277 research outputs found

    A survey of component carrier selection algorithms for carrier aggregation in long term evolution-advanced

    Get PDF
    Given that the demand for real-time multimedia contents that require significantly high data rate are getting of high popularity, a new mobile cellular technology known as Long term Evolution-Advanced (LTE-A) was standardized. The LTE-A is envisaged to support high peak data rate by aggregating more than one contiguous or non-contiguous Component Carriers (CCs) of the same or different frequency bandwidths. This paper provides a survey on the case where the LTE-A is working in backward compatible mode as well as when the system contains only LTE-A users. Note that the backward compatible mode indicates that the LTE-A contains a mixture of the legacy Long Term Evolution Release 8 (LTE) users that support packets (re)transmission on a single CC and the LTE-A users that are capable of utilizes more than one CCs for packets (re)transmission. It can be concluded from the study that the CC selection algorithms for newly-arrived LTE users can benefit from the channel diversity and the load status whereas the carrier aggregation that does not allocate all of the available CCs to the newly arrived LTE-A users shown to be more efficient

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    Resource Allocation in Heterogeneous Networks

    Get PDF

    New Methods of Efficient Base Station Control for Green Wireless Communications

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 이병기.This dissertation reports a study on developing new methods of efficient base station (BS) control for green wireless communications. The BS control schemes may be classified into three different types depending on the time scale — hours based, minutes based, and milli-seconds based. Specifically, hours basis pertains to determining which BSs to switch on or offminutes basis pertains to user equipment (UE) associationand milli-seconds basis pertains to UE scheduling and radio resource allocation. For system model, the dissertation considers two different models — heterogeneous networks composed of cellular networks and wireless local area networks (WLANs), and cellular networks adopting orthogonal frequency division multiple access (OFDMA) with carrier aggregation (CA). By combining each system model with a pertinent BS control scheme, the dissertation presents three new methods for green wireless communications: 1) BS switching on/off and UE association in heterogeneous networks, 2) optimal radio resource allocation in heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA based cellular networks. The first part of the dissertation presents an algorithm that performs BS switchingon/off and UE association jointly in heterogeneous networks composed of cellular networks and WLANs. It first formulates a general problem which minimizes the total cost function which is designed to balance the energy consumption of overall network and the revenue of cellular networks. Given that the time scale for determining the set of active BSs is much larger than that for UE association, the problem may be decomposed into a UE association algorithm and a BS switching on/off algorithm, and then an optimal UE association policy may be devised for the UE association problem. Since BS switching-on/off problem is a challenging combinatorial problem, two heuristic algorithms are proposed based on the total cost function and the density of access points of WLANs within the coverage of each BS, respectively. According to simulations, the two heuristic algorithms turn out to considerably reduce energy consumption when compared with the case where all the BSs are always turned on. The second part of the dissertation presents an energy-per-bit minimized radioresource allocation scheme in heterogeneous networks equipped with multi-homing capability which connects to different wireless interfaces simultaneously. Specifically, an optimization problem is formulated for the objective of minimizing the energy-per-bit which takes a form of nonlinear fractional programming. Then, a parametric optimization problem is derived out of that fractional programming and the original problem is solved by using a double-loop iteration method. In each iteration, the optimal resource allocation policy is derived by applying Lagrangian duality and an efficient dual update method. In addition, suboptimal resource allocation algorithms are developed by using the properties of the optimal resource allocation policy. Simulation results reveal that the optimal allocation algorithm improves energy efficiency significantly over the existing resource allocation algorithms designed for homogeneous networks and its performance is superior to suboptimal algorithms in reducing energy consumption as well as in enhancing network energy efficiency. The third part of the dissertation presents an energy efficient scheduling algorithm for CA in OFDMA based wireless networks. In support of this, the energy efficiency is newly defined as the ratio of the time-averaged downlink data rate and the time-averaged power consumption of the UE, which is important especially for battery-constrained UEs. Then, a component carrier and resource block allocation problem is formulated such that the proportional fairness of the energy efficiency is guaranteed. Since it is very complicated to determine the optimal solution, a low complexity energy-efficient scheduling algorithm is developed, which approaches the optimal algorithm. Simulation results demonstrate that the proposed scheduling scheme performs close to the optimal scheme and outperforms the existing scheduling schemes for CA.Abstract i List of Figures viii List of Tables x 1 Introduction 1 2 A Joint Algorithm for Base Station Operation and User Association in Heterogeneous Networks 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 UE Association Algorithm . . . . . . . . . . . . . . . . . . . . . . 14 2.5 BS Switching-on/off Algorithm . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Cost Function Based (CFB) Algorithm . . . . . . . . . . . 19 2.5.2 AP Density Based (ADB) Algorithm . . . . . . . . . . . . 19 2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Energy-per-Bit Minimized Radio Resource Allocation in Heterogeneous Networks 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 System Model and Problem Formulation . . . . . . . . . . . . . . . 30 3.3 Parametric Approach to Fractional Programming . . . . . . . . . . 36 3.3.1 Parametric Approach . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Double-Loop Iteration to Determine Optimal θ . . . . . . . 38 3.4 Optimal Resource Allocation Algorithm . . . . . . . . . . . . . . . 39 3.4.1 Optimal Allocation of Subcarrier and Power . . . . . . . . . 41 3.4.2 Optimal Allocation of Time Fraction . . . . . . . . . . . . . 44 3.4.3 Lagrangian Multipliers Update Algorithm . . . . . . . . . . 48 3.5 Design of Suboptimal Algorithms . . . . . . . . . . . . . . . . . . 51 3.5.1 Time-Fraction Allocation First (TAF) Algorithm . . . . . . 51 3.5.2 Normalized Time-Fraction Allocation (NTA) Algorithm . . 53 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Energy Efficient Scheduling for Carrier Aggregation in OFDMA Based Wireless Networks 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Energy Efficiency Proportional Fairness (EEPF) Scheduling . . . . 74 4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Conclusion 87 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 91 References 93Docto

    A novel downlink semi-persistent packet scheduling scheme for VoLTE traffic over heterogeneous wireless networks

    Get PDF
    Long Term Evolution (LTE) is becoming the first choice of Mobile Network Operators (MNOs) when constructing a wireless network infrastructure because of its high data rate, high throughput and low latency. These significant advancements are necessary for satisfying the delivery of a wide-range of mobile applications and managed network resources. However, deploying a new LTE network or a transition from current legacy cellular networks to LTE can take several years to roll out. In the meantime, working in a heterogeneous wireless communications network looks inevitable. This paper investigates Voice over LTE (VoLTE) Quality of Service (QoS) under a heterogeneous wireless communication scenario. The contributions of this paper are twofold. First, a novel Downlink (DL) semi-persistent scheduling scheme is proposed to reduce VoLTE end-to-end delay and increase system capacity. Second, an extensive network simulation model has been designed and implemented to evaluate the proposed scheme. The performance of the proposed scheme is compared with the performance of two relevant and well-known DL packet scheduling methods. The simulation results confirm that the proposed scheme is able to reduce VoLTE end-to-end delay and achieve a better system capacity than current methods, and maintain the desired VoLTE QoS
    corecore