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Abstract

NEW METHODS OF EFFICIENT
BASE STATION CONTROL FOR

GREEN WIRELESS COMMUNICATIONS

SEONWOOK KIM
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

This dissertation reports a study on developing new methods of efficient base

station (BS) control for green wireless communications. The BS control schemes

may be classified into three different types depending on the time scale — hours

based, minutes based, and milli-seconds based. Specifically, hours basis pertains to

determining which BSs to switch on or off; minutes basis pertains to user equip-

ment (UE) association; and milli-seconds basis pertains to UE scheduling and ra-

dio resource allocation. For system model, the dissertation considers two different

i



models — heterogeneous networks composed of cellular networks and wireless lo-

cal area networks (WLANs), and cellular networks adopting orthogonal frequency

division multiple access (OFDMA) with carrier aggregation (CA). By combining

each system model with a pertinent BS control scheme, the dissertation presents

three new methods for green wireless communications: 1) BS switching on/off and

UE association in heterogeneous networks, 2) optimal radio resource allocation in

heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA

based cellular networks.

The first part of the dissertation presents an algorithm that performs BS switching-

on/off and UE association jointly in heterogeneous networks composed of cellular

networks and WLANs. It first formulates a general problem which minimizes the

total cost function which is designed to balance the energy consumption of over-

all network and the revenue of cellular networks. Given that the time scale for

determining the set of active BSs is much larger than that for UE association, the

problem may be decomposed into a UE association algorithm and a BS switching-

on/off algorithm, and then an optimal UE association policy may be devised for the

UE association problem. Since BS switching-on/off problem is a challenging com-

binatorial problem, two heuristic algorithms are proposed based on the total cost

function and the density of access points of WLANs within the coverage of each

BS, respectively. According to simulations, the two heuristic algorithms turn out to

considerably reduce energy consumption when compared with the case where all

the BSs are always turned on.

The second part of the dissertation presents an energy-per-bit minimized radio
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resource allocation scheme in heterogeneous networks equipped with multi-homing

capability which connects to different wireless interfaces simultaneously. Specifi-

cally, an optimization problem is formulated for the objective of minimizing the

energy-per-bit which takes a form of nonlinear fractional programming. Then, a

parametric optimization problem is derived out of that fractional programming and

the original problem is solved by using a double-loop iteration method. In each

iteration, the optimal resource allocation policy is derived by applying Lagrangian

duality and an efficient dual update method. In addition, suboptimal resource al-

location algorithms are developed by using the properties of the optimal resource

allocation policy. Simulation results reveal that the optimal allocation algorithm

improves energy efficiency significantly over the existing resource allocation al-

gorithms designed for homogeneous networks and its performance is superior to

suboptimal algorithms in reducing energy consumption as well as in enhancing net-

work energy efficiency.

The third part of the dissertation presents an energy efficient scheduling algo-

rithm for CA in OFDMA based wireless networks. In support of this, the energy

efficiency is newly defined as the ratio of the time-averaged downlink data rate and

the time-averaged power consumption of the UE, which is important especially for

battery-constrained UEs. Then, a component carrier and resource block allocation

problem is formulated such that the proportional fairness of the energy efficiency is

guaranteed. Since it is very complicated to determine the optimal solution, a low-

complexity energy-efficient scheduling algorithm is developed, which approaches

the optimal algorithm. Simulation results demonstrate that the proposed scheduling
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scheme performs close to the optimal scheme and outperforms the existing schedul-

ing schemes for CA.

Keywords: Green communication, heterogeneous networks, carrier aggregation

(CA), BS switching-on/off, user association, radio resource allocation.

Student Number: 2007-20941
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Chapter 1

Introduction

Green wireless communications target at energy-efficient operation of wireless com-

munication systems to combat against ever-increasing energy consumption in cel-

lular networks. The number of mobile subscribers has rapidly increased for the

last decade years and recent forecasts predict that overall mobile data traffic will

increase 13-fold in 2017 [2]. Such heavy traffic demands will cause a significant

increase of energy consumption in radio access networks, which is directly linked

to an increase of operational expenditure (OPEX) of the wireless network oper-

ators. Furthermore, the drastic increase in mobile data traffic volume may bring

more greenhouse gas emissions. Therefore, due to the economic and ecological

benefits, the energy efficient communication has recently received much attention

and several international research projects devote great efforts to it [3, 4].

Motivated by the necessity for reducing the energy consumption, a large amount

of work has been reported on improving the energy efficiency in all available com-
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ponents of cellular networks, e.g., base stations (BSs), user equipments (UEs), and

the core network [5, 6]. Specifically, it is of great importance to enhance the en-

ergy efficiency of the BSs because recent surveys reported that the BSs consume

60–80% of energy used in cellular networks [7]. Energy efficient communication

is also important for battery constrained UEs because UEs operate based on battery

power in the most practical cases.

To meet the increasing demand for mobile data traffic, wireless network opera-

tors are interested in integrating wireless local area networks (WLANs) and cellular

networks such as 3GPP-LTE and WiMAX. In general, cellular data offloading is

cost-effective and energy-efficient since WLANs can offer high data rate at lower

energy consumption than cellular networks. However, excessive data offloading

leads to revenue reduction of the cellular operators. In addition, using WLANs is

not always more energy-efficient than using cellular networks for a UE which is

near to the BS but not to the access point (AP) of WLANs. Therefore, it is neces-

sary to study how to efficiently combine heterogeneous networks, considering the

economic factors and the energy efficiency of the overall network.

Another way to satisfy high demand for wireless data is to combine multiple

spectrums in licensed band, which is referred as to carrier aggregation (CA). The

LTE-Advanced standard [8] describes that CA supports up to 100 MHz system

bandwidth by aggregating up to five component carriers (CCs) of 20 MHz and al-

lows a UE to use one or multiple CCs simultaneously. Thus, if a UE uses two CCs

simultaneously to communicate with the BS, it can get roughly two times higher ca-

pacity than the single CC case. However, in case that the UE continuously uses CA,
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Table 1.1: BS control strategies based on time scale.

Time scale Hours Minutes Milli-seconds

BS control
BS switching-on/off UE association

UE scheduling,

strategy radio resource allocation

its energy consumption rapidly increases, which can be fatal to the battery powered

UEs.

The dissertation investigates BS control strategies for greening wireless net-

works under the above two different system models. As shown in Table 1.1, the

BS control strategies can be classified based on their operational time-scale. It is

reasonable to consider the communication system to operate on different time scale

because different type of parameters is needed in different time scale. It is assumed

that the BS operation is determined at hours level, the UE association is performed

at minutes level, and the UE scheduling or radio resource allocation is conducted

at milli-seconds level. Specifically, three BS control scenarios are considered by

combining the system model and time-scale based operation; the first scenario is a

joint algorithm for BS operation and UE association in heterogeneous networks, the

second scenario is a radio resource allocation algorithm in heterogeneous networks,

and the third scenario is a UE scheduling algorithm for CA. Note that all those sce-

narios commonly aim at green communication. The detailed explanation on each

scenario is as follows:

1) BS switching-on/off and UE association: Large amount of energy can be

saved by switching-off under-utilized BSs at night since the traffic load exhibits
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wide-range fluctuations in time [9]. However, if some BSs are switched-off, the

UEs connecting to those switched-off BSs have to be newly associated with other

switched-on BSs. Hence, several hours based BS on/off operation should be con-

sidered jointly with several minutes based UE association.

In the case of heterogeneous networks, cellular data offloading through WLANs

leads to not only the decrease of BSs’ utilization but also the reduction of total

energy consumption. However, if a majority of cellular data is served by APs,

instead of BSs, the revenue of the cellular operators may considerably diminish,

which makes it hard to maintain healthy cellular network and good cellular services.

Hence, there is a tradeoff relationship between the energy consumption and the

network revenue. Therefore, a joint algorithm for BS on/off and UE association

needs to be developed to balance the energy consumption and the network revenue.

Based on time scale, the dissertation deals with the joint algorithm by decom-

posing it into a UE association algorithm and a BS switching-on/off algorithm. For

the UE association problem, it presents an optimal UE association policy and, for

the BS switching-on/off problem, it presents two heuristic algorithms based on the

total cost function and the density of access points of WLANs within the coverage

of each BS, respectively.

2) Radio resource allocation: Once the BS on/off operation is determined,

several milli-seconds based radio resource allocation may be performed in hetero-

geneous networks consisting of an orthogonal frequency division multiple access

(OFDMA) based cellular network and multiple WLANs. The dissertation presents

a downlink resource allocation algorithm which minimizes the energy-per-bit of the
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entire network under minimum data rate requirements. It assumes that all UEs sup-

port multi-homing access, which means that each UE can communicate with the

BS of cellular network and the AP of a WLAN simultaneously. Multi-homing ac-

cess enables more energy-efficient communications by exploiting network diversity

using multiple interfaces.

