Current Research in Photosynthesis

Volume I

Proceedings of the VIIIth International Conference on Photosynthesis Stockholm, Sweden, August 6–11, 1989

edited by

M. BALTSCHEFFSKY

Department of Biochemistry, University of Stockholm, Stockholm, Sweden

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

CONTENTS TO VOLUME I

General Contents	v
Contents Volume I	VII
Preface	XXI
Acknowledgments	XXIII
Organizing Committees	xxv
Opening Speech	XVII
1. Reaction Centers from Purple Bacteria	
Theory and Experiment in Photosynthetic Electron Transfer R.A. Marcus	1
Electron Transfer Dynamics in Photosynthesis J. Jortner, M. Bixon, M.E. Michel-Beyerle	11
Views on Primary Charge Separation in Reaction Centers of Photosynthetic Bacteria M.E. Michel-Beyerle, A. Ogrodnik	19
Primary Charge Separation in the Reaction Centers of Rhodobacter Sphaeroides: Evidence for a Sequential Electron Transfer via the Accessory BacteriochlorophyllW. Zinth, W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. Stilz	27
Primary Electron Transfer Mechanisms in Bacterial Reaction Centers W.W. Parson, S. Creighton, ZT. Chu, A. Warshel	31
Protonation of Quinones in Reaction Centers from <i>Rb. Sphaeroides</i> G. Feher, P.H. McPherson, M. Paddock, S.H. Rongey, M. Schönfeld, M.Y. Okamura	39
Electrostatic Analysis of the Midpoints of the Cofactors in the Reaction Center Protein of <i>Rp. Viridis</i> M.R. Gunner, B. Honig	47
Mutagenesis of Reaction Center Histidine L173 Yields an L-Side Heterodimer E.J. Bylina, D.C. Youvan	53
Structure of the Reaction Center from <i>Rhodobacter sphaeroides</i> : Further Refinement of R-26 and 2.4.1 Structures and Interactions Between the Reaction Center and Herbicides J.P. Allen, E.J. Lous, G. Feher, A. Chirino, H. Komiya, D.C. Rees	61
Is There a Proteic Substructure Common to All Photosynthetic Reaction Centers? B. Robert, P. Moenne-Loccoz	65
FTIR Studies of Light-Induced Intramolecular Processes on Crystals and Reconstituted Reaction Centers from <i>Rhodopseudomon as Viridis</i>	69
Structural Changes of the Bacteriochlorophyll Dimer in Reaction Centers of Photosynthetic Bacteria as Studied by Infrared Spectroscopy H. Hayashi, E.H. Morita, M. Tasumi	73

