11,557 research outputs found

    ZZE-Configuration of chromophore ß-153 in C-phycocyanin from Mastigocladus laminosus

    Get PDF
    The photochemistry of C-phycocyanin has been studied after denaturation in the dark. It shows an irreversible reaction which has characteristics of a Ζ,Ζ,Ε- to Z,Z,Z-isomerization of dihydrobilins. Its amplitude depends on the reaction conditions, with a maximum corresponding to 15% conversion of one of the three PC chromophores. This chromophore is suggested to be ß-153, for which recent X-ray data T. Schirmer, W. Bode, and R. Huber, J. Mol. Biol., submitted, show ring D being highly twisted out of the plane of the other rings. During unfolding, there is thus a probability of falling into the photochemically labile Z,Z,^-configuration

    Comment on "Delayed luminescence of biological systems in terms of coherent states" [Phys. Lett. A 293 (2002) 93]

    Get PDF
    Popp and Yan [F. A. Popp, Y. Yan, Phys. Lett. A 293 (2002) 93] proposed a model for delayed luminescence based on a single time-dependent coherent state. We show that the general solution of their model corresponds to a luminescence that is a linear function of time. Therefore, their model is not compatible with any measured delayed luminescence. Moreover, the functions that they use to describe the oscillatory behaviour of delayed luminescence are not solutions of the coupling equations to be solved.Comment: 2 pages, no figur

    Concerted Complex Assembly and GTPase Activation in the Chloroplast Signal Recognition Particle

    Get PDF
    The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRP–SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein

    Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors

    Full text link
    Detection of supernova relic neutrinos could provide key support for our current understanding of stellar and cosmological evolution, and precise measurements of these neutrinos could yield novel insights into the universe. In this paper, we studied the detection potential of supernova relic neutrinos using linear alkyl benzene (LAB) as a slow liquid scintillator. The linear alkyl benzene features good separation of Cherenkov and scintillation lights, thereby providing a new route for particle identification. We further addressed key issues in current experiments, including (1) the charged current background of atmospheric neutrinos in water Cherenkov detectors and (2) the neutral current background of atmospheric neutrinos in typical liquid scintillator detectors. A kiloton-scale LAB detector at Jinping with O\mathcal{O}(10) years of data could discover supernova relic neutrinos with a sensitivity comparable to that of large-volume water Cherenkov detectors, typical liquid scintillator detectors, and liquid argon detectors.Comment: 9 pages, 6 figure

    Bakterioklorofill fluoreszcencia, mint a fotoszintetikus baktĂ©riumok fiziolĂłgiai ĂĄllapotĂĄnak jelzƑrendszere

    Get PDF
    Photosynthesis is a biological process whereby the energy of the Sun is captured and stored by series of events that convert the free energy of light into different forms of free energy needed to feed cellular processes. (Blankenship 2014). The photosynthesis provides the foundation for essentially all life and has altered the Earth itself over geologic time profoundly. It provides all of our foods and most of our energy resources. Since essentially all energy used on Earth can be traced back to the photosynthetic transformation of solar energy into chemical energy, it is not surprising that the study of photosynthesis is at the center of scientific interest (Govindjee et al. 2005; Eaton-Rye et al. 2012; Niederman 2017). In photosynthetic bacteria, the energy conversion processes are considerably simpler than in green plants. While there are two photochemical reactions in green plants, there is only one in the bacteria. In contrast to the linear electron transport chain of green plants, the electron transport in bacteria is cyclic, in which the free energy of the charge pair produced in the reaction center (RC) is utilized by a cyclic pathway of electron building up a proton gradient across the photosynthetic membrane. The reaction center and the cytochrome bc1 complex (via the Q-cycle) constitute a proton-pump mechanism that translocates protons from the cytoplasmic side to the periplasmic side of the membrane. In the modern photosynthesis research, the non-sulfur type of purple bacteria plays a significant role, because the three-dimensional determination of the reaction center at atomic level (Deisenhofer et al. 1984) has made it possible to identify the structure and function of a photosynthetic energy conversion system. Although the details of the transformation of energy may vary in different species, there are structural and functional similarities. The bacterial reaction center has a very high photochemical quantum yield (~ 100%) since nearly all of the absorbed photons create charge pairs (Wraight and Clayton 1974). The highest free-energy loss relates to the reduction of the primary quinone (QA), which also means that physiological conditions make this process irreversible. The photosynthetic bacteria protect and operate their energy conversion system with remarkable efficiency and rate. An important part of this process is the light-dependent production and protection of tripled states of bacteriochlorophylls (BChl) essential for the survival of photosynthetic organisms. The energy of the BChl tripled state can be transmitted easily to triplet molecular oxygen (3O2) that generates harmful singlet excited oxygen (1O2*, strong oxidant). To avoid this reaction, several pathways are operating in all of which carotenoid (Car) pigments play prominent role. In addition to high light intensity, photosynthetic bacteria are exposed to numerous stress effects including heavy metal ions. The organisms can maintain their functions even under harmful conditions. How do they do it and what can be learned from these experiences? What makes the intact photosynthetic bacterium and its reaction center robust and yet flexible enough to function efficiently under different stress conditions? These are the fundamental questions I set in the frontline of the dissertation

    Polarized time-resolved fluorescence of C-phycocyanin from Mastigocladus laminosus

    Get PDF

    Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements — Method, rationale, and results on the activation energy of dioxygen formation

    Get PDF
    AbstractThe analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 Όs to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O–O bond formation [M. Haumann, P. Liebisch, C. MĂŒller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019–1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 Όs (at 20 °C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 °C, pH 6.4). In the second part of the study, the temperature dependence (−2.7 to 27.5 °C) of the rate constant of dioxygen formation (600/s at 20 °C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained

    Dynamical Consequences of Bandpass Feedback Loops in a Bacterial Phosphorelay

    Get PDF
    Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are “bandpass”-like, in the sense that activation occurs within a limited band of Spo0A~P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation
    • 

    corecore