Allowing traffic sharing and interworking between cellular network and WLAN,

the dissertation formulates the resource allocation problem as a nonlinear fractional

programming and then, solves it by using a double-loop iteration method. In addi-

tion, it develops suboptimal resource allocation algorithms by using the properties

of the optimal resource allocation policy.

3) UE scheduling: Another several milli-seconds based BS control, UE schedul-

ing may be conducted in OFDMA based wireless networks with CA. The CA may

be classified into three types based on how to configure multiple CCs, among which,

inter-band CA merging CCs within different bands is of main interest. In the inter-

band CA case, it may not be desirable to allocate multiple CCs simultaneously to

a UE. It is because the UE has to turn on additional radio frequency (RF) elements

for the concurrent transmission, which significantly reduces the battery lifetime of

the UE. Hence, it is necessary to devise a novel UE scheduling for CA considering

UE power consumption.

In OFDMA based wireless networks with CA, the BS allocates CCs and re-

source blocks (RBs) to appropriate UEs at each time slot. The energy efficiency

may be defined as the ratio of the time-averaged downlink data rate and the UE

power consumption. The proportional fairness criterion may be considered to bal-
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ance the tradeoff between maximizing the overall energy efficiency and preserving

some degree of fairness. The dissertation presents a CC and RB scheduling algo-

rithm to guarantee the proportional fairness of the energy efficiency in the above

sense. Since it is very complicated to determine the optimal solution, it develops a

low-complexity energy-efficient scheduling algorithm which turns out to approach

the optimal scheme.

The remainder of this dissertation is organized as follows: Chapter 2 investigates

how to determine a set of active BSs and how to perform UE association in heteroge-

neous networks. Chapter 3 presents a radio resource allocation scheme optimizing

the overall energy efficiency with multi-homing capability. Chapter 4 provides an

energy efficiency proportional fair scheduler in OFDMA based networks with CA.

Finally, Chapter 5 concludes the dissertation.
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Chapter 2

A Joint Algorithm for Base Station

Operation and User Association in

Heterogeneous Networks

2.1 Introduction

Reducing energy consumption of base stations (BSs) is of great importance in wire-

less communication systems. According to recent surveys, for operating a cellular

network including BSs, user equipments (UEs), and the core network, about 80%

of the total energy is consumed at the BS sites [10, 11]. Today, BSs are densely

deployed to support peak time traffic load [12]. However, since the traffic load fluc-

tuates over time [9], the utilization of BSs may be very low during off-peak hours,
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e.g., at night. Therefore, it is possible to save large amount of energy by turning off

under-utilized BSs during such off-peak hours [13–17]. However, turning on/off of

BSs results in a new problem of UE association. If some BSs are turned off, the

UEs communicating with those turned-off BSs need to be newly associated with

other BSs. Therefore, turning on/off of BSs should be considered jointly with UEs’

association problem.

In the next generation wireless networks, integration of heterogeneous networks,

including wireless local area networks (WLANs) and cellular networks such as

3GPP-LTE and WiMAX, is considered a promising architecture to meet the in-

creasing demand for mobile data traffic. Since WLANs can offer high data rate

at lower energy consumption than cellular networks do, offloading cellular data

through WLANs leads to the reduction of BSs’ energy consumption. However, if

a majority of cellular data is offloaded through WLANs, the revenue of the cellu-

lar operators may drop exceedingly, thus making it hard to maintain good cellular

services and healthy cellular network. Hence, there exists a tradeoff between reduc-

ing the energy consumption and maintaining the network revenue at a reasonable

level. In [15], the authors propose efficient BS control mechanisms for energy-delay

tradeoff. However, different from [15], we investigate the tradeoff between energy

consumption and network revenue in heterogeneous networks.

In the following, we will discuss how to determine an optimal set of active BSs

and how to perform optimal UE association in heterogeneous networks consisting

of cellular networks and WLANs. We will first develop a total cost minimization

problem that reflects the energy-revenue tradeoff. We will assume that the inter-
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vals of turning on/off a BS is in the order of hours while UE association is deter-

mined in much shorter time scale (e.g., several minutes). Based on this assumption,

we decompose the problem into two subproblems, namely, UE association prob-

lem and BS switching-on/off problem, to make the total cost minimization problem

tractable. For the UE association problem, we devise an optimal UE association

policy and provide insights on the characteristics of the optimal policy. As to the

BS switching-on/off problem, since the problem has a combinatorial form which

is very difficult to solve, we develop two greedy BS operation algorithms which

enable us to solve the problem in polynomial time.

The rest part of this chapter is organized as follows. We first describe the sys-

tem model in Section 2.2. Then, we formulate a total cost function minimization

problem in Section 2.3. We propose a UE association algorithm and heuristic BS

operation algorithms in Section 2.4 and Section 2.5, respectively. Finally, we eval-

uate the performance of the proposed algorithms in Section 2.6.

2.2 System Model

We consider the downlink transmission in a time division multiple access (TDMA)

based heterogeneous network consisting of a set B of BSs of cellular networks and

a set A of APs of WLANs as shown in Fig. 2.1. We consider a region K ⊂ R2

that is served by all the BSs and APs. We assume that file transfer requests follow a

heterogeneous Poisson point process with an arrival rate λ(x) and a mean file size

1/µ(x) that are independently distributed at location x(∈K). We define the traffic

9



Figure 2.1: Heterogeneous networks with cellular networks and WLANs.

intensity at location x as γ(x) , λ(x)/µ(x).

We denote the set of active BSs by Bon. We assume that each AP works on

non-overlapping channels, so that no interference exists among APs.1 In addition,

since WLANs operate in an unlicensed band, no APs interfere with the BSs. Then,

the maximum achievable data rate of a UE served by the ith BS or AP at location x

is given by

Ci(x) =


log2

1 +
P out
i gi(x)

σ2 +
∑

j∈Bon,j ̸=i

P out
j gj(x)

 , i ∈ Bon,

log2

(
1 +

P out
i gi(x)

σ2

)
, i ∈ A,

(2.1)

where P out
i is the transmission (or radiated) power of the ith BS or AP, gi(x) is the

1For example, 4 and 19 non-overlapping channels are available in 2.4 GHz and 5 GHz bands,

respectively, in Korea, to make it possible to assign non-overlapping channels to neighboring APs.
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channel gain of a UE at location x from the ith BS or AP, and σ2 is the noise power.

We define the system load density as τi(x) , γ(x)/Ci(x), which is interpreted as

the time fraction required to deliver the traffic intensity γ(x) from the ith BS or AP

to UEs at location x.

We denote the region that can be served by any AP in A by

KA =
{
x ∈ K|P out

i gi(x)/σ
2 ≥ SNRth, ∀i ∈ A

}
, (2.2)

where SNRth is the signal-to-noise ratio (SNR) threshold that determines whether

a UE at location x is in the coverage of any AP. UEs in KA can communicate

with either BS or AP while other UEs can communicate only with BS. We define a

feasible set ψ of load vector ρ(= (ρ0, ρ1, · · ·, ρ|A∪Bon|)) for both BSs and APs by

ψ =
{
ρ
∣∣ρ0 = ∑

i∈Bon

∫
KA

γ(x)ui(x) dx,

ρi =
∫
K τi(x)ui(x) dx, ∀i ∈ (A ∪ Bon),

0 ≤ ρi ≤ 1− ϵ, ∀i ∈ (A ∪ Bon),∑
i∈(A∪Bon)

ui(x) = 1, ∀x ∈ K,

0 ≤ ui(x) ≤ 1, i ∈ (A ∪ Bon) and ∀x ∈ K
}
, (2.3)

where ρ0 indicates the amount of traffic load that is served by BSs even if the

traffic could be served by APs, ρi(i ̸= 0) indicates the amount of offered load

of the ith BS or AP, ui(x) indicates the probability that a UE at location x is

associated with the ith BS or AP, and ϵ is an arbitrarily small positive constant.