VIII

M. Bauscher, K. Bagley, G. Feher, E. Nabedryk, J. Breton, W. Mäntele Infrared Difference Spectroscopy of Pigments and Redox Components in the Bacterial Reaction Center: Comparison with Model Compounds W. Mäntele, R. Hienerwadel, M. Bauscher, M. Leonhard, D.A. Moss, E. Nabedryk, D. Thibodeau, J. Breton Model Compound Studies of Pigments Involved in Photosynthetic Energy Conversion: Infrared (IR)-Spectro-Electrochemistry of Chlorophylls and Pheophytins M. Leonhard, E. Nabedryk, G. Berger, J. Breton, W. Mäntele Simulation of Optical Properties of the Reaction Center from <i>Rhodopseudomonas viridis</i> Y. Won, R.A. Friesner Theoretical Investigations of Reaction Center Chromophores B. Källebring, Ö. Hansson, S. Larsson Excited-State Properties of Bacteriochlorophyll-A and of Bacterial Photosynthetic Reaction Centers as Revealed by Picosecond Absorption Studies M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic Bacteriocherophyle, J.R. Norris, E.J. Bylina Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers S. B. So, Boxer, D. J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck Fine Structure of the Absorption Band of the Primary Electr	FTIR Studies of the D ⁺ Q _A ⁻ and D ⁺ Q _B ⁻ States in Reaction Centers from <i>Rb. sphaeroides</i> K.A. Bagley, E. Abresch, M.Y. Okamura, G. Feher, M. Bauscher, W. Mäntele, E. Nabedryk, J. Breton	77
Reaction Center: Comparison with Model Compounds 85 W. Mäntele, R. Hienerwadel, M. Bauscher, M. Leonhard, D.A. Moss, E. Nabedryk, D. Thibodeau, J. Breton 86 Model Compound Studies of Pigments Involved in Photosynthetic Energy Conversion: Infrared (IR)-Spectro-Electrochemistry of Chlorophylls and Pheophytins 89 Model Compound Studies of Pigments Involved in Photosynthetic Energy Conversion: Infrared (IR)-Spectro-Electrochemistry of Chlorophylls and Pheophytins 89 Simulation of Optical Properties of the Reaction Center from <i>Rhodopseudomonas viridis</i> 97 S. Källebring, Ö. Hansson, S. Larsson 97 Excited-State Properties of Bacteriochlorophyll-A and of Bacterial Photosynthetic Reaction Centers as Revealed by Picosecond Absorption Studies 107 M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson 82 Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic Bacteria Reaction Centers 109 H.A. Frank, C.A. Violette 101 The Stark Effect in Heterodimer Reaction Centers 109 T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina 111 Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers 117 S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck 117 Fine Structure o	Characterized by Thin-Layer Electrochemistry and FTIR/UV/VIS Spectroscopy	81
Infrared (IR)-Spectro-Electrochemistry of Chlorophylls and Pheophylins 85 M. Leonhard, E. Nabedryk, G. Berger, J. Breton, W. Mäntele 91 Simulation of Optical Properties of the Reaction Center from <i>Rhodopseudomonas viridis</i> 92 Y. Won, R.A. Friesner 91 Theoretical Investigations of Reaction Center Chromophores 92 B. Källebring, Ö. Hansson, S. Larsson 91 Excited-State Properties of Bacteriochlorophyll-A and of Bacterial Photosynthetic Reaction 01 Centers as Revealed by Picosecond Absorption Studies 101 M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson 102 Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic 103 Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic 104 Heterodimer Reaction Centers 105 T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina 104 Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and 115 Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers 117 S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. 117 A. V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov 117 Picosecond Absorption Studies on Ph	Reaction Center: Comparison with Model Compounds W. Mäntele, R. Hienerwadel, M. Bauscher, M. Leonhard, D.A. Moss, E. Nabedryk,	85
Y. Won, R.A. Friesner 97 Theoretical Investigations of Reaction Center Chromophores 97 B. Källebring, Ö. Hansson, S. Larsson 97 Excited-State Properties of Bacteriochlorophyll-A and of Bacterial Photosynthetic Reaction 101 M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson 102 Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic 103 Bacterial Reaction Centers 103 H.A. Frank, C.A. Violette 104 The Stark Effect in Heterodimer Reaction Centers 109 T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina 109 Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and 111 Heterodimer Mutant Rb. sphaeroides Reaction Centers 111 S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck 111 Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction 112 M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship 12 Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> 12 T. Mar, G. Gingras 12 Measurement of the Extent of Electron Transfer to the Bacteriopheop	Infrared (IR)-Spectro-Electrochemistry of Chlorophylls and Pheophytins	89
B. Källebring, Ö. Hansson, S. Larsson Excited-State Properties of Bacteriochlorophyll-A and of Bacterial Photosynthetic Reaction Centers as Revealed by Picosecond Absorption Studies 107 M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson 107 Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic 107 Bacterial Reaction Centers 107 H.A. Frank, C.A. Violette 107 The Stark Effect in Heterodimer Reaction Centers 109 T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina 109 Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers 117 S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck 117 Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction Centers at 1.7 K 117 A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov 112 Picosecond Absorption Studies on Photosynthetic Reaction Centers of <i>Chloroflexus aurantiacus</i> 12 M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship 12 Phototrapping of Mono- and Di-Aninoic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> 12 T. Mar, G. Gingras		93
Centers as Revealed by Picosecond Absorption Studies101M. Becker, V. Nagarajan, D. Middendorf, M.A. Shield, W.W. Parson101Bacteriochlorophyll-to-Carotenoid Triplet-Triplet Energy Transfer in Photosynthetic102Bacterial Reaction Centers103H.A. Frank, C.A. Violette104The Stark Effect in Heterodimer Reaction Centers105T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina105Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers117S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck117Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction Centers at 1.7 K117A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov12Picosecond Absorption Studies on Photosynthetic Reaction Centers of <i>Chloroflexus auran- tiacus</i> 12M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship12Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> T. Mar, G. Gingras12Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of <i>Rhodopseudomonas viridis</i> D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski12Unidirectionality of Charge Separation in Reaction Centers of <i>Rb. sphaeroides</i> and <i>Chloroflexus auraniacus</i> W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,13		97
Bacterial Reaction Centers103H.A. Frank, C.A. Violette104The Stark Effect in Heterodimer Reaction Centers105T. Dimagno, A. Angerhofer, J.R. Norris, E.J. Bylina104Electric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers115S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck116Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction Centers at 1.7 K117A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov117Picosecond Absorption Studies on Photosynthetic Reaction Centers of <i>Chloroflexus auran- tiacus</i> 12M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship12Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> T. Mar, G. Gingras12Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of <i>Rhodopseudomonas viridis</i> D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski12Unidirectionality of Charge Separation in Reaction Centers of <i>Rb. sphaeroides</i> and <i>Chloroflexus aurantiacus</i> W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,13	Centers as Revealed by Picosecond Absorption Studies	101
T. Dimagno, A. Angerhofer, J.R. Norris, E.J. BylinaElectric Field Effects on the PS Electron Transfer Kinetics and Spectra of Wild-Type and Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers111S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck111Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction Centers at 1.7 K111A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov112Picosecond Absorption Studies on Photosynthetic Reaction Centers of <i>Chloroflexus auran- tiacus</i> 12M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship12Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> T. Mar, G. Gingras12Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of <i>Rhodopseudomonas viridis</i> D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski12Unidirectionality of Charge Separation in Reaction Centers of <i>Rb. sphaeroides</i> and <i>Chloroflexus aurantiacus</i> W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,13	Bacterial Reaction Centers	105
 Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C. Schenck Fine Structure of the Absorption Band of the Primary Electron Donor in Bacterial Reaction Centers at 1.7 K A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov Picosecond Absorption Studies on Photosynthetic Reaction Centers of <i>Chloroflexus aurantiacus</i> M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> T. Mar, G. Gingras Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of <i>Rhodopseudomonas viridis</i> D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski Unidirectionality of Charge Separation in Reaction Centers of <i>Rb. sphaeroides</i> and <i>Chloroflexus aurantiacus</i> W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato, 		109
Centers at 1.7 K117A.V. Klevanik, A.Ya. Shkuropatov, A.O. Ganago, V.A. Shuvalov117Picosecond Absorption Studies on Photosynthetic Reaction Centers of Chloroflexus auran- tiacus12M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship12Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of Ectothiorhodospira sp. T. Mar, G. Gingras12Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of Rhodopseudomonas viridis D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski12Unidirectionality of Charge Separation in Reaction Centers of Rb. sphaeroides and Chloroflexus aurantiacus W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,13	Heterodimer Mutant <i>Rb. sphaeroides</i> Reaction Centers S.G. Boxer, D.J. Lockhart, S. Hammes, L. Mazzola, C. Kirmaier, D. Holten, D. Gaul, C.	113
tiacus12M. Becker, D. Middendorf, V. Nagarajan, W.W. Parson, J.E. Martin, R.E. Blankenship12Phototrapping of Mono- and Di-Anionic Bacteriopheophytin in the Photoreaction Center of <i>Ectothiorhodospira sp.</i> T. Mar, G. Gingras12:Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of <i>Rhodopseudomonas viridis</i> 	Centers at 1.7 K	117
Ectothiorhodospira sp.12:T. Mar, G. Gingras12:Measurement of the Extent of Electron Transfer to the Bacteriopheophytin in the M-Subunit in Reaction Centers of Rhodopseudomonas viridis D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski12:Unidirectionality of Charge Separation in Reaction Centers of Rb. sphaeroides and Chloroflexus aurantiacus W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,13:	tiacus	121
in Reaction Centers of <i>Rhodopseudomonas viridis</i> 129 D.M. Tiede, E.C. Kellogg, S. Kolaczkowski, M.R. Wasielewski Unidirectionality of Charge Separation in Reaction Centers of <i>Rb. sphaeroides</i> and <i>Chloroflexus aurantiacus</i> 133 W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,	Ectothiorhodospira sp.	125
Chloroflexus aurantiacus 13: W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,	in Reaction Centers of Rhodopseudomonas viridis	129
	Chloroflexus aurantiacus W. Aumeier, U. Eberl, A. Ogrodnik, M. Volk, G. Scheidel, R. Feick, M. Plato,	133

