412 research outputs found

    Atlas-based Transfer of Boundary Conditions for Biomechanical Simulation

    Get PDF
    International audienceAn environment composed of different types of living tissues (such as the abdominal cavity) reveals a high complexity of boundary conditions, which are the attachments (e.g. connective tissues, ligaments) connecting different anatomical structures. Together with the material properties, the boundary conditions have a significant influence on the mechanical response of the organs, however corresponding correct me- chanical modeling remains a challenging task, as the connective struc- tures are difficult to identify in certain standard imaging modalities. In this paper, we present a method for automatic modeling of boundary con- ditions in deformable anatomical structures, which is an important step in patient-specific biomechanical simulations. The method is based on a statistical atlas which gathers data defining the connective structures at- tached to the organ of interest. In order to transfer the information stored in the atlas to a specific patient, the atlas is registered to the patient data using a physics-based technique and the resulting boundary conditions are defined according to the mean position and variance available in the atlas. The method is evaluated using abdominal scans of ten patients. The results show that the atlas provides a sufficient information about the boundary conditions which can be reliably transferred to a specific patient. The boundary conditions obtained by the atlas-based transfer show a good match both with actual segmented boundary conditions and in terms of mechanical response of deformable organs

    Model-Based Identification of Anatomical Boundary Conditions in Living Tissues

    Get PDF
    International audienceIn this paper, we present a novel method dealing with the identification of boundary conditions of a deformable organ, a particularly important step for the creation of patient-specific biomechani-cal models of the anatomy. As an input, the method requires a set of scans acquired in different body positions. Using constraint-based finite element simulation, the method registers the two data sets by solving an optimization problem minimizing the energy of the deformable body while satisfying the constraints located on the surface of the registered organ. Once the equilibrium of the simulation is attained (i.e. the organ registration is computed), the surface forces needed to satisfy the constraints provide a reliable estimation of location, direction and magnitude of boundary conditions applied to the object in the deformed position. The method is evaluated on two abdominal CT scans of a pig acquired in flank and supine positions. We demonstrate that while computing a physically admissible registration of the liver, the resulting constraint forces applied to the surface of the liver strongly correlate with the location of the anatomical boundary conditions (such as contacts with bones and other organs) that are visually identified in the CT images

    Registration and Analysis of Developmental Image Sequences

    Get PDF
    Mapping images into the same anatomical coordinate system via image registration is a fundamental step when studying physiological processes, such as brain development. Standard registration methods are applicable when biological structures are mapped to the same anatomy and their appearance remains constant across the images or changes spatially uniformly. However, image sequences of animal or human development often do not follow these assumptions, and thus standard registration methods are unsuited for their analysis. In response, this dissertation tackles the problems of i) registering developmental image sequences with spatially non-uniform appearance change and ii) reconstructing a coherent 3D volume from serially sectioned images with non-matching anatomies between the sections. There are three major contributions presented in this dissertation. First, I develop a similarity metric that incorporates a time-dependent appearance model into the registration framework. The proposed metric allows for longitudinal image registration in the presence of spatially non-uniform appearance change over time—a common medical imaging problem for longitudinal magnetic resonance images of the neonatal brain. Next, a method is introduced for registering longitudinal developmental datasets with missing time points using an appearance atlas built from a population. The proposed method is applied to a longitudinal study of young macaque monkeys with incomplete image sequences. The final contribution is a template-free registration method to reconstruct images of serially sectioned biological samples into a coherent 3D volume. The method is applied to confocal fluorescence microscopy images of serially sectioned embryonic mouse brains.Doctor of Philosoph

    THE MOUSE BRAIN: A 3D ATLAS REGISTERING MRI, CT, AND HISTOLOGICAL SECTIONS IN THE THREE CARDINAL PLANES

    Get PDF
    Mouse brain atlases based on histology can be improved through the reconstruction of the 2D histological sections into a continuous 3D volume. Impediments to a continuous reconstruction include distortion caused by excision, fixation, and sectioning of the brain. In prior works, MR images have been used as a reference for global alignment of the sections and various methods have been implemented for local alignment. In this thesis, we offered an alternative method for local alignment and developed a method for registering orthogonal histological data sets into one coordinate system. As an end result we established a comprehensive mouse brain atlas with Nissl-stained histology images with 362 coronal, 162 horizontal, and 112 sagittal histological sections at 40 µm interval. For the global alignment, our MRI/CT population atlas was used to guide the alignment accuracy. The local alignment was performed using Large Deformation Diffeomorphic Metric Mapping (LDDMM) with a hierarchical approach to minimize structural discontinuity. Then the coordinate consistency was optimized by iteratively registering the three 3D volume data from the coronal, horizontal, and sagittal sections. The landmark-based analysis revealed the MRI-histology accuracy level was 0.1632 ± 0.1131 mm. This work established the coordinate link between the MRI/CT atlas and around 300 GB of histology data in the cellular-level anatomical information

    Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013

    Landmark-Matching Transformation with Large Deformation Via n-dimensional Quasi-conformal Maps

    Get PDF
    We propose a new method to obtain landmark-matching transformations between n-dimensional Euclidean spaces with large deformations. Given a set of feature correspondences, our algorithm searches for an optimal folding-free mapping that satisfies the prescribed landmark constraints. The standard conformality distortion defined for mappings between 2-dimensional spaces is first generalized to the n-dimensional conformality distortion K(f) for a mapping f between n-dimensional Euclidean spaces (n ≥ 3). We then propose a variational model involving K(f) to tackle the landmark-matching problem in higher dimensional spaces. The generalized conformality term K(f) enforces the bijectivity of the optimized mapping and minimizes its local geometric distortions even with large deformations. Another challenge is the high computational cost of the proposed model. To tackle this, we have also proposed a numerical method to solve the optimization problem more efficiently. Alternating direction method with multiplier is applied to split the optimization problem into two subproblems. Preconditioned conjugate gradient method with multi-grid preconditioner is applied to solve one of the sub-problems, while a fixed-point iteration is proposed to solve another subproblem. Experiments have been carried out on both synthetic examples and lung CT images to compute the diffeomorphic landmark-matching transformation with different landmark constraints. Results show the efficacy of our proposed model to obtain a folding-free landmark-matching transformation between n-dimensional spaces with large deformations
    • …
    corecore