Then, the feasible load vector ρ is characterized by the UE association vector

u(x) = (u1(x), · · ·, u|A∪Bon|(x)).
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2.3 Problem Formulation

Based on the system model, we consider a cost function minimization problem in

the heterogeneous networks. The cost function is formulated as the difference of

total energy consumption E(A,Bon,ρ) and network revenue R(ρ0). Accordingly,

minimizing the cost function is equivalent to minimizing the total energy consump-

tion and maximizing the revenue jointly. Then, the optimization problem which

finds the optimal set Bon of active BSs and the load vector ρ (i.e., UE association)

is given by

minimize
Bon,ρ

φ(A,Bon,ρ) (= E(A,Bon,ρ)− ηR(ρ0)) (2.4a)

subject to ρ ∈ ψ, (2.4b)

where φ(A,Bon,ρ) is the total cost function and η (≥ 0) is a parameter that balances

the tradeoff between the energy consumption and revenue. When η is zero, it only

considers the energy consumption but, as η increases, it pays more weight on the

revenue side.

We assume that the revenue is generated when the BSs deliver the data that can

be offloaded by APs. Hence, the cost function of revenue is proportional to ρ0,

taking the expression

R(ρ0) = ρ0δ, (2.5)

where δ indicates the revenue per unit traffic load.

Total energy consumption of the ith BS may be divided into two parts: Static

and dynamic. Static power P BS,sta
i is consumed irrespective of whether the BS is

12



in transmit mode, whereas dynamic power P BS,dyn
i is consumed only when it is in

transmit mode. Similarly, when the jth AP is in idle state, constant power PAP,idle
j

is consumed but, when in transmit state, PAP,tx
j is consumed. Hence, total energy

consumption is given by

E(A,Bon,ρ) =
∑
i∈Bon

(
ρiP

BS,dyn
i + P BS,sta

i

)
+
∑
j∈A

(
ρjP

AP,tx
j + (1− ρj)PAP,idle

j

)
, (2.6)

where the first term indicates the energy consumed by the BSs and the second term

consumed by the APs.

The optimization problem given in (2.4) is very difficult to solve because the

process of switching-on/off BSs is highly coupled with the process of associating

the related UEs to new BSs. In order to make the problem tractable, we decompose

the problem into two subproblems. If we assume that the time scale for BS oper-

ation is much larger than that for UE association, we may decompose the overall

problem into a combination of BS operation process and UE association process as

described in Algorithm 1. The decomposed process indicates that a BS switching-

on/off algorithm is performed at every Th hours and a UE association algorithm at

every Tm minutes. We additionally perform BS switching-on/off algorithm if some

BSs get over-loaded due to a sudden increase of traffic load. We will deal the two

algorithms in two subsequent sections: UE association algorithm in Section 2.4 and

BS operation algorithm in Section 2.5, respectively.
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Algorithm 1 BS operation and UE association algorithm
1: Every Th hours,

2: Execute BS switching-on/off algorithm;

3: Every Tm minutes,

4: Execute UE association;

5: if Some BSs are over-loaded, then

6: Execute BS switching-on/off algorithm;

7: Execute UE association;

8: end if

2.4 UE Association Algorithm

We first solve the optimization problem in (2.4) for a given set Bon of active BSs.

Then, we present an optimal UE association policy that each UE associates with an

AP or a BS depending on energy efficiency and revenue.

LEMMA 2.1 For a given set Bon, the problem in (2.4) is a convex optimization prob-

lem.

Proof : It is trivial to prove that the feasible set ψ is convex by applying the

proof in [15]. The objective function is also convex since it is linear with respect

to the load vector ρ. Therefore, the problem in (2.4) becomes a problem of min-

imizing the convex function under convex constraints, which is a standard convex

optimization problem.
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LEMMA 2.2 It is the optimal UE association policy to associate a UE located at x

with the i∗th AP or BS satisfying

i∗ = argmin
j∈(A∪Bon)

πj(x), (2.7)

where

πj(x)=



P BS,dyn
j

Cj(x)
− ηδ, x ∈ KA, ∀j ∈ Bon,

PAP,tx
j − PAP,idle

j

Cj(x)
, x ∈ KA, ∀j ∈ A,

P BS,dyn
j

Cj(x)
, x /∈ KA, ∀j ∈ Bon.

(2.8)

Proof : As the problem (2.4) is a convex optimization problem by Lemma

2.1, to prove optimality of the association, it is sufficient to prove the following

inequality [18]:

∇φ(A,Bon,ρ) · △ρ∗ ≥ 0, (2.9)

where ∇φ(A,Bon,ρ) indicates the gradient vector of φ(·) with respect to ρ and

△ρ∗ = ρ − ρ∗ for the optimal load vector ρ∗. The above inner product may be

expanded as follows:

∇φ(A,Bon,ρ) · △ρ∗

=

|A∪Bon|∑
i=0

∂∇φ(ρi)
∂ρi

(ρi − ρ∗i )

=
∑
i∈Bon

P BS,dyn
i (ρi − ρ∗i ) +

∑
j∈A

(PAP,tx
j − PAP,idle

j )(ρj − ρ∗j)− ηδ(ρ0 − ρ∗0). (2.10)
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Let u∗(x) denote the optimal association vector for the optimal ρ∗. Then, by (2.7),

the optimal association probability is determined by

u∗i (x) =


1, if i = argmin

j∈(A∪Bon)

πj(x)

0, otherwise.
(2.11)

By applying (2.8) and (2.11) to (2.9), we obtain

∇φ(A,Bon,ρ) · △ρ∗ =
∑
i∈Bon

P BS,dyn
i

∫
K

γ(x)

Ci(x)
(ui(x)− u∗i (x)) dx

+
∑
j∈A

(PAP,tx
j − PAP,idle

j )

∫
K

γ(x)

Cj(x)
(uj(x)− u∗j(x)) dx

− ηδ
∑
i∈Bon

∫
KA

γ(x)(ui(x)− u∗i (x)) dx

=

∫
KA

γ(x)
∑
i∈Bon

(
P BS,dyn
i

Ci(x)
− ηδ

)
(ui(x)− u∗i (x)) dx

+

∫
KA

γ(x)
∑
j∈A

(PAP,tx
j − PAP,idle

j )

Cj(x)
(uj(x)− u∗j(x)) dx

+

∫
K\KA

γ(x)
∑
i∈Bon

P BS,dyn
i

Ci(x)
(ui(x)− u∗i (x)) dx ≥ 0.

By (2.11), the optimal ui(x) is either 0 or 1, which means that the solution of

the problem in (2.4) yields a deterministic UE association. When η = 0, the de-

terministic rule in Lemma 2.2 implies that each UE associates with a single BS or

a single AP that minimizes the Joule per bit, i.e., the most energy-efficient. Even

when η > 0, a UE not in KA associates with the most energy-efficient BS in Bon

but a UE within KA considers the network revenue δ as well, thus choosing BS
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more frequently than AP as η increases. Especially when η is sufficiently large (to

be specific, η > max
j∈Bon,x∈KA

{
P BS,dyn
j /Cj(x)

}
/δ), a UE within KA always commu-

nicates with the most energy-efficient BS instead of AP. Note that the optimal UE

association policy is independent of γ(x) despite its inhomogeneity. Therefore, as

long as the load vector ρ is feasible, each UE simply selects the most appropriate

single BS or AP based on energy-efficiency and network revenue, regardless of the

amount of traffic load.

2.5 BS Switching-on/off Algorithm

We now determine the optimal set Bon to complete the BS energy saving algorithm.

The problem in (2.4) is a convex optimization problem for a given set Bon, but it

becomes a combinatorial problem when Bon is regarded as a variable. In this case,

an optimal solution may be found through exhaustive search amongO(2|B|) possible

cases, and hence, the problem becomes intractable if |B| is large. Therefore, we

devise two heuristic algorithms that enable to solve the problem in polynomial time

by a greedy approach.

We set up a switching-on/off algorithm, assuming that the BSs near the over-

loaded BSs are turned on, that BSs are turned off in the order of the largest turn-off

benefit among all the active BSs. We formalize the procedure of this switching-

on/off algorithm as Algorithm 2. We initialize Bon and define Bvic{i} as the set of

BSs in the vicinity of BS i. If the optimal load vector obtained by Lemma 2.2 for

a given Bon is not feasible, we add Bvic{i} of the over-loaded BS i (i.e., ρ∗i > 1− ϵ)
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Algorithm 2 BS switching-on/off algorithm
1: Initialize, Bon = Binit;

2: while ρ∗ /∈ ψ do

3: for i ∈ Bon do

4: if ρ∗i > 1− ϵ then

5: Bon ← Bon ∪ Bvic{i};

6: end if

7: end for

8: end while

9: Calculate D(i), ∀i ∈ Bon;

10: Find BS i∗ ← argmaxj∈Bon
D(j);

11: if ρ∗ ∈ ψ then

12: Bon ← Bon − {i∗}, go to Step 9;

13: else

14: Stop the algorithm;

15: end if

to Bon. We define a determinant function D and calculate D(i) of each BS i in Bon.

