the gating networks, are being learnt.

Restricting ourselves to networks with one hidden layer,

the topology (i.e. the number of hidden units) of the LE
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Fig. 1. The general architecture model

and GANN is initially determined randomly by drawing the

numbers of hidden units from a equal distribution U(HLE)
and U(HGANN ), where Hx is a pre-defined range of possible

hidden number units for the local experts and gating networks

respectively. After evaluating the performance of the LEs

and GANNs with the number of hidden units hLE ∈ HLE

and hGANN ∈ HGANN , the relative performances qLE and

qGANN are used to modify the originally equal distribution

towards the conditional distributions for both topologies

P (HLE |qLE) and P (HGANN |qGANN ):

P (H)
init.
−−−→ U(H)

learning
−−−−−−→ P (H|q). (2)

At each new step (i.e. adding new local expert), the up-

to-date distributions are used to generate the topologies

of the new networks. This mechanism provides the means

to deal with one of the disadvantages of ANNs, namely

the manual estimation of the optimal network topology as

the proposed algorithm learns the well-performing network

topologies automatically. One needs only to define the range

from which the number of hidden units has to be drawn.
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Fig. 2. The Learnt Topology Gating Artificial Neural Network

The proposed approach can easily be presented in the

context of the architecture from Fig. 1 and be described as

an instance of this architecture. In this simple case, there are

only few techniques necessary within the pre-processing and

computational learning methods pools, namely the normal-

isation, and feature selection methods in the pre-processing

pool and MLP in the computational learning pool. The local

experts, which correspond to the transformation paths, are

managed in the Path/Pool Management module. New local

experts added to this module are built having the topol-

ogy generated in accordance to the probability distribution

P (HLE |q), which is being managed in the control part of

the paths module. In this work we have not used any pruning

mechanism, using which the local experts could be removed.

Going further, the weighted sum of a particular set of local

experts responses is built in the Path Combination module.

There is only one combination of all available predictions

present. The weights of this combination are set in the control

part of the module. In this case we use the GANNs, which

predict the weights dependent on the input data, present

there. The topology of the gating networks is controlled

from the meta-level learning part of the architecture, where

the probability distribution of the number of hidden units

is controlled. This control is based on the evaluation of

the performance provided by the Performance Evaluation

module. The LTGANN instance of the general architecture

is shown in Fig. 2.

IV. EXPERIMENTAL EVALUATION

The LTGANN was applied to two industrial data sets. The

results of the experiments are presented in this section.

A. Drier Data Set

The target values of this data set are laboratory mea-

surements of the residual humidity of the process product.
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The data set has 19 input features, most of them being

temperatures, pressures and moistures measured within the

process plant. The output feature is, as already described, the

humidity of the process product. The data set consists of 1219

data samples covering almost seven months of the operation

of the process. It consists of raw unprocessed data as it

were recorded by the process information and measurement

system.

The experiments were carried out using two-fold cross-

validation. A justification for using two-fold CV is that the

training data for the gating networks use the prediction error

of the local experts on the validation data and thus using two

folds balances the number of the sizes of the training data

set for the local experts and the gating networks.

The interval of hidden units numbers is [1, 10] for both,

the local experts and the gating networks. These values were

found during preliminary experiments. The following two

figures (Fig. 3 and 4) show the probability distribution of the

hidden unit number after 200 training steps, i.e after training

200 local experts and GANNs. One can observe that in
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Fig. 3. Probability distribution P (HLE |qLE) of the local experts hidden
units number after 200 learning steps for the two CV folds.
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Fig. 4. Probability distribution P (HGANN |qGANN ) of the GANN
hidden units number after 200 learning steps.

the case of the local experts, there is a preference for rather

simple topologies which in general seem to achieve better

performance. In the case of the GANN, networks with four

hidden units achieve the best performance.

To be able to asses the performance of the LTGANN

approach, it is on one hand compared to the performance

of the particular local experts (referred to as ’Local Experts’

in the following figures) and on the other hand to the base-

line mean combination approach of the local experts, where

the combination is carried out using the mean value of the

predictions (referred to as ’Mean Comb.’).
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Fig. 5. MSE performance of the LTGANN compared to the mean
combination approach and to the averaged performance of the local experts.
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Fig. 6. Detailed view of the MSE performance of the LTGANN and of
the mean combination approach.

Figures 5 and 6 present the Mean Squared Error (MSE)

of the LTGANN compared to the other two base-line ap-

proaches as a function of the number of involved local

experts. The three MSE curves for calculated using the
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following equations:

Local Experts:

MSELE =
1

M

M∑
j=1

1

N

N∑
i=1

[
yi

p(xtest(j)) − y(j)
]2

Mean Comb.:

MSEMC =
1

M

M∑
j=1

[(
1

N

N∑
i=1

yi
p(xtest(j))

)
− y(j)

]2

LTGANN:

MSELTGANN =
1

M

N∑
i=1

⎡
⎣
⎛
⎝ M∑

j=1

wiyi
p(xtest(j))

⎞
⎠− y(j)

⎤
⎦

2

,

where y are the correct target values, xtest the input sample

from the test set, yi
p the prediction of the particular local

expert i, wi the weights predicted by the GANN, N the

number of local experts which is 200 for the experiments

presented in this work and M the number of test samples.