 High Power Rydmr Spectra of P⁺H⁻ in Reaction Centers of Photosynthetic Bacteria E. Lang, W. Lersch, P. Tappermann, W.J. Coleman, D.C. Youvan, R. Feick, M.E. Michel-Beyerle 	137
Endor Studies of the Intermediate Electron Acceptor Radical Anion I ⁻ · in Reaction Centers of <i>Rps. viridis</i> W. Lubitz, B. Bönigk, M. Plato, R.A. Isaacson, M.Y. Okamura, G. Feher	141
Absorption Detected Magnetic Resonance (ADMR) and Holeburning Measurements on Reaction Center Triplet States of <i>Rhodobacter sphaeroides R26</i> J. Greis, A. Angerhofer, R. Speer, J.U. von Schütz, J. Ullrich, H.C. Wolf	145
Reconstitution of Photochemical Activity in <i>Rhodobacter capsulatus</i> Reaction Centers Containing Mutations at Tryptophan M-250 in the Primary Quinone Binding Site W.J. Coleman, E.J. Bylina, D.C. Youvan	149
 How Conclusive is Mutagenetic Replacement of TRP M250 in Photosynthetic Reaction Centers? W.J. Coleman, D.C. Youvan, W. Aumeier, U. Eberl, M. Volk, E. Lang, J. Siegl, R. Heckmann, W. Lersch, A. Ogrodnik, M.E. Michel-Beyerle 	153
Resolution of <i>in situ</i> Interaction Energies Between Molecules and the Reaction Center Q _A Site: Implications for Electron Transfer Function K. Warncke, P.L. Dutton	157
Site-Directed Mutagenesis of Reaction Centers from <i>Rhodobacter sphaeroides</i> M.L. Paddock, S.H. Rongey, J.W. Farchaus, G. Feher, M.Y. Okamura	161
Kinetic Correlation Between H ⁺ -Binding Semiquinone Disappearance and Quinol Forma- tion in reaction centers of <i>Rb. sphaeroides</i> P. Maróti, C.A. Wraight	165
Site-Directed Mutagenesis of <i>Rhodobacter sphaeroides</i> Reaction Center: The Role of Tyrosine L222E. Takahashi, P. Maróti, C.A. Wraight	169
 The Herbicide Resistant Mutant T1 from <i>Rhodopseudomonas viridis</i> Altered Herbicide Binding and Three-Dimensional Structure I. Sinning, J. Koepke, B. Schiller, P. Mathis, A.W. Rutherford, H. Michel 	173
Synthesis, Reconstitution and EPR Spectroscopy of Artificial Quinone Electron Acceptors in Reaction Centers from Purple Bacteria BL. Liu, L. Yang, M.R. Fischer, A.J. Hoff	177
Factors Affecting Electron Spin Polarization in Photosynthetic Systems M.C. Thurnauer, L.L. Feezel, A.L. Morris, U. Smith, J.R. Norris	181
The Thermodynamic Characteristic of Four-Heme Cytochrome C from <i>Rhodopseudomonas</i> viridis Reaction Centers S.M. Dracheva, A.L. Drachev, V.P. Shinkarev	185
Functional Heterogeneity in the Reaction Centre Photochemistry of <i>Rhodopseudomonas</i> viridis at Cryogenic Temperatures M.C.W. Evans, J.A.M. Hubbard	189
Evolutionary Relationships Between Reaction Center Complexes With and Without Cytochrome c Subunits in Purple Bacteria K. Matsuura, K. Shimada	193
On the Role of Tyrosine L162 in the Re-Reduction of the Reaction Center Special Pair by Cytochrome C ₂ J.W. Farchaus, J. Wachtveitl, P. Mathis, D. Oesterhelt	197

IX

The <i>PUF</i> B,A,L,M Genes are not Sufficient to Restore the Photosynthetic Plus Phenotype to a <i>PUF</i> L,M,X Deletion Strain J.W. Farchaus, H. Gruenberg, K.A. Gray, J. Wachtveitl, D. Oesterhelt	201
Significance of Water Molecules in Keeping Structure Integrality of Purple Membrane Z. Zhenglian, T. Jie, Z. Yushu, L. Fan	205
2. Photosystem II	
Photoregulation of Protein Turnover in the PSII Reaction Center B.M. Greenberg, S. Sopory, V. Gaba, A.K. Mattoo, M. Edelman	209
The Topology of the Reaction Center Polypeptides of Photosystem II A. Trebst, B. Depka, M. Kipper	217
Properties and Stability of the Isolated Photosystem Two Reaction Centre D.J. Chapman, K. Gounaris, I. Vass, J. Barber	223
 System for Site-Directed Mutagenesis in the <i>psbDI/C</i> Operon of <i>Synechocystis sp.</i> PCC 6803 W. Vermaas, J. Charité, B. Eggers 	231
Structures and Organization on the Oxidizing Side of Photosystem II G.T. Babcock, B.A. Barry, J.C. de Paula, M. El Deeb, J. Petersen, R.J. Debus, I. Sithole, L. McIntosh, N.R. Bowlby, J. Dekker, C.F. Yocum	239
 Photoactivation and Photoinactivation of Photosystem II After a Complete Removal of Manganese from Pea Subchloroplast Particles V.V. Klimov, G. Ananyev, S.I. Alllakhverdiev, S.K. Zharmukhamedov, M. Mulay, U. Hegde, S. Padhye 	247
 Progress Towards the Production and Analysis of H₂O Splitting Mutants of the Cyanobacterium Synechocystis sp. PCC6803 R. Burnap, R. Webb, L.A. Sherman 	255
Isolation and Characterization of PS I, PS II and Cytochrome B6/F Complexes from Synechocystis PCC 6803 and A CP43-Less Mutant M. Rögner, P.J. Nixon, B.A. Diner	259
Pigment Content and EPR Characterization of the Photochemical Reaction Center of Photosystem II J.P. Dekker, J. Petersen, N.R. Bowlby, G.T. Babcock, C.F. Yocum	263
Two-Dimensional Crystals of the CP47-D1-D2-Cytochrome b559 Complex of Photosystem II E.J. Boekema, J.P. Dekker, S.D. Betts, C.F. Yocum	267
Refined Purification and Characterization of the D1–D2 Reaction Center of Photosystem II K. Satoh, H. Nakane	271
A Simple Procedure for the Isolation of a Stable D ₁ -D ₂ -Cyt b ₅₅₉ Complex C. Fotinou, D. Ghanotakis	275
 Fluorescence Properties of the Isolated D1/D2/Cytb559 Reaction Centre Complex of Photosystem 2 W.R. Newell, S.L.S. Kwa, F. van Mourik, H. van Amerongen, J. Barber, R. van Gron- delle 	279

Chlorophyll-Protein Complexes, Polypeptide Content and Photochemical Activity in Photosystem II Particles Treated with Trypsin A.A. Moskalenko, N.Yu. Kuznetsova	283
The Oxygen Evolution System in <i>Euglena</i> Chloroplast. Identification and Characterization of the Protein Components Y. Yamamoto, A. Mizobuchi, J. Inagaki	287
Examination of Photosystem II in Heterocysts of the Cyanobacterium <i>Nostoc</i> sp. ATCC 29150 T. Thiel, H.B. Pakrasi, T. Hartnett	291
 Immunological Identification of Polypeptides in Photosystem II Complexes from the Cyanobacterium Anacystis nidulans A.E. Gau, G. Wälzlein, S. Gärtner, M. Kuhlmann, S. Specht, E.K. Pistorius 	295
 Structural and Ultrastructural Organization of Thylakoids in a Constructed Photosystem II Mutant of the Cyanobacterium Synechocystis 6803 F. Nilsson, D.J. Simpson, B. Andersson, C. Jansson 	299
 The Role of Copper in the Structural Organization of Photosystem II in Chloroplast Membranes M. Barón, M. Lachica, A. Chueca, G. Sandmann 	303
Probing of Apoprotein Function in the Photosystem II Reaction Centre by Proteolytic Modification J.B. Marder, J. Barber	307
Purification and C-Terminal Sequence Analysis of Photosystem II Reaction Center Polypep- tide, D1 and D2 H. Nakane, Y. Takahashi	311
A Slowly Turning Over Precursor of the Herbicide-Binding 32 kDa Protein R. Gross, A. Boschetti	315
Crosslinking of LHC II-Less Oxygen-Evolving PS II Complexes with Bifunctional Reagents with Different Chain Lengths I. Enami, Y. Mochizuki, M. Kaneko, T. Kakuno, T. Horio, K. Satoh, S. Katoh	319
Stress from Viral Infection: Inhibition of Photosynthesis Following Infection of Tobacco with Tobacco Mosaic Virus R.A.J. Hodgson, R.N. Beachy, H.B. Pakrasi	323
The Binding of the Extrinsic 33kD Protein to the D1/D2/Cytochrome b-559 Photosystem 2 Reaction Centre Complex K. Gounaris, D.J. Chapman, J. Barber	327
Differential Sensitivity Toward Sulfate Inhibition Among PSII Complexes in Barley Thylakoids M. Beauregard, P.C. Meunier, R. Popovic	331
The Organization of Chlorophyll-Proteins of PSII and PSI on Thylakoid Membrane TY. Kuang, DC. Peng, CQ. Tang, TZ. Li, SQ. Lou, QD. Zhang, BY. Zuo, SQ. Lin	335
The Minor Antenna Complexes in an Oxygen Evolving PSII Preparation R. Barbato, F. Rigoni, M.T. Giardi, G.M. Giacometti	339
Infrared Study of a Photosystem II Submembrane Preparation C. Chapados, S. Lemieux, R. Carpentier	343