Then, we remove the BS i, whose D(i) is the largest, from Bon if the resulting load

vector ρ∗ is feasible and iterate this removal process for the BS with the next largest

D(i) until the resulting ρ∗ becomes infeasible.

As to the determinant function D(i), we consider two heuristic algorithms be-

low: Cost function based (CFB) algorithm and AP density based (ADB) algorithm,

with the metrics DCFB and DADB, respectively. The computational complexity of
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CFB algorithm is in the order of O(|B|2) and that of ADB algorithm is in the order

of O(|B|).

2.5.1 Cost Function Based (CFB) Algorithm

The CFB algorithm is designed to turn off the BS that yields the maximum cost

gain if it is turned off. Then, the determinant function of the CFB algorithm takes

the form

DCFB(i) = E(A,Bon, ρ̂
∗)− E(A,Bon\i, ρ̃∗)− η(R(ρ̂∗)−R(ρ̃∗)), (2.12)

where ρ̂∗ and ρ̃∗ are the optimal load vectors for Bon and Bon\i, respectively. Note

that the metric DCFB(i) can be determined by the objective function of the problem

in (2.4).

2.5.2 AP Density Based (ADB) Algorithm

In case that APs are not uniformly distributed, the traffic of the BS, which contains

the largest number of APs within its coverage, could be most effectively offloaded

through the APs. Thus, the ADB algorithm is designed to turn off the BS with the

largest number of UEs, who are associated with APs, within its coverage. If we

denote by Ki the coverage area of BS i, or

Ki =
{
x ∈ K

∣∣i = argmin
j∈Bon

πj(x)
}
, ∀i ∈ Bon, (2.13)
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Figure 2.2: Daily traffic profile.

then the determinant function of the ADB algorithm takes the expression

DADB(i) =
|KA ∩ Ki|
|Ki|

. (2.14)

2.6 Performance Evaluation

We have performed simulations to examine the performance of the proposed al-

gorithms. We consider a network composed of 9 BSs2 and 100 APs3 deployed

1 km×1 km area. The BSs are located at 400 m intervals and the APs are randomly

distributed. We set SNRth to 9 dB; δ to $5 per gigabyte. For the traffic model, we
2http://www.sitefinder.ofcom.org.uk/search
3http://www.optimum.net/WiFi/Find
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assumed that the arrival rate λ(x) of file transfer requests is homogeneous for all

x ∈ K and varies only with time. We also assumed that each file transfer request

has just one file that is log-normal distributed with a mean 1/µ(x) = 50 kbytes for

all x ∈ K. We set the variables related to power consumption as follows: P out
i = 20

W; P BS,dyn
i = 420 W; P BS,sta

i = 460 W; P out
j = 100 mW; PAP,tx

j = 10.1 W; PAP,idle
j =

9.2 W, for i ∈ B and j ∈ A [19], [20].

We conducted simulations based on dynamic traffic load distribution in time

domain. In order to obtain time-dependent results, we assumed that the daily traffic

profile repeats periodically, i.e., we neglected the effect of weekend on traffic load.

We modeled the daily behavior as a simple sinusoidal curve shown in Fig. 2.2,

which is not far from the observation reported in [21]. As discussed in Algorithm 1,

we performed Algorithm 2 at every Th hours and optimal UE association at every

Tm minutes. Only when the optimal load vector is not feasible, i.e., ρ∗ /∈ ψ, we

additionally performed BS switching-on/off algorithm. We set Th to 1 and Tm to

15.

Fig. 2.3 depicts the resulting total power consumption of the all-on, ADB, CFB,

and optimal schemes with respect to the flow of time during a day. The all-on

scheme represents that all the BSs are switched on and UE association is performed

in every Tm minutes. The optimal scheme represents the optimal solution of BS

switching-on/off problem obtained through exhaustive search, instead of applying

Algorithm 2. We observe that the optimal scheme outperforms all other schemes,

and the ADB and CFB schemes perform close to the optimal scheme with the CFB

scheme outperforming the ADB scheme.
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Figure 2.3: Performance comparison of all-on, ADB, CFB, and the optimal schemes

in terms of total power consumption: (a) η = 0, (b) η = 10, and (c) η = 1000.

We can check the effect of network revenue on power consumption by com-

paring Figs. 2.3(a)–2.3(c).4 In the case of Fig. 2.3(a) with η = 0, which focuses

on reducing the energy consumption by neglecting the revenue, we observe that

the proposed schemes significantly curtail the energy consumption even in peak

times. It happens because most of data generated in KA are offloaded through APs,

which are more energy-efficient than BSs. As η increases, with more weight on

network revenue, the number of UEs in KA communicating with BSs instead of

APs increases. Hence, during the day time peak, the total power consumption of

the proposed schemes approaches that of the all-on scheme. However, during the

4When η > 50, a UE within KA almost surely associates with the BS instead of the AP by

Lemma 2.2.
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Figure 2.4: Normalized total energy consumption with respect to η.

night time, the performance gap between the all-on scheme and all others exists

regardless of the values of η, which happens because most BSs are unutilized or

under-utilized and so turned off during off-peak times.

Fig. 2.4 depicts the total amount of energy consumed for a whole day, normal-

ized by that of the all-on scheme. We observe that as η increases the normalized

total energy consumption also increases, which happens because in this case the BSs

are more highly utilized to increase the network revenue. We observe that the CFB

scheme performs close to the optimal scheme for all values of η but the performance

gap between the ADB scheme and the optimal scheme increases as η increases. It

happens because UEs in KA may not communicate with APs when η is large, and

thus the density of APs is irrelevant with the BS switching-on/off problem.
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2.7 Summary

In this chapter, we have presented a joint algorithm for BS switching and UE as-

sociation in a heterogeneous network which is composed of cellular networks and

WLANs. In devising the algorithm, we illuminated the tradeoff relation between

energy consumption and network revenue. We formulated the problem of mini-

mizing the total cost function such that the tradeoff relation is incorporated by a

balancing parameter η. In order to make the problem tractable, we decomposed it

into two subproblems: UE association problem and BS switching-on/off problem.

First, for the UE association algorithm, we derived an optimal policy that each UE

associates with a single BS or a single AP based on energy efficiency and network

revenue. In particular, when η = 0 (i.e., when network revenue issue is not con-

sidered), each UE communicates with the most energy-efficient AP or BS. Second,

for the BS switching-on/off problem, we proposed a couple of greedy algorithms,

CFB and ADB: The CFB algorithm is designed to switch off the BS that generates

the maximum cost gain while the ADB algorithm is designed to switch off the BS

within which coverage the largest number of UEs are associated with APs.

According to the simulations conducted by applying the daily traffic profile,

the proposed algorithms can reduce energy consumption by up to about 50% when

compared with the all-on scheme. In particular, the CFB scheme turned out sim-

ple and efficient with its performance approaching the optimal solution by about

8%. We observed, as expected, the tendency that as η increases the data offloaded

through APs decreases. As a result, during peak time energy consumption of the
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proposed schemes increases as η increases. However, during off-peak times, it

decreases significantly without regard to η, which happens because most BSs are

unutilized or under-utilized. Therefore, we may conclude that the proposed algo-

rithms are effective in reducing energy consumption and keeping balance between

energy consumption and network revenue at the same time.
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Chapter 3

Energy-per-Bit Minimized Radio

Resource Allocation in

Heterogeneous Networks

3.1 Introduction

Today, the number of global mobile phone subscribers approaches 6 billion [22],

and wireless devices and equipments consume about 9% of the total energy of in-

formation technology (i.e., as much as 6.1 TWh/year) [23]. According to recent

surveys, around 80% of the total energy required for the operation of cellular net-

works, including base stations (BSs), user equipments (UEs), and the core network,

is consumed at BS sites [7]. Furthermore, the number of mobile device UEs keeps
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increasing globally and the demanded per-user capacity keeps increasing as well.

Therefore, as a natural consequence, the study for next-generation mobile network

design has been focused on green radio communications with energy-efficient radio

resource allocation playing a key role.

Another important issue of next-generation wireless network design is the in-

tegration of heterogeneous wireless networks [24], including wireless local area

networks (WLANs) and cellular networks such as 3GPP-LTE and WiMAX, both

utilizing orthogonal frequency division multiple access (OFDMA) technology. In

dealing with heterogeneous wireless networks, there are two different approaches,

namely network selection and multi-homing [25]: Network selection chooses the

most appropriate access network among all available alternatives [26–28], whereas

multi-homing simultaneously accesses to multiple wireless network interfaces [29].