One can observe a convergence of the MSE curve with

increasing number of involved local experts. After a certain

number of combined local experts the performance remains

stable. One can observe similar behaviour also for the mean

combination approach (’Mean Comb.’), but in this case

the convergence value is higher compared to the one of

LTGANN and it takes more learning steps, i.e. there are

more local experts needed, till the model approaches the

convergence value (see Fig. 6). Fig. 6 also shows that the

LTGANN model performance stability is higher than that of

the mean combination. Another effect which can be observed

from Fig. 5, more precisely from the ’Local Experts’ curve

which is showing the averaged performance of the local

experts, is the effect of the learning of the optimal topology

which is demonstrated by the decrease of the curve with

increasing number of involved local experts. The probability

distribution of the number of hidden units is updated and

thus improves with each added local expert.

Figures 7 and 8 show the boxplot statistical representation

of the MSE curves presented in Fig. 5. The leftmost box

shows the MSE statistics of the local experts without doing

any combination. One can observe several model properties

from the boxplot representation. For example the high vari-

ance of the single local expert results. This has its origin

in the fact that due to problems with local minima artificial

neural networks are prone to give sub-optimal performance

on the test data. Unless one explores the whole parameter

space of the weights, there is no guarantee of finding the

global minimum of the training error but even if the global

minimum is found it can, because of overfitting of the model,

happen that the performance on the test data remains still

sub-optimal. Especially from Fig. 8 one can see the superior

performance of the model combinations, the median values

of their MSE curves are far bellow that of the non-combined

models. This figure also shows that there are particular local

experts which perform better than LTGANN but as it was

already mentioned it is virtually impossible to find these

models during the training. Fig. 8 also confirms that the

LTGANN achieves significantly better performance than the

mean combination technique. The size of the LTGANN box

is smaller than the other boxes. This demonstrates the fact

that once the curve nears the convergence value it remains

stable. Finally to be able to judge the performance of the
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Fig. 7. Boxplots of the MSE curves.
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Fig. 8. Boxplots of the MSE curves, details of the combination approaches.

approach presented in this paper, Fig. 9 shows the correct

target values and the prediction of the LTGANN model.

Another effect, which can also be observed in Fig. 9, is

the deterioration of the model performance with increasing

time. The final model performs better for the first half of the

test samples. For the second half, the model performance

starts to drop and the model is no more able to predict the

data as accurately as for the first half. This shows a clear

need for retuning or adaptation of the model. The adaptation

possibilities of the general architecture, presented in Section

II, are discussed in [15]. As it was shown here, the adaptation

of the model is vital for maintaining its performance and

therefore, further, more complex instances of the architecture

will focus on the implementation of efficient adaptation
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Fig. 9. The target values and the prediction of the LTGANN.

mechanisms which are out of the scope of this paper.

B. Debutanizer Data Set

This data set is publicly available1, and described in [20].

The data was recorded in a debutanizer column which is

a part of the desulfuring and naphtha splitter plant. The

data set consists of seven manually pre-selected input fea-

tures, consisting mainly of temperature, pressure and reflux

measurements at different positions within the column. The

target value is the concentration of butane at the output of

the column.

For this experiment the same methodology as for the

previous one was applied. In this case, the target feature

is very hard to model which is demonstrated by the weak

performance of the local expert ANNs. Again, using the

model combination approaches the performance of the re-

gression model can be significantly improved, as can be seen

in Figures 10 and 12. For this data set the LTGANN method

again achieves significantly better performance if compared

to the base-line mean combination method (see Figures 11,

13) and similar conclusions to the previous experiment can

be drawn. An interesting fact in the case of this experiment

is that the MSE performance of the combination methods

can be better values than the MSE performance of the best

local expert ANN.

V. CONCLUSIONS

This paper describes a meta-learning regression model

called Learnt Topology Gating Artificial Neural Networks

(LTGANN). LTGANN is based on the Gating Artificial

Neural Networks (GANN) method which is a well estab-

lished approach to model combination. In this work GANN

was modified to allow the training of the gating networks

using the standard back-propagation algorithm. This has the

advantage that the model can be easily enlarged by adding

new local experts without the need to make any changes

to the already existing networks. The gating networks are

1Data set available at: www.springer.com/1-84628-479-1
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Fig. 10. MSE performance of the LTGANN compared to the mean
combination approach and to the averaged performance of the local experts.
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Fig. 11. Detailed view of the MSE performance of the LTGANN and of
the mean combination approach.

trained to link the performance of the local experts to the

position of a sample in the input space. This provides a

performance map which can be used for estimation of the

performance of the particular local expert given the input
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Fig. 12. Boxplots of the MSE curves.
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Fig. 13. Boxplots of the MSE curves, details of the combination
approaches.

sample. Another key point of this work is the provided

flexibility for the ANN topology selection. There is no need

to define the exact number of hidden units either for the

local experts or for the gating networks. The model learns

well-performing topologies and gives preference to these

when generating new local experts and gating networks.

The LTGANN model is presented as an instance of a more

general architecture for the building of regression models.

As the architecture is very general this instance is only

the first step towards a more complex and holistic model

which will involve more sophisticated approaches to data

modelling. The discussed model architecture has been de-

veloped with the focus on application within the process

industry environment, which provides the possibility to deal

with application oriented issues common to a large number of

industrial applications. Applying LTGANN to two industrial

problems has shown a significant performance gain using

this method when compared to the performance of a base-

line model combination method.
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