XII

 Comparative Study of PSII Low-Molecular-Mass Components Between Synechococcus vulcanus and Higher Plants M. Ikeuchi, H. Koike, K. Mamada, K. Takio, Y. Inoue 	347
Identification of PSI and PSII Components from the Cyanobacterium, Synechococcus by N- Terminal Sequencing H. Koike, M. Ikeuchi, T. Hiyama, K. Mamada, Y. Inoue	351
A New Chl a/b Binding Protein in Photosystem II from Spinach with a M _r of 14 kDa KD. Irrgang, C. Bechtel, J. Vater, G. Renger	355
Characterization of Site-Directed and Hybrid <i>psb</i> C Mutants of <i>Synechocystis</i> 6803 S.D. Carpenter, J. Charite, B. Eggers, W. Vermaas	359
Multiple Replacement Mutagenesis of the <i>PSBEFIJ</i> Operon of <i>Synechocystis</i> PCC 6803 A.L. Eggenberger, P. De Ciechi, H.B. Pakrasi	363
Deletion Mutagenesis of <i>PSBF</i> , the Gene for the β-Subunit of Cytochrome B559 in Synechocystis PCC 6803 K.J. Nyhus, H. Granok, H.B. Pakrasi	367
Chemical Modification of Histidine and Tryosine Residues in Photosystem II G.S. Singhal, R. Paliwal	371
 Functional and Structural Characterization of a Highly Oxygen Evolving PS II Core Complex from Spinach E. Haag, E.J. Boekema, K.D. Irrgang, G. Renger 	375
Topography of Photosystem II Reaction Center Components in Thylakoid Membranes S.I. Allakhverdiev, V.V. Klimov, A.V. Kulikov, V.R. Bogatyrenko, G.I. Likhtenstein	379
Measurement of the Complete Oxidation Kinetics of Q _A – in Spinach Leaves Using Flash Fluorescence R.A. Chylla, J. Whitmarsh	383
Target Analysis of Picosecond Fluorescence Kinetics in Green Algae: Characterization of Primary Processes in Photosystem II α and β CH. Lee, T.A. Roelofs, A.R. Holzwarth	387
The Effect of PH on Photosynthesis in Photosystem 2 Particles J. Crofts, P. Horton	391
Effects of Transpiration on Photochemical and Fluorescence Yields in Leaf Tissue R.B. Peterson	395
Changes in Intrinsic Quantum Yield of Photosystem 2 Observed in Spinach Chloroplasts in vitro D. Rees, P. Horton	399
Lipids in Spinach Photosystem II N. Murata, SI. Higashi, Y. Fujimura	403
Dependence of Chlorophyll Fluorescence Polarization on the Membrane Fluidity in Isolated Photosystem II R. Paliwal, G.S. Singhal	407
ESR Characterisation of the Photosystem 2 Reaction Centre C. Demetriou, C.J. Lockett, S.J. Bowden, J.H.A. Nugent	411
Characterisation of Triplet and Quinone Induced Cation Radical States in the Isolated Photosystem Two Reaction Centre J.R. Durrant, L.B. Giorgi, J. Barber, D.R. Klug, G. Porter	415

XIII

Millisecond Time Resolved EPR of the Spin Polarised Triplet in the Isolated Photosystem II Reaction Centre G. Searle, A. Telfer, J. Barber, T. Schaafsma	419
Structure of the Primary Reactants in Photosystem II: Resonance Raman Studies of D1D2 Particles P. Moenne-Loccoz, B. Robert, M. Lutz	423
Spectral Properties of Isolated Photosystem II Reaction Center Complex at 77K V.L. Tetenkin, B.A. Gulyaev, A.B. Rubin, M. Seibert	427
Protection of the Isolated Photosystem II Reaction Centre Against Photodamage by Remov- ing Oxygen or Adding Silicomolybdate WZ. He, A. Telfer, A. Drake, J. Hoadley, J. Barber	431
Photoaccumulation of Oxidised Electron Donors in the Isolated Photosystem II Reaction Centre Studied by Steady State Light-Induced Absorption Changes A. Telfer, J. Barber	435
Magnetic Field Effects on the Primary Reactions in Photosystem II Ö. Hansson, P. Mathis, K. Satoh	439
On a Presumed Long-Lived Relaxed Radical Pair State in Closed Photosystem II T.A. Roelofs, A.R. Holzwarth	443
Recombination Kinetics of the Radical Pair, P680 ⁺ I ⁻ , in Closed Reaction Centers of PS II as Function of Temperature E. Schlodder, K. Brettel	447
The Primary Charge-Separation Rate in Isolated Photosystem II Reaction Center Complex M.R. Wasielewski, D.G. Johnson, Govindjee, C. Preston, M. Seibert	451
Fluorescence Kinetics of D1/D2 Cytochrome B-559 Reaction Centres B. Crystall, P.J. Booth, J. Barber, D.R. Klug, G. Porter	455
Recombinational Light Emission from Photosystem II Reaction Centers Govindjee, M. van de Ven, C. Preston, M. Seibert, E. Gratton	459
FTIR Spectroscopy of the PS II Intermediary Electron Acceptor Photoreduction in D1D2 Reaction CenterJ. Breton, E. Barillot, S. Andrianambinintsoa, G. Berger, M. Leonhard, W. Mäntele, E. Nabedryk	463
The Shape of the Pump-Probe Fluorescence Induction Curves in Chloroplasts is Determined by the Duration of the Pump Light Flash L.L. France, N.E. Geacintov, J. Breton	467
A Synechocystis PCC 6803 psbA Deletion Mutant and its Transformation with A psbA Gene from a Higher Plant P.J. Nixon, J.G. Metz, M. Roegner, B.A. Diner	471
Kinetic Absorption Spectroscopy Provides Evidence for the Function of Z in (D1,D2) Photosystem-II Reaction Centres P. Mathis, K. Satoh, Ö. Hansson	475
Temperature Dependence of the PS II Reaction Pattern Detected by Flash Induced Fluores- cence Changes H.M. Gleiter, E. Haag, G. Renger	479
Structural Studies of the Stable Tyrosine Radical, Y _D ⁺ , in Photosystem II B.A. Barry, M. El-Deeb, I. Sithole, R. Debus, L. McIntosh, G.T. Babcock	483