In general, multi-homing is more beneficial in that it enables UEs to exploit network

diversity using multiple interfaces.

Multi-homing capability allows each UE to obtain its required quality of service

(QoS) from all available wireless access networks. This capability has the following

advantages [30]: First, available resources from different wireless access networks

can be aggregated to support applications with high data rate. Second, it can support

mobility since at least one of the used interfaces will remain active during service

provision. Third, the multi-homing concept balances the traffic load across different

wireless access networks.

A large amount of work has been reported on resource allocation in downlink

OFDMA systems [31–33]: Ref. [31] dealt with the joint optimal subcarrier and
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power allocation problem for weighted sum rate maximization. Ref. [32] proposed

a low-complexity resource allocation algorithm that balances the tradeoff between

spectral efficiency and energy efficiency. Ref. [33] approached the energy efficiency

optimization problem as a fractional programming. For resource allocation in het-

erogeneous networks consisting of OFDMA based cellular network and WLAN ac-

cess technologies, there are several radio resource management algorithms adopting

the multi-homing approach [25,30,34–37]: Ref. [25] dealt with sum rate maximiza-

tion problem under the proportional UE rate constraint and Ref. [34] proposed a

max-min fairness based resource management strategy. Refs. [30] and [35] dealt

with maximization of utility function while maintaining QoS. Refs. [36] and [37]

presented a resource allocation algorithm for sum rate maximization in heteroge-

neous WLAN and femto-cell networks. However, to the best of the authors’ knowl-

edge, no work has yet been reported on energy efficiency of heterogeneous wireless

networks.

In this chapter, we study an optimal radio resource management under mini-

mum data rate requirements in heterogeneous networks consisting of an OFDMA

based cellular network and multiple WLANs. The objectives of the chapter are

three-fold — energy-per-bit minimization with multi-homing capability, determin-

ing optimal solution based on double-loop iteration method, and developing simple

suboptimal algorithms. First, we consider an optimization problem that minimizes

the ratio of the required energy and the transmitted bits under the heterogeneous

network with multi-homing access capability. Second, allowing for traffic sharing

and interworking between cellular network and WLAN, we formulate the resource
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allocation problem as a nonlinear fractional programming and then determine its

optimal solution by using a double-loop iteration method. Third, we develop two

simple suboptimal algorithms, namely time-fraction allocation first (TAF) and nor-

malized time-fraction allocation (NTA), by carefully looking into the properties of

the optimal solution.

The rest part of this chapter is organized as follows. In Section 3.2, we in-

troduce the system model of the considered heterogeneous networks and formu-

late an energy-per-bit minimized radio resource allocation problem as a fractional

programming. In Section 3.3, we derive a parametric programming out of the frac-

tional programming and solve the problem by using a double-loop iteration method.

Then, in Section 3.4, we discuss how to determine an optimal allocation of subcar-

riers, power, and time fraction at each iteration and, in Section 3.5, we develop two

suboptimal algorithms. Finally, in Section 3.6, we evaluate the performance of the

proposed algorithms.

3.2 System Model and Problem Formulation

We consider the downlink transmission in a single macro-cell network (e.g., 3GPP-

LTE or WiMAX) in which M WLAN APs (M ≥ 1) are overlaid, as shown in

Fig. 3.1. The BS of the macro-cell network is located at the center of the cell and

APs are scattered around the BS. We assume that the BS and each AP work on non-
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Figure 3.1: A heterogeneous network consisting of a macrocell network and multi-

ple WLANs.
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overlapping channels, so that there is no interference among the BS and APs.1 We

assume that all networks in the cell are operated by the same service provider and

an intelligent centralized controller exists to manage the radio resource allocation

of both the BS and all APs in the network. In order to synchronize two differ-

ent access technologies operating on different frequency bands, we also assume a

coordination-based time division duplex (TDD) scheme that predetermines the du-

rations of uplink and downlink commonly for the macro-cell network and WLAN

by dividing time into periodic super-frames, each consisting of two phases respec-

tively for uplink and downlink. There are totalK UEs which can communicate with

either the BS or APs or both simultaneously. If a UE is in the coverage of both the

BS and the AP, the UE can connect to both networks, which is called multi-homing

access. We consider fully backlogged buffer model and non-real time traffic such

as file transfer and online video with minimum rate requirement [39].

We consider an OFDMA based macro-cell network in which traffic bandwidth

B is equally divided into N subcarriers, each with a bandwidth of W (= B/N).

We assume that each subcarrier may be shared by multiple UEs in time-division

manner, and denote by αnk ≥ 0 the time-sharing factor of UE k on subcarrier n.

We also denote by pnk and gnk the average transmit power and the channel gain,

respectively, of UE k on subcarrier n, assuming that gnk is accurately known at

the transmitter2 and contains path loss and Rayleigh fading. Then, the maximum

1Since 13 channels and 24 channels are available in 2.4 GHz and 5 GHz industrial, scientific,

and medical (ISM) bands, respectively [38], it is possible to assign non-overlapping channels to

neighboring APs.
2In a TDD system, the BS obtains an estimate of the channel state information by using the

32



achievable data rate of UE k on subcarrier n is

rnk =


αnkW log2

(
1 +

pnkgnk
αnkWσ2

)
, if αnk > 0

0 , if αnk = 0,

(3.1)

where σ2 is the noise spectral density. Note that pnk/αnk in the equation implies

the actual transmit power of UE k on subcarrier n. We define by A and P the set

of the feasible subcarrier assignment matrices and the set of the power allocation

matrices, respectively, i.e.,

A =

{
[αnk]N×K

∣∣∣∣ K∑
k=1

αnk ≤ 1,∀n; 0 ≤ αnk ≤ 1,∀n, ∀k

}
, (3.2)

P =
{
[pnk]N×K

∣∣pnk ≥ 0,∀n, ∀k
}
. (3.3)

The total throughput of UE k served by the BS is

RBS
k =

N∑
n=1

rnk. (3.4)

Note that rnk is a concave function with respect to (pnk,αnk) [40].

When the BS is in the transmit mode, total power consumption of the BS may

be divided into two parts, i.e., static and dynamic power consumption [19]. Static

power consumption represents the power consumed by the baseband signal process-

ing and additional circuit blocks such as analog-to-digital conversion, modulation,

channel coding, and signal detection [41,42], whereas dynamic power consumption

represents the power consumed by power amplifier which changes dynamically in

proportion to the transmit power. Then, total power consumption at the BS may be

uplink pilot signals transmitted by UEs and using uplink-downlink reciprocity.
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expressed by

P BS
tot = P BS

static + ξBS
K∑
k=1

N∑
n=1

pnk, (3.5)

where P BS
static indicates the static power consumption and 1/ξBS the efficiency of

power amplifier at the BS, which is defined by the ratio of transmit power to in-

put DC power.

In the case of IEEE 802.11 WLAN, we consider an improved version of dis-

tributed coordination function (DCF) with a reservation-based medium access con-

trol (MAC) protocol, namely, early backoff announcement (EBA) [43]. In EBA, the

UEs can completely avoid collision by announcing the future backoff information

in the MAC header. Thus, we may consider that WLAN operates in time division

multiple access (TDMA) manner with each UE occupying the whole bandwidth

in its allocated time fraction. We denote by tmk the time fraction of UE k in the

mth AP. We assume that an AP consumes a constant power PAP
idle in idle state and

PAP
tx in transmit state. Note that PAP

tx denotes the total power consumed in transmit

mode including the output power (PAP
out ) radiated at transmit antenna. Then, the total

power consumption at the mth AP may be expressed by

PAP
m =

K∑
k=1

tmkP
AP
tx +

(
1−

K∑
k=1

tmk

)
PAP

idle. (3.6)

The first term represents the transmit power consumed at the mth AP while it is

in active state and the second term indicates the power consumed in inactive state.

We denote by r̃mk the achievable data rate of UE k through the mth AP, which is

determined by the instantaneous signal-to-noise ratio (SNR) between the UE k and
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the mth AP as follows.

r̃mk = c(PAP
out g̃mk/σ̃

2) (3.7)

where g̃mk indicates the channel gain of UE k in the mth AP, σ̃2 is noise variance of

WLAN channel, and c(·) decides the achievable data rate based on SNR threshold

[1]. Note that PAP
out is constant and same for all associated UEs. If we assume that

each UE communicates with only one AP that provides the highest data rate among

all APs, then the total throughput of UE k served by WLAN

RAP
k =

M∑
m=1

tmkr̃mk. (3.8)

Therefore, the total power consumption and the total throughput of the overall net-

work are respectively given by

fpow(P ,α,T ) = P BS
tot +

M∑
m=1

PAP
m (3.9)

fthr(P ,α,T ) =
K∑
k=1

(
RBS

k +RAP
k

)
, (3.10)

where P = [pnk]N×K , α = [αnk]N×K , and T = [tmk]M×K .

