20 research outputs found

    A Kernel-Based Causal Learning Algorithm

    Get PDF
    We describe a causal learning method, which employs measuring the strength of statistical dependences in terms of the Hilbert-Schmidt norm of kernel-based cross-covariance operators. Following the line of the common faithfulness assumption of constraint-based causal learning, our approach assumes that a variable Z is likely to be a common effect of X and Y, if conditioning on Z increases the dependence between X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges by the majority principle. In most experiments with known causal structures, our method provided plausible results and outperformed the conventional constraint-based PC algorithm

    A Kernel Test for Three-Variable Interactions

    Full text link
    We introduce kernel nonparametric tests for Lancaster three-variable interaction and for total independence, using embeddings of signed measures into a reproducing kernel Hilbert space. The resulting test statistics are straightforward to compute, and are used in powerful interaction tests, which are consistent against all alternatives for a large family of reproducing kernels. We show the Lancaster test to be sensitive to cases where two independent causes individually have weak influence on a third dependent variable, but their combined effect has a strong influence. This makes the Lancaster test especially suited to finding structure in directed graphical models, where it outperforms competing nonparametric tests in detecting such V-structures

    Kernel-based Conditional Independence Test and Application in Causal Discovery

    Full text link
    Conditional independence testing is an important problem, especially in Bayesian network learning and causal discovery. Due to the curse of dimensionality, testing for conditional independence of continuous variables is particularly challenging. We propose a Kernel-based Conditional Independence test (KCI-test), by constructing an appropriate test statistic and deriving its asymptotic distribution under the null hypothesis of conditional independence. The proposed method is computationally efficient and easy to implement. Experimental results show that it outperforms other methods, especially when the conditioning set is large or the sample size is not very large, in which case other methods encounter difficulties

    Reinforcement Causal Structure Learning on Order Graph

    Full text link
    Learning directed acyclic graph (DAG) that describes the causality of observed data is a very challenging but important task. Due to the limited quantity and quality of observed data, and non-identifiability of causal graph, it is almost impossible to infer a single precise DAG. Some methods approximate the posterior distribution of DAGs to explore the DAG space via Markov chain Monte Carlo (MCMC), but the DAG space is over the nature of super-exponential growth, accurately characterizing the whole distribution over DAGs is very intractable. In this paper, we propose {Reinforcement Causal Structure Learning on Order Graph} (RCL-OG) that uses order graph instead of MCMC to model different DAG topological orderings and to reduce the problem size. RCL-OG first defines reinforcement learning with a new reward mechanism to approximate the posterior distribution of orderings in an efficacy way, and uses deep Q-learning to update and transfer rewards between nodes. Next, it obtains the probability transition model of nodes on order graph, and computes the posterior probability of different orderings. In this way, we can sample on this model to obtain the ordering with high probability. Experiments on synthetic and benchmark datasets show that RCL-OG provides accurate posterior probability approximation and achieves better results than competitive causal discovery algorithms.Comment: Accepted by the Thirty-Seventh AAAI Conference on Artificial Intelligence(AAAI2023

    Causal Discovery by Kernel Deviance Measures with Heterogeneous Transforms

    Full text link
    The discovery of causal relationships in a set of random variables is a fundamental objective of science and has also recently been argued as being an essential component towards real machine intelligence. One class of causal discovery techniques are founded based on the argument that there are inherent structural asymmetries between the causal and anti-causal direction which could be leveraged in determining the direction of causation. To go about capturing these discrepancies between cause and effect remains to be a challenge and many current state-of-the-art algorithms propose to compare the norms of the kernel mean embeddings of the conditional distributions. In this work, we argue that such approaches based on RKHS embeddings are insufficient in capturing principal markers of cause-effect asymmetry involving higher-order structural variabilities of the conditional distributions. We propose Kernel Intrinsic Invariance Measure with Heterogeneous Transform (KIIM-HT) which introduces a novel score measure based on heterogeneous transformation of RKHS embeddings to extract relevant higher-order moments of the conditional densities for causal discovery. Inference is made via comparing the score of each hypothetical cause-effect direction. Tests and comparisons on a synthetic dataset, a two-dimensional synthetic dataset and the real-world benchmark dataset T\"ubingen Cause-Effect Pairs verify our approach. In addition, we conduct a sensitivity analysis to the regularization parameter to faithfully compare previous work to our method and an experiment with trials on varied hyperparameter values to showcase the robustness of our algorithm

    Meta Learning for Causal Direction

    Full text link
    The inaccessibility of controlled randomized trials due to inherent constraints in many fields of science has been a fundamental issue in causal inference. In this paper, we focus on distinguishing the cause from effect in the bivariate setting under limited observational data. Based on recent developments in meta learning as well as in causal inference, we introduce a novel generative model that allows distinguishing cause and effect in the small data setting. Using a learnt task variable that contains distributional information of each dataset, we propose an end-to-end algorithm that makes use of similar training datasets at test time. We demonstrate our method on various synthetic as well as real-world data and show that it is able to maintain high accuracy in detecting directions across varying dataset sizes

    Efficient Conditionally Invariant Representation Learning

    Get PDF
    We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features φ(X) of data X to estimate a target Y , while being conditionally independent of a distractor Z given Y . Both Z and Y are assumed to be continuous-valued but relatively low dimensional, whereas X and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from Y to kernelized features of Z, which can be done in advance. It is then only necessary to enforce independence of φ(X) from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if φ(X) ⊥⊥ Z | Y . In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features

    Discovering Dynamic Causal Space for DAG Structure Learning

    Full text link
    Discovering causal structure from purely observational data (i.e., causal discovery), aiming to identify causal relationships among variables, is a fundamental task in machine learning. The recent invention of differentiable score-based DAG learners is a crucial enabler, which reframes the combinatorial optimization problem into a differentiable optimization with a DAG constraint over directed graph space. Despite their great success, these cutting-edge DAG learners incorporate DAG-ness independent score functions to evaluate the directed graph candidates, lacking in considering graph structure. As a result, measuring the data fitness alone regardless of DAG-ness inevitably leads to discovering suboptimal DAGs and model vulnerabilities. Towards this end, we propose a dynamic causal space for DAG structure learning, coined CASPER, that integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG. CASPER revises the learning process as well as enhances the DAG structure learning via adaptive attention to DAG-ness. Grounded by empirical visualization, CASPER, as a space, satisfies a series of desired properties, such as structure awareness and noise robustness. Extensive experiments on both synthetic and real-world datasets clearly validate the superiority of our CASPER over the state-of-the-art causal discovery methods in terms of accuracy and robustness.Comment: Accepted by KDD 2023. Our codes are available at https://github.com/liuff19/CASPE
    corecore