XIV

An Eseem Study of the Tyrosyl Donor D in Photosystem II R.G. Evelo, S.A. Dikanov, A.J. Hoff	487
Inactivation of Oxygen Evolving Activity of PS II Membranes by Hydroxyurea GX. Chen, K. Asada	491
Effect of Tetranitromethane on Photosystem II Membranes S. Sano, M. Takahashi, K. Asada	495
Identification of the Iodinated Residues on Photosystem II Reaction Center Subunits Y. Takahashi, K. Kamoh, K. Satoh	499
Photoinhibition of PS II Secondary Donors: Relevance to Photoactivation and Sites of Electron Donation D.J. Blubaugh, G.M. Cheniae	503
 Thermoluminescence (TL) Properties of Scenedesmus Non-Oxygen-Evolving Mutants and Isolated PS II Reaction Centers M. Seibert, TA. Ono, H. Koike, M. Ikeuchi, Y. Inoue, N.I. Bishop 	507
Reversible Anion Interactions Between Q _A and Q _B and Between Z (or D) and Q _A in Leaves and Green Algae F. El-Shintinawy, Govindjee	511
 Anion Effects on the Electron Acceptor Side of Photosystem II in a Transformable Cyanobacterium Synechocystis 6803 J. Cao, Govindjee 	515
EPR Studies on the Proteolytic Modification of the Quinone Binding Region of Photosystem 2S.J. Bowden, C. Demetriou, C.J. Lockett, J.H.A. Nugent	519
The Electron Acceptor Complex of Photosystem 2 from <i>Phormidium laminosum</i> J.A.M. Hubbard, A.R. Corrie, J.H.A. Nugent, M.C.W. Evans	523
EPR Spectroscopy of the Photosystem II Iron-Quinone Acceptor in the Cyanobacterium (Blue-Green Alga) Anacystis nidulans G. Lagenfelt, LE. Andréasson	527
EPR/Endor Studies of Plastoquinone Anion Radical in Photosystem II (Q _A ⁻) and in Organic Solvents F. Macmillan, H. Gleiter, G. Renger, W. Lubitz	531
The Influence of the Quinone-Iron Electron Acceptor Complex on the Reaction Centre Photochemistry of Photosystem II F.J.E. van Mieghem, W. Nitschke, P. Mathis, A.W. Rutherford	535
Alteration of Q _B Activity in Photosystem II N. Bowlby, J. Petersen, G.T. Babcock, C.F. Yocum	539
Comparative Studies of Herbicide Resistant Mutants of <i>Synechocystis</i> 6714 and of Higher Plants AL. Etienne, C. Astier, G. Ajlani, D. Kirilovsky, JM. Ducruet, C. Vernotte	543
Two-Electron Gate in Triazine Resistant and Susceptible Amaranthus hybridus S. Taoka, A.R. Crofts	547
Properties of the Photosystem 2 Electron Acceptors J.H.A. Nugent, S.J. Bowden, A.R. Corrie, C. Demetriou, M.C.W. Evans, J.A.M. Hub- bard, C.J. Lockett	551

Reversibility of Variable Fluorescence at 77 K up to 100% Indicating the Redox States of Q_A and Q_B in Leaves B. Schwarz, R.J. Strasser	555
Dark Relaxation of Variable Fluorescence of Green Leaves Measured by Means of Double Beam Fluorimeter N.V. Karapetyan, N.G. Bukhov, M.G. Rakhimberdieva	559
 PH-Dependent Quenching of Chlorophyll Fluorescence in Isolated PSII Particles: Dependence on the Redox-Potential A. Krieger, E. Weis 	563
A Differential Equation Model for the Description of the Fast Fluorescence Rise (O-I-D-P- Transient) in Leaves E. Baake, R.J. Strasser	567
Four Kinetic Phases Associated with the Fluorescence Induction Curve of DCMU-Poisoned Chloroplasts J. Sinclair, S.M. Spence	571
The State of the Iron in the Oxygen-Evolving Core Complex (OECC) of Phormidium Laminosum by Mossbauer Spectroscopy D.L. Williamson, R. Picorel, M. Seibert	575
Competition of Anthraquinones for the Q _B Binding Domain K.K. Karukstis, M.A. Berliner, C.J. Jewell, K.T. Kuwata	569
Interactions Between Various Bezoquinones and the Q _B Site of Oxygen-Evolving Photosystem II Preparations from the Thermophilic Cyanobacterium Synechococcus elongatus K. Satoh, Y. Kitatani, T. Ichimura, S. Katoh	583
The Binding Behaviour of Cyanoacrylate PS ₁₁ Inhibitors J. Phillips	587
Labeling of a 41 KDA Protein in Isolated Spinach Thylakoids A. Donner, W. Oettmeier	591
Atrazine Inhibition of Photosystem II is Modulated by Specific Inorganic Cofactors In- volved in Oxygen Evolution A. Rashid, R. Carpentier	595
Mechanism of Action of the Herbicidal Compound LY 181977 V.J. Streusand, R.J. Eilers	599
 The Effect of Phenylurea and Phenylbiuret Herbicides on the Q_A⁻-Fe ESR Signal of Photosystem 2 J. Whitelegge, S. Bowden, J. Nugent, P. Jewess, P. Camilleri, J. Bowyer 	603
The Function of the Photosystem II Reaction Center – An Alternative Model Z.G. Cerovic	607
Thermodynamics of the Primary Electron Transfer Reaction in D1/D2 Cytochrome B-559 Reaction Centres P.J. Booth, B. Crystall, J. Barber, D.R. Klug, G. Porter	611
The Dynamics of Variable Fluorescence of Photosynthetic Systems at 77 K Correlated to the Redox Carriers Q_A/Q_B R.J. Strasser	615
 Photocurrent Generation from Water Via PS II Membranes Immobilized on Dye- Derivatized TiO₂ Electrodes K.K. Rao, M. Grätzel, M.C.W. Evans, M. Seibert, D.O. Hall 	619

XVI

High Resolution Emission Spectra of One Second Delayed Fluorescence from Chloroplasts E. Hideg, R.Q. Scott, H. Inaba	623
Uncoupler Titrations of Energy-Dependent Quenching of Chlorophyll Fluorescence in Chloroplasts G. Noctor, D. Rees, P. Horton	627
The Use of Light Pulses to Investigate the Relaxation in the Dark of Chlorophyll Fluores- cence Quenching in Barley Leaves R.G. Walters, P. Horton	631
 Improved Method for the Accurate Determination of the Constant Fluorescence F₀ of Chlorophyll a R. Popovic, JC. Morisette, G. Samson 	635
Interaction of CPa-1 with Components Involved with Water Oxidation in Photosystem II: Mapping of NHS-Biotinylation Sites and the Epitope of the Monoclonal Antibody FAC2 to the Large Extrinsic Loop Region of CPa-1 L.K. Frankel, T.M. Bricker	639
Chlorophyll-Protein Interactions in Photosystem II. Resonance Raman Spectroscopy of the D1-D2-Cytochrome b ₅₅₉ Complex and the 47 kDa Protein J.C. de Paula, D.F. Ghanotakis, N.R. Bowlby, J.P. Dekker, C.F. Yocum, G.T. Babcock	643
Modification of the Stern–Volmer Analysis for the Study of the Mercury Quenching Effect in <i>Dunaliella tertiolecta</i> R. Popovic, G. Samson, JC. Morisette	647
Prediction of Structure of 33 kD Extrinsic Polypeptide of Thylakoid M.K. Raval, P.N. Joshi, R.K. Rawal, U.C. Biswal	651
The Role of Carotenoids in Light-Induced Assembly of Photosystem II in Mutant C-6D of Scenedesmus obliquus K. Humbeck, S. Römer, H. Senger	655
Relationship of CHL A/B-Binding and Related Polypeptides in PSII Core Particles B.R. Green, E.L. Camm	659
The Effect of Electron Cycling Around PS II on Fluorescence Induction: Mathematical Modelling H. Eichelmann, E. Weiss, A. Laisk	663
Fluorescence Lifetime Studies of Cyanobacterial Photosystem II Mutants E. Bittersmann, W. Vermaas	667
Studies of the Spinach PS II Core 28 kDa Protein Using a Monoclonal Antibody R.A. Reuter, L.A. White, S.P. Berg	671
3. O ₂ Evolution	
Photosystem II and Water Oxidation K. Sauer	675
The Manganese Cluster of the Water-Splitting Enzyme R.C. Prince, S.P. Cramer, G.N. George	685
Oxygen Evolution: UV Spectroscopy and O ₂ Polarography H.J. van Gorkom, P.J. van Leeuwen, M.H. Vos, J.P.F. Barends	693