Based on the above system model, we now formulate an energy-efficient re-

source allocation problem in the heterogeneous network. For the formulation, we

adopt the concept of energy-per-bit, or the amount of energy needed to convey a

bit [44, 45].3 Since the energy-per-bit of the entire network can be determined by

3Note that the energy-per-bit is the inverse of the energy-efficiency defined as bit-per-Joule, in

general [46].
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the ratio of the total power consumption to the total network throughput (Joule/bit),

it takes the relation fpow(P ,α,T )/fthr(P ,α,T ).

As the energy efficiency of the entire system increases as the energy-per-bit

decreases, the optimization problem that maximizes the energy efficiency of the

entire system is equivalent to that for minimizing the energy-per-bit under minimum

rate constraints. Therefore, in the case of the heterogeneous network consisting of

a BS and M APs, we can formulate the optimization problem as follows:

P1 : minimize
P∈P,α∈A,T

fpow(P ,α,T )

fthr(P ,α,T )
(3.11a)

subject to
N∑

n=1

rnk +
M∑

m=1

tmkr̃mk ≥ Rmin
k , ∀k (3.11b)

K∑
k=1

tmk ≤ 1, ∀m (3.11c)

tmk ≥ 0, ∀m, ∀k (3.11d)

where Rmin
k denotes the minimum rate requirement of UE k. Note that the optimiza-

tion problem P1 is a fractional programming [33], which is non-convex.

3.3 Parametric Approach to Fractional Programming

The objective function of a fractional programming, as we observe in P1, takes

the form of a ratio of two functions which are non-linear in general [47]. Since

it is a very challenging task to solve a fractional programming directly, we derive

a parametric convex optimization problem out of the fractional programming by
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introducing a parameter. Then, the parametric problem can help us to solve the

fractional programming by using a double-loop iteration method.

3.3.1 Parametric Approach

We adopt a non-negative parameter θ to formulate a parametric optimization prob-

lem P2 which is closely related with P1.

P2 : minimize
P∈P,α∈A,T

fpow(P ,α,T )− θfthr(P ,α,T ) (3.12a)

subject to
N∑

n=1

rnk +
M∑

m=1

tmkr̃mk ≥ Rmin
k , ∀k (3.12b)

K∑
k=1

tmk ≤ 1, ∀m (3.12c)

tmk ≥ 0, ∀m, ∀k. (3.12d)

Then, P2 is a convex optimization problem for a given θ since the objective function

is formulated as the difference between a convex function and a concave function

and the constraint functions (3.12b)–(3.12d) are convex due to the concavity of rnk.

The set I of feasible resource allocation matrices for problems P1 and P2 is

convex by the property of the convex optimization problem [18]. We define the

minimum value of the objective function of P2 as follows

z(θ) = min
(P ,α,T )∈I

fpow(P ,α,T )− θfthr(P ,α,T ). (3.13)

Then, the two problems P1 and P2 are related as described by the following theo-

rem [47].
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Algorithm 3 Dinkelbach’s method
1: Initialize θ;

2: do

3: Determine z(θ) and (α∗,P ∗,T ∗) (by applying Algorithm 4);

4: θ ←
fpow(α

∗,P ∗,T ∗)

fthr(α∗,P ∗,T ∗)
;

5: while (|z(θ)| > ϵ)

6: return θ, (α∗,P ∗,T ∗);

THEOREM 3.1 The optimal solution set (P̄ ∗
, ᾱ∗, T̄

∗
) of P1 is the same as that of P2

for θ = θ∗, where θ∗ is the root of z(θ). In addition, θ∗ is the optimal energy-per-bit,

i.e.,

θ∗ =
fpow(P̄

∗
, ᾱ∗, T̄

∗
)

fthr(P̄
∗
, ᾱ∗, T̄

∗
)
. (3.14)

Theorem 1 implies that for the fractional program P1, there exists an equivalent

problem which yields the same optimal solution and whose objective function takes

the subtractive form fpow(P ,α,T ) − θ∗fthr(P ,α,T ). In other words, solving P1

is essentially equivalent to determining θ∗ with z(θ∗) = 0. Therefore, we may focus

on solving the parametric problem P2 to determine θ∗.

3.3.2 Double-Loop Iteration to Determine Optimal θ

In order to determine the optimal θ, we adopt the Dinkelbach’s method [47],

as described in Algorithm 3, which applies Newton’s method.4 This algorithm is

4Various iterative algorithms are presented in [48] for fractional programming, including New-

ton’s method, binary search method, and their modifications. One may use another numerical algo-
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proved to converge to the optimal point for any θ that satisfies z(θ) ≤ 0 [47]. We

set θ to a value that meets the condition z(θ) ≤ 0 [Line 1]. In each iteration, we

solve P2 for a given θ using Algorithm 4 to be described in the next section [Line

3]. If the resulting z(θ) is sufficiently small (i.e., |z(θ)| ≤ ϵ), then the determined

α∗,P ∗,T ∗ are the optimal variables and θ is the optimal energy-per-bit. Otherwise,

we calculate new θ using the determined α∗,P ∗,T ∗ [Line 4], and then start the next

iteration. We may call this approach a double-loop iteration method as two loops of

iterations are involved — one in Algorithm 3 and the other in Algorithm 4.

3.4 Optimal Resource Allocation Algorithm

Since P2 is a standard convex optimization problem for a given θ, we solve the

optimization problem P2 using the Lagrangian dual approach [18]. Note that if

θ = 0, P2 is the same as the energy-minimized resource allocation problem under

minimum rate constrains in our earlier work [49]. This implies that the problem

in [49] is a special case of P2.5

rithm to obtain the root of z(θ).
5In this sense, we may call the allocation algorithm proposed in [49] the energy consumption

minimization (ECM) algorithm.
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If we take the Lagrangian of P2 and incorporate (3.4)–(3.10), we get

L(P ,α,T ,ν,λ,µ) = P BS
static +MPAP

idle +
K∑
k=1

λkR
min
k

−
M∑

m=1

νm +
K∑
k=1

N∑
n=1

φnk(pnk, αnk, λk)

+
M∑

m=1

K∑
k=1

ψmk(tmk, νm, λk, µmk), (3.15)

where νm ≥ 0, λk ≥ 0, and µmk ≥ 0 are the Lagrangian multipliers and

φnk(pnk, αnk, λk) , ξBSpnk − (λk + θ)rnk, (3.16)

ψmk(tmk, νm, λk, µmk) ,
{
PAP

tx − PAP
idle − (λk + θ)r̃mk + νm − µmk

}
tmk. (3.17)

Then, the dual problem of P2 is

maximize
ν≥0,λ≥0,µ≥0

D(ν,λ,µ), (3.18)

for the dual function,

D(ν,λ,µ) = inf
P∈P,α∈A,T

L(P ,α,T ,ν,λ,µ). (3.19)

Since P2 is a convex optimization problem and satisfies the Slater’s condition, the

strong duality holds, that is, the duality gap is zero. Therefore, we can get the

optimal solution of P2 by solving (3.18). Let (ν∗, λ∗, µ∗) denote the dual optimal

solution. Then, the optimal P (ν∗,λ∗,µ∗), α(ν∗,λ∗,µ∗), and T (ν∗,λ∗,µ∗) that

minimizeL(P ,α,T ,ν∗,λ∗,µ∗) in (3.19) are the optimal variables ofP2, provided

that the complementary slackness condition is satisfied [18].
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The dual function D(ν,λ,µ) for given ν, λ, and µ takes the expression

D(ν,λ,µ) = inf
P∈P,α∈A,T

L(P ,α,T ,ν,λ,µ)

= P BS
static +MPAP

idle +
K∑
k=1

λkR
min
k −

M∑
m=1

νm

+ inf
P∈P,α∈A

K∑
k=1

N∑
n=1

φnk(pnk, αnk, λk)

+ inf
T

M∑
m=1

K∑
k=1

ψmk(tmk, νm, λk, µmk). (3.20)

We decompose the dual function into two parts — one for minimizing the φnk term

by allocating power and subcarriers, and the other for minimizing the ψmk term

by adjusting time fraction. The dual function cannot be exclusively divided into

two parts because the minimum rate constraint (3.12b) should be met by both parts.

However, it is possible to get the optimal solution even if we deal with the two parts

separately, as will be proved in the next two subsections.

3.4.1 Optimal Allocation of Subcarrier and Power

We first derive the optimal subcarrier assignment and the optimal power allocation

by solving inf
P∈A,α∈A

∑K
k=1

∑N
n=1 φnk(pnk, αnk, λk) as similarly done in [31]. Since

φnk(pnk, αnk, λk) is convex in pnk, the optimal transmit power p∗nk that minimizes

φnk can be easily derived by differentiating φnk with respect to pnk, i.e.,

∂φnk

∂pnk

∣∣∣∣
pnk=p∗nk

= ξBS − (λk + θ)
∂rnk
∂pnk

∣∣∣∣
pnk=p∗nk

= 0. (3.21)
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By the well-known water-filling method, we get

p∗nk = αnkW

[
λk + θ

ξBS ln 2
− σ2

gnk

]+
, (3.22)

where [x]+ = max(0, x). By substituting (3.22) into (3.16), we obtain

φ∗
nk(αnk, λk) = αnkJnk(λk), (3.23)

where

Jnk(λk) ,


−(λk + θ)W log2

(
(λk + θ)gnk
σ2ξBS ln 2

)
+W

(
λk + θ

ln 2
− σ2ξBS

gnk

)
, if λk >

σ2ξBS ln 2

gnk
− θ

0 , otherwise.

(3.24)

PROPOSITION 3.2 For any λk ≥ 0, Jnk(λk) ≤ 0; and Jnk(λk) < 0, if λk > σ2ξBS ln 2/gnk−

θ.

Proof : By differentiating (3.24), we get

∂Jnk(λk)

∂λk
=


−W log2

(
(λk + θ)gnk
σ2ξBS ln 2

)
, if λk>

σ2ξBS ln 2

gnk
−θ

0 , otherwise.
(3.25)

Since ∂Jnk(λk)/∂λk ≤ 0, Jnk(λk) is a non-increasing function of λk. In addition,

Jnk(λk) = 0, for all λk ≤ σ2ξBS ln 2/gnk − θ. Consequently, we get Jnk(λk) ≤ 0

for any λk ≥ 0, and get Jnk(λk) < 0 if λk > σ2ξBS ln 2/gnk − θ.
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PROPOSITION 3.3 For ergodic fading channels with a continuous cumulative distri-

bution function (CDF) and a given λ, the almost surely unique solution of (3.19)

yields the following optimal time-sharing factors and power
α∗
nk∗n

= 1, p∗nk∗n = W

[
λk∗n + θ

ξBS ln 2
− σ2

gnk∗n

]+
α∗
nk = 0, p∗nk = 0, ∀k ̸= k∗n

(3.26)

k∗n = argmin
k

Jnk(λk). (3.27)

Proof : For the UE k∗n determined by (3.27) and for a given λ, it holds

K∑
k=1

N∑
n=1

φnk(pnk, αnk, λk) ≥
K∑
k=1

N∑
n=1

αnkJnk(λk)

≥
N∑

n=1

(
Jnk∗n(λk∗n)

K∑
k=1

αnk

)
≥

N∑
n=1

Jnk∗n(λk∗n), (3.28)

where the first inequality holds due to the optimal φ∗
nk in (3.23); the second one

holds due to the definition of k∗n; and the third one follows from Jnk(λk) ≤ 0 in

Proposition 3.2 and the condition
∑K

k=1 αnk ≤ 1 in (3.2). The equality holds for the

optimal allocation (α∗,P ∗) specified in (3.26), which is optimal for inf
P∈P,α∈A

∑K
k=1∑N

n=1 φnk(pnk, αnk, λk). The almost sure uniqueness of (α∗,P ∗) can be similarly

proved as in [31] by using the fact that the event of two UEs having the same Jnk(λk)

has Lebesgue-measure zero when the fading process has a continuous CDF.

Proposition 3.3 has established two important facts: First, the optimal value of

αnk is either 0 to 1, which means that each subcarrier is dedicated to a single UE,

though it is assumed to be shared among multiple UEs. Second, the optimal single
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UE to which a subcarrier is entirely allocated is that with the smallest Jnk(λk). In

this sense, Jnk(λk) plays a key role in determining the subcarrier assignment.

As to power allocation, we can determine an optimal power allocation jointly

with subcarrier allocation, similar to [31], which leads to water-filling and “winner-

takes-all” strategies. That is, the allocated power is determined by the water-filling

algorithm and a subcarrier is exclusively allocated to a single UE, if the channel

fading has a continuous CDF. However, differently from [31], we minimize the

energy-per-bit coupled with the power and subcarrier allocation of the macro-cell

network as well as the time fraction allocation of the WLAN in the heterogeneous

networks.6

In the case of heterogeneous network we are dealing with, it happens that the BS

limits the amount of allocatable resource by the upper bound of the water level of

each UE and then APs allocate the time fraction for the UEs that require additional

resource to minimize the energy-per-bit, as will be discussed in the next subsection.

3.4.2 Optimal Allocation of Time Fraction

Next, we determine the optimal time fraction by solving inf
T

∑M
m=1

∑K
k=1 ψmk(tmk,

νm, λk, µmk). Note that tmk = 0 for all UEs that do not communicate with any APs,

6If we compare the difference between Proposition 3.3 and the algorithm in [31] in terms of

the double-loop iteration method discussed in Section 3.3, the latter only deals with the power and

subcarrier allocation which is a part of the inner loop (pertaining to Algorithm 4). Note that the

inner loop deals with the time fraction allocation as well in combination with power and subcarrier

allocation.
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so that they get the resource only from the BS. Thus, in allocating time fraction, we

consider only the UEs that are within the coverage of APs and capable of communi-

cating with one or more APs. Recalling the assumption that each UE communicates

with only one AP that provides the highest data rate among all APs, we denote by

m∗
k the AP that communicates with the UE k.

PROPOSITION 3.4 For the AP m∗
k that communicates with the UE k,

λk =
(
PAP

tx − PAP
idle + νm∗

k
− µm∗

kk

)
/r̃m∗

kk
− θ. (3.29)

Proof : For the optimal time fraction of APs, we get by (3.17)

inf
T

M∑
m=1

K∑
k=1

ψmk(tmk, νm, λk, µmk)

= inf
T

M∑
m=1

K∑
k=1

(
PAP

tx − PAP
idle + νm − (λk + θ)r̃mk − µmk

)
tmk

=

 0 , if
(
PAP

tx −PAP
idle+νm∗

k
−(λk+θ)r̃m∗

kk
−µm∗

kk

)
=0

−∞ , otherwise.
(3.30)

Note that r̃m∗
kk
> 0 because the achievable rate r̃m∗

kk
of UE k from AP m∗

k should

be positive. Therefore, we get (3.29).

Proposition 3.4 claims that each UE has its own upper bound of the water level

which decreases as r̃m∗
kk

increases. Since µmk ≥ 0, the Lagrangian multiplier λk

has the upper bound λ̌k (i.e., λ̌k = (PAP
tx − PAP

idle + νm∗
k
)/r̃m∗

kk
− θ). Hence, λ̌k + θ

is inversely proportional to r̃m∗
kk

. The transmit power allocation specified in (3.26)

shows that the water level increases as λk increases for a given θ. Thus, UE k
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getting a higher data rate r̃m∗
kk

from the AP is allocated with small power from the

BS because λ̌k is lower for a given θ. In contrast, if UE k gets a lower data rate from

AP, the UE takes a higher priority of power allocation from the BS as its λ̌k is higher.

Therefore, λk plays a key role in balancing wireless resources, i.e., the amount of

power of the BS and the time fraction of the AP. Proposition 3.4 established that λk

determines the water level in the BS power allocation. On the other hand, λk also

controls the time fraction allocation, as the following proposition describes.

PROPOSITION 3.5 For (α∗,P ∗) obtained from Proposition 3.3 and for (ν,λ,µ) sat-

isfying Proposition 3.4, the solution of (3.19) yields the optimal time fraction
tm∗

kk
=

1

r̃m∗
kk

[
Rmin

k −
N∑

n=1

rnk(α
∗
nk, p

∗
nk)

]+
, if λk = λ̌k (3.31a)

tm∗
kk

= 0 , if λk < λ̌k (3.31b)

tmk = 0 , ∀m ̸= m∗
k. (3.31c)

If
∑K

k=1 tmk < 1 for anymth AP, the residual time tmk∗ = 1−
∑K

k=1 tmk is allocated

to

k∗ = argmax
tmk>0,λk=λ̌k,P

AP
tx −PAP

idle<θr̃mk

r̃mk. (3.31d)

Proof : From Proposition 3.4, λk =
(
PAP

tx − PAP
idle + νm∗

k
−µm∗

kk

)
/r̃m∗

kk
− θ.