XVII

Low pH Treatment of Photosystem II Upshifts the Threshold Temperature of S ₁ -to-S ₂ Transition in the Oxygen Evolving System TA. Ono, Y. Inoue	701
Evaluation of Structural Possibilities for the Mn Centers of the OEC V.L. Pecoraro, D. Kessissoglou, X. Li, M.S. Lah, S. Saadeh, C. Bender, J.A. Bonadies, E. Larson	709
Further Characterization of the Modified S ₂ and S ₃ EPR Signals Observed in Ca ²⁺ -Depleted Photosystem-II Reconstituted with the 17 and 23 kDa Polypeptides A. Boussac, JL. Zimmermann, A.W. Rutherford	713
EPR Studies on Calcium Depletion of PS2 by pH 8.3 Treatment C.J. Lockett, C. Demetriou, S.J. Bowden, J.H.A. Nugent	717
Coupling of the PS2 Reaction Center to the O ₂ -Evolving Center Requires a Very High Affinity Ca ²⁺ Sile	721
K. Kalosaka, W.F. Beck, G. Brudvig, G. Cheniae	
The Effect of Na ⁺ on the Activation of Water Oxidation by Ca ²⁺ and Sr ²⁺ J.P. Green, W.D. Frasch	725
Inorganic Ions Affect Reductant-Mediated Inhibition of the Manganese Cluster of PSII R. Mei, C.F. Yocum	729
Calcium Activated Oxygen Evolution C.M. Waggoner, C.F. Yocum	739
Inactivation of Oxygen Evolution by Low pH-Treatment of Two Rice Photosystem II Preparations Containing One and Two Bound Ca2 ⁺ JR. Shen, S. Katoh	737
Abnormally Stable S ₂ Formed in PSII During Stringent Depletion of Ca ²⁺ by NaCl/EDTA Wash Under Illumination TA. Ono, Y. Inoue	741
No Evidence for a Specific Function of Ca ²⁺ and Cl in Oxygen Evolution of Isolated PSII- Complexes from Thermophilic Cyanobacteria S. Pauly, E. Schlodder, H.T. Witt	745
The Chloride Demand in Oxygen Evolution is Determined by the Protein Structural In- tegrity Within Photosystem II T. Wydrzynski, F. Baumgart, F. MacMillan, G. Renger, T. Vänngård	749
 S-Band and X-Band EPR Multiline Signals of BR – and NO₃₊-Treated PSII-Enriched Membranes A. Haddy, T. Vänngård 	753
Manganese-Binding Site of Photosystem II Reaction Center M. Takahashi	757
Parallel Polarization EPR Studies of the Oxygen-Evolving Complex of Photosystem II S.L. Dexheimer, K. Sauer, M.P. Klein	761
On the Possibility of Water Coordination to the Manganese Cluster of PS II Studied by Endor A. Kawamori, T. Inui	765
 Pulsed EPR Studies of the Manganese Center of the Oxygen-Evolving Complex of Photosystem II R.D. Britt, V.J. Derose, V.K. Yachandra, D.H. Kim, K. Sauer, M.P. Klein 	769
K.D. Ditty, 1.J. Derose, 1.K. Laenandra, D.H. Killi, K. Sauer, 1911. Kielli	

XVIII

How <i>Does</i> Manganese Oxidize Water for Photosynthetic O ₂ Production? G.C. Dismukes, J.E. Sheats, P. Mathur, R. Czernuszewicz	773
 Low Frequency (3.9 GHz) Studies of the S₂-State EPR Signals from the O₂-Evolving Complex A. Haddy, R. Aasa, Ö. Hansson 	777
Low Temperature EPR Spectra of PSII Preparations that Contain Fractional Amounts of Manganese E. Dolan, J.P. Green, W.D. Frasch	781
The Two Conformation of the S ₂ State and Their Role in Photosynthetic Oxygen Evolution LE. Andréasson	785
Structures and Oxidation States of MN in Several S-States of Photosystem II Determined by X-Ray Absorption Spectroscopy R.D. Guiles, V.K. Yachandra, A.E. McDermott, V.J. Derose, JL. Zimmermann, K. Sauer, M.P. Klein	789
An Exafs Study of the Manganese O ₂ -Evolving Complex of Photosystem 2 A.R. Corrie, M.C.W. Evans, J.A.M. Hubbard	793
X-Ray Absorption Spectroscopy of the Photosynthetic Oxygen Evolving Complex J.E. Penner-Hahn, R.M. Fronko, G.S. Waldo, C.F. Yocum, N.R. Bowlby, S.D. Betts	797
 High-Resolution Xanes Spectra from Manganese Ions in Spinach Photosystem II and a Proposal for the Protein Binding Sites M. Kusunoki, T. Ono, M. Suzuki, A. Uehara, T. Matsushita, H. Oyanagi, Y. Inoue 	801
Stabilization Reactions at the Donor Side of Photosystem II. A Study of External Electric Field Induced Luminescence M.H. Vos, H.J. van Gorkom	805
Charge Equilibrium Between the Water-Oxidizing Complex and Donor D in Photosystem II I. Vass, Z. Deák, S. Demeter, É. Hideg	809
Structural Organization and Charge Distribution on the Donor Side of Photosystem II Y. Isogai. S. Itoh, M. Nishimura	813
Electron Spin-Lattice Relaxation of the Stable Tyrosine Radical D ⁺ in Photosystem II W.F. Beck, J.B. Innes, G.W. Brudvig	817
 Flash-Induced ¹H NMR Relaxation Enhancements from the OEC: Analysis of Temperature and Magnetic Field Dependence S. Yeh, T.H. Bayburt, R.R. Sharp 	821
Characterization of Monoclonal Antibodies Which Recognize the 33, 24, and 17 kDa Extrinsic Proteins of Photosystem II T.M. Bricker, L.K. Frankel	825
Identification of Ligands to Manganese and Calcium in Photosystem II by Site-Directed Mutagenesis R.J. Debus, A.P. Nguyen, A.B. Conway	829
Reinvestigation of the Stoichiometry of Proton Release Upon Photosynthetic Water Oxida- tion M.J. Delrieu, F. Rosengard	833
 Functional Mechanism in Reaction Center II Based on Analysis of 7 Time-Resolved Optical Difference Spectra and Hydroxylamine "Titration" H.T. Witt, K. Brettel, S. Gerken, H. Kretschmann, S. Pauly, Ö. Saygin, E. Schlodder 	837

XIX

A Period-Four Infrared Signal from Active Water-Splitting Enzyme R. Hienerwadel, W. Kreutz, W. Mäntele	841
Thermodynamic, Kinetic and Mechanistic Aspects of Photosynthetic Water Oxidation G. Renger, J. Messinger, B. Hanssum	845
Temperature Dependence of O ₂ -Oscillation Pattern of Spinach Thylakoids J. Messinger, G. Renger	849
 A Comparison Between the Kinetics of Oxygen Evolution and Fluorescence Induction of Chlorella Algae (Part 1) D. Hoffmann, J. Putzger, V. Gerhardt 	853
A Comparison Between the Kinetics of Oxygen – and Fluorescence-Induction of Chlorella Algae – Part II: Influence of Excitation-Intensity. DCMU, DBMIB and Hydroxilamine D. Hoffmann, J. Putzger, V. Gerhardt	857
Effects of ABDAC and DCMU on Photosystem II in the Filamentous Cyanobacterium Oscillatoria chalybea K.P. Bader	861
Influence of Anaerobiosis on Oxygen Gas Exchange in the Cyanobacterium Oscillatoria chaybea G.H. Schmid, K.P. Bader	865
Investigation of Ph-Change-Patterns of Photosystem II Membrane Fragments from Spinach U. Wacker, E. Haag, G. Renger	869
On the Stochiometry of Proton Release by the Oxygen-Evolving System J. Lavergne, F. Rappaport	873
Is the Proton Release Due to Water Oxidation Directly Coupled to Events in the Manganese-Centre? K. Lübbers, W. Junge	877
The Shortcircuit by DCCD of the Proton Pumping Activity of Photosystem II is a Common Feature of all Redox Transitions of the Water Oxidase P. Jahns, W. Junge	881
Electrochemical and Photoelectrochemical Interpretation of the Oxygen Evolution Process T. Watanabe, M. Kobayashi, T. Sagara	885
Oxygen Evolution of Lyophilized Photosystem II Membranes K. Kawamoto, K. Asada	889
Detection of Photosynthetic Oxygen Through Mitochondrial Absorption Changes in Algal Cells J. Lavergne	893
The Catalase-Like Activity Associated with Photosystem II Does Not Require the Man- ganese Cluster J. Quensel, HE. Åkerlund	897
Hydrogen Peroxide Production in Photosystem II Preparations W.P. Schröder, HE. Åkerlund	901
The Mechanism of H_2O_2 Production by the S ₂ State of the Oxygen-Evolving Complex P.L. Fine, W.D. Frasch	905
 Photoactivation of Oxygen Evolution of Wheat Photosystem II Membranes Depleted of Manganese Atoms M. Miyao-Tokutomi, TA. Ono, Y. Inoue 	909

XX

 Weak Light Dependent Coupling of the Photoreduction of Oxygen and the Photoreactiva- tion of Oxygen Evolving Center T. Yamashita, T. Kobayashi, Y. Morita, T. Shoji 	913
Reversible Inhibition of DCMU on the Oxidizing Side of Photosystem II H. Inoué, H. Kamachi, T. Kitamura, N. Tamura	917
Changes in the Room Temperature Fluorescence Spectra During and After the Photoactiva- tion of Oxygen Evolution in Flashed Barley Leaves F. Franck, E. Dujardin	921
Partial Identification of the High-Affinity MN-Binding Site in Scenedesmus obliquus Photosystem II C. Preston, M. Seibert	925
Calcium is a Competitive Inhibitor of the Activation of Oxygen Evolution by Manganese in Conditional Mutants of <i>Scenedesmus obliquus</i> N.I. Bishop, S. Maggard	929
Expression of the 33 kDa Protein from the Oxygen Evolving Complex of Spinach in <i>Escherischia coli</i>A. Seidler, H. Michel	933
Proteolytic Digestion of the N-Terminus of the Extrinsic 33-kDa Protein of the Photosystem II Complex J.J. Eaton-Rye, N. Murata	937
Photochemical Activity of Isolated Chloroplasts in Relation to Flag Leaf Photosynthesis in <i>Triticum aestivum</i> L. and its Wild Relatives K.C. Bansal, Y.P. Abrol	941
Phosphatidylglycerol Effect on Oxygen Evolution Activity of Photosystem II Particles from Barley Chloroplasts M. Fragata, E.K. Nénonéné, F. Bernier	945
Clonal Variation in Oxygen Evolution in <i>Ficus benjamina</i> L. CO. Ottosen, E. Rosenqvist, E. Ögren	949
 EPR, Magnetic Susceptibility and ENDOR Studies of the Water Oxidizing Complex and Dimanganese Models: Consequences of CL-Exchange and CA²⁺ Depletion M. Baumgarten, J. Tso, J. Marino, M. Sivaraja, C.P. Lin, G.C. Dismukes, J.E. Sheats, P. Gast, J.S. Philo 	953
On the Mechanism of Betaine Protection of Photosynthetic Structures in High Salt Environ- ment G.C. Papageorgiou, Y. Fujimura, N. Murata	957
Index of Names	961

PRIMARY CHARGE SEPARATION IN THE REACTION CENTERS OF RHODOBACTER SPHAEROIDES: EVIDENCE FOR A SEQUENTIAL ELECTRON TRANSFER VIA THE ACCESSORY BACTERIOCHLOROPHYLL

W. ZINTH*, W. HOLZAPFEL*, U. FINKELE*, W. KAISER*, D. OESTERHELT**, H. SCHEER***, H.U. STILZ** *Physik Department, Technischen Universität München, München, FRG **Max-Planck-Institut für Biochemie, Martinsried/München, FRG ***Botanisches Institut, Ludwig-Maximilian-Universität, München, FRG

The primary reaction of bacterial photosynthesis - an electron transfer via several prosthetic groups in the so-called reaction center - proceeds extremely rapid on the time-scale of picoseconds. A series of recent experiments gave the following picture of this charge transfer process (data taken for reaction centers from Rhodobacter (Rb.) sphaeroides /1-4/: After excitation of the lowest excited singlet state of the primary electron donor (a "special pair" of bacteriochlorophyll molecules) the excited electronic state P* lives for approximately 3.5ps. The decay of P* is related with the electron transfer away from P. From several time-resolved experiments it was concluded that this first charge transfer carries the electron directly to the bacteriopheophytin H /1,2/. Only very recently we could demonstrate the existence of an additional short-lived intermediate prior to the reduction of the bacteriopheophytin H /4/. We interpreted this intermediate as P^+B^- , i.e. the state where the electron from the special pair P has reduced the monomeric bacteriochlorophyll B to the anion radical B⁻. In the final picosecond reaction the electron arrives (with a time constant of 200 ps) at the quinone QA. It is the purpose of this paper to present additional experimental data supporting a sequential electron transfer via the accessory bacteriochlorophyll.

Reaction centers from Rb. sphaeroides R26.1 and ATCC 17023 were prepared according to the procedure of Ref./4/. All experiments were performed at room temperature. In the time-resolved absorption measurements we used femtosecond exciting pulses ($t_P \approx 100$ fs, repetition rate 10 Hz) at 860 nm in the lowest energy absorption band of the special pair. Direct excitation of B or H via the exciting pulses could be ruled out. Probing of the light-induced absorption changes at various wavelengths, λ_{Pr} , was performed with synchronized pulses (polarized parallel to the exciting pulses) as a function of the time delay, t_D . The excitation energy density was kept low. Less than 14% of the reaction centers were excited by each excitation pulse. Each of the experimental points presented here was averaged over more than one thousand single probing experiments. Absorption data measured as a function of delay time t_D between exciting and probing pulses are shown in Fig.l for two wavelengths, $\lambda_{pr} = 930$ nm (Fig.la) and $\lambda_{pr} = 775$ nm (Fig.lb). At 930 nm stimulated emission (gain) occurs. The signal is dominated by a strong absorption decrease decaying with a 3.5 ps time constant. The data do not exhibit any faster kinetic components. At the probing wavelength of 775 nm the transient absorption data contain additional information. At early delay times there is a pronounced absorption increase, which instantaneously follows the excitation process. Subsequently, a rapid relative absorption decrease is found until $t_D \approx 1$ ps. This transient has a time constant of 0.9 ps. Two additional time constants (3.5 ps and 200 ps) are required to fit the experimental points. These data are consistent with previous results /4/ suggesting that the reaction proceeds according to the following linear reaction scheme: Light absorp-

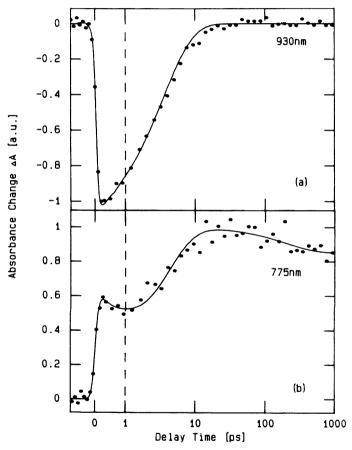


FIGURE 1. Time-resolved absorption data (points) for probing wavelength λ_{pr} =930 nm (Fig. 1.a, Rb. sphaeroides R26.1) and λ_{pr} =775 nm (Fig. 1.b, wild-type sphaeroides ATCC 17023). Excitation wavelength: 860 nm.

tion populates the excited electronic level P* (state I₁) which decays with a time constant τ_1 = 3.5 ps. It populates the subsequent state I₂ which has a shorter lifetime of 0.9 ps. The third intermediate I₃ contains a reduced bacteriopheophytin (state P⁺H⁻). It decays with the well-known time constant of 200 ps to intermediate I₄, where the electron has reached the quinone in state P⁺Q⁻ /5/.

The solid curves of Fig.l were calculated using the kinetic model given above. In Fig.la no contribution by the 0.9 ps and the 200 ps kinetic is necessary to fit the experimental data. The decay of the gain is monoexponential with a 3.5 ps time constant. In Fig.lb a pronounced contribution of the 0.9 ps kinetic (in addition to the 3.5 ps and 200 ps decay) was necessary to obtain a satisfactory fit. The evaluation of the experimental data gives - besides the time constants - information on the amplitudes of the individual kinetic components. These amplitudes can be used to calculate the difference absorption cross-sections for the intermediates at the individual probing wavelengths /6/. This procedure, applied to a set of time-resolved data measured at various probing wavelengths between 720 nm and 970 nm, gave difference spectra for the intermediates. In Fig. 2 the difference

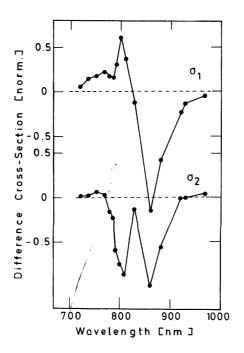


FIGURE 2. Difference spectra of the first two intermediates in the primary reaction of Rb. sphaeroides. The points are calculated from a series of transient absorption measurements. Upper spectrum: The 3.5 ps living excited electronic state P*. Lower spectrum: Second intermediate P*B⁻. absorption cross-sections σ_1 and σ_2 of the intermediates I_1 and I_2 are shown as points (connected by the solid lines for better display). The excited electronic state P* has a difference spectrum (upper curve in Fig.2) with bleaching and/or stimulating emission at λ > 820 nm and excited-state absorption around 800 nm. The second intermediate I₂ shows a different spectrum. The absorption decrease around 860 nm is assigned to the disappearance of the special pair absorption in a state containing P⁺. A second absorbance decrease occurs at 800 nm, where the accessory bacteriochlorophyll molecule initially absorbed. The amplitude of the cross-section decrease at 800 nm is consistent with the disappearance of the absorption of one monomeric bacteriochlorophyll due to the formation of state P'B-. This absorption decrease partially recovers with the formation of state I_3 (P⁺H⁻). Two additional experimental findings (not shown here) support the assignment of the configuration P^+B^- to state I₂: (i) Around 665 nm in the wavelength range where reduced bacteriochlorophyll molecules show a broad absorption increase, state I2 also has strongly increased absorption. (ii) The angle between the transition moment of I_2 at 665 nm (determined in measurements using different polarisations of the probing pulses) and the Qy transition of P agrees with estimations based on the pigment arrangement in the reaction centers /7,8/.

In conclusion: We have performed an improved experimental study of the primary charge transfer process in reaction centers of Rb. sphaeroides. The analysis of kinetic data and transient absorption spectra strongly suggest that the primary charge transfer from the special pair P to the bacteriopheophytin proceeds via the accessory bacteriochlorophyll as a true intermediate. The following stepwise reaction scheme results: After excitation of the special pair P an electron is transferred with a time constant of 3.5 ps to the accessory bacteriochlorophyll B. In the second step the electron proceeds with a time constant of 0.9 ps to the bacteriopheophytin H.

REFERENCES

- 1 J.-L. Martin, J. Breton, A.J. Hoff, A. Migus, A. Antonetti, Proc. Natl. Acad. Sci. USA 83 (1986) 957-961
- 2 J. Breton, J.-L. Martin, A. Migus, A. Antonetti, A. Orszag, Proc. Natl. Acad. Sci. USA 83 (1986) 5121-5125
- 3 C. Kirmaier, D. Holten, W.W. Parson, Biochim. Biophys. Acta 810 (1985) 33-48
- W. Holzapfel, U. Finkele, W. Kaiser, D. Oesterhelt, H. Scheer, H.U. Stilz, W. Zinth, Chem. Phys. Lett. 160 (1989) 1-7
- 5 C.C. Schenck, W.W. Parson, D. Holten, M.W. Windsor, Biophys. J. 36 (1981) 479-489
- 6 H.J. Polland, M.A. Franz, W. Zinth, W. Kaiser, E. Kölling,
- D. Oesterhelt, Biophys. J. 49 (1986) 651-662
- 7 J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, J. Mol. Biol. 180 (1984) 385-398
- 8 J.P. Allen, G. Feher, T.O. Yeates, H. Komiya, D.C. Rees, Proc. Natl. Acad. Sci. USA 84 (1987) 5730-5734