By the complementary slackness condition, the optimal µm∗
kk

should satisfy either

i) µm∗
kk
> 0 and tm∗

kk
= 0 or ii) µm∗

kk
= 0 and tm∗

kk
≥ 0. Thus, if µm∗

kk
> 0,

then λk < λ̌k and tm∗
kk

= 0, and thus (3.31b) holds. Otherwise, λk = λ̌k, then the

UE k is allocated with the amount of time fraction which satisfies in (3.12b) with
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equality, and thus (3.31a) holds. Since we assume that each UE is connected to only

one AP, the time fraction allocated to the other AP’s is zero, and thus (3.31c) holds.

Regardless of tmk, ψmk has the infimum for the Lagrangian multipliers satisfying

(3.29). However, tmk is determined by the minimum data rate constraint in (3.12b).

Once the equality condition of (3.12b) is met through (3.31a)–(3.31c), we addition-

ally allocate the residual time fraction to the UE that will get the largest benefit if

the time fraction is allocated. The benefit is determined by the objective function of

P2 in (3.12a).

fpow(P
∗,α∗,T )− θfthr(P

∗,α∗,T )

=
M∑

m=1

K∑
k=1

tmk

(
PAP

tx − PAP
idle − θr̃mk

)
+ Ω(P ∗,α∗), (3.32)

where Ω(·) indicates the remaining part of (3.12a) which is irrelevant to time frac-

tion. Therefore, if PAP
tx − PAP

idle < θr̃mk, the UE k that will take the largest data rate

from mth AP takes all the residual time fraction of the mth AP.

The time fraction allocation in Proposition 3.5 implies that λk is an indicator

that determines whether or not the aid of APs is needed by UE k. If λk is strictly

less than λ̌k, UE k can meet the minimum data rate requirement without the help

of APs. However, if λk = λ̌k, it needs support of APs. Hence, each AP allocates

time fraction to the UEs that cannot meet the required QoS without the support of

APs due to a high data rate from the corresponding APs and a low water level. In

addition, if there is any time fraction of an AP left after the allocation of (3.31a)–

(3.31c), the residual time fraction is allocated to the UE getting the highest data

rate from the AP when PAP
tx − PAP

idle < θr̃mk. Note that if θ = 0, the residual time
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fraction is not allocated to any UEs since
(
PAP

tx − PAP
idle

)
> 0 by (3.31d) [49]. This

happens because in the case of considering only the minimization of the total power

consumption, any additional allocation of time fraction would result in an increase

of the total power consumption.

As shown in Proposition 3.5, tmk is determined by means of the condition in

(3.12b) in case λk = λ̌k. Therefore, despite the decomposition of the dual function

D(ν,λ,µ) into two parts, we can determine the optimal time fraction by using the

constraint (3.12b), commonly valid for the two parts of D(ν,λ,µ).

3.4.3 Lagrangian Multipliers Update Algorithm

By optimizing the allocation of power and subcarrier as given in Proposition 3.3 and

by optimizing the allocation of time fraction as in Proposition 3.5, for the given (ν,

λ, µ) satisfying Proposition 3.4, we can minimize the energy-per-bit of the whole

network. The resulting terms α∗
nk, p∗nk, and t∗mk then form an optimal solution to the

optimization problem. However, the individual rate constraint or the time fraction

constraints in P2 may not be satisfied.

To determine the optimal values of ν∗, λ∗, and µ∗, we adopt an iterative updat-

ing algorithm such that the constraints in P2 are satisfied. For given ν∗ and λ∗, it

is easy to determine µ∗ by Proposition 3.4, which yields

µ∗
mk = PAP

tx − PAP
idle + ν∗m − (λ∗k + θ)r̃mk. (3.33a)
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We update ν∗ and λ∗ using the subgradient method [50] such that

λk[i+ 1]=

[
λk[i]+β[i]

(
Rmin

k −
N∑

n=1

rnk[i]−
M∑

m=1

tmk[i]r̃mk

)]+
, (3.33b)

νm[i+ 1]=

[
νm[i]+γ[i]

(
K∑
k=1

tmk[i]−1

)]+
, (3.33c)

where β[i] and γ[i] are sufficiently small positive values that can be tuned by using

different procedures [50].7

Based on the above discussions, we may formalize an optimal resource allo-

cation algorithm as described in Algorithm 4: First, we initialize the Lagrangian

multipliers. Then, for a given set of multipliers, we conduct the process of op-

timal subcarrier assignment, power allocation, and time fraction allocation. We

iterate this process by updating the multipliers using the subgradient method until it

reaches convergence. According to [51], this iteration converges to ν∗ and λ∗ from

any initial ν[0] and λ[0] as long as β[i] and γ[i] are chosen to be sufficiently small.

If the total time fraction allocated to an AP is larger than 1, all the time fraction

values of that particular AP are set to 0 [Lines 7–9]. In practice, it is not possible that

an AP is connected to its UEs for more than one time fraction. We can avoid such

situation by arranging the BS to allocate more resource to the UEs coupled with the

AP. If the time fraction of each UE communicating with the AP is set to 0, λk of each

UE increases due to (3.33b). Hence, the amount of power allocated by BS to the

UEs increases as described in Proposition 3.3. The number of iterations required to

achieve the ϵ−optimality (i.e., D∗−D < ϵ) is in the order ofO(1/ϵ2) [18], and the

resulting computational complexity is in the order of O ((M +N)K(1/ϵ2)) [52].
7For example, β[i] = c/

√
i where c is the initial step size and i is the iteration number.
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Algorithm 4 Optimal resource allocation algorithm
1: Initialize (ν[0],λ[0]), q[0]← 0, i← 0;

2: do

3: i← i+ 1;

4: Determine (α,P ) by applying Proposition 3.3;

5: Determine T by applying Proposition 3.5;

6: Update ν[i] from (3.33c);

7: for m = 1 to M do

8: if
∑K

k=1 tmk > 1 then tmk ← 0,∀k;

9: end for

10: Update λ[i] by using (3.33b);

11: Update µ[i] by using (3.33a);

12: q[i]← D(ν[i],λ[i],µ[i]);

13: while (|q[i]− q[i− 1]| > ϵ)

14: return (α,P ,T );
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3.5 Design of Suboptimal Algorithms

Note that a UE that gets a higher data rate service from APs tends to take a lower

priority in getting resource allocation from the BS due to a lower water level. This

property motivates to develop two simple and suboptimal algorithms, namely, time-

fraction allocation first (TAF) algorithm and normalized time-fraction allocation

(NTA) algorithm. They are designed to allocate the time fraction of UEs whose data

rates served by APs are high enough to meet the minimum data rate requirements

without the BS, and then assign power and subcarriers to the remaining UEs to be

served by the BS. Although a UE is guaranteed with a minimum data rate only

from time fraction allocation, the BS may allocate additional power and subcarrier

resource to the UE to minimize the energy-per-bit of the entire network and allow

multi-homing access to all UEs. Their computational complexities are in the order

of O (MK +NK(1/ϵ2)).

3.5.1 Time-Fraction Allocation First (TAF) Algorithm

As discussed above, the key idea of suboptimal algorithm is to determine the time

fraction allocation at APs first and then to allocate power and subcarriers at the BS.

We name it time-fraction allocation first (TAF) algorithm.

Algorithm 5 describes the procedures of the TAF algorithm. The term Sm rep-

resents the set of UEs that can communicate with the mth AP [Line 3] and the UE

with the highest data rate in Sm is denoted as k∗ [Line 5]. At first, each AP allo-

cates to its UEs the time fraction required for guaranteeing a minimum rate, in the
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Algorithm 5 TAF algorithm
1: ⟨T allocation⟩

2: for m = 1 to M do

3: Sm ← {k|r̃mk > 0};

4: while Sm ̸= ϕ do

5: k∗ ← argmax
k∈Sm

r̃mk, tmk∗ ← Rmin
k∗ /r̃mk∗;

6: if
∑K

k=1 tmk ≤ 1 then Rmin
k∗ ← 0;

7: else tmk∗ ←
[
1−

∑K
k=1,k ̸=k∗ tmk

]+
;

8: Rmin
k∗ ← Rmin

k∗ − tmk∗ r̃mk∗ ;

9: end if

10: Sm ← Sm − {k∗};

11: end while

12: end for

13: ⟨(α,P ) allocation⟩

14: Initialize λ[0], q[0]← 0, i← 0;

15: do

16: i← i+ 1;

17: Determine (α,P ) based on Proposition 3.3;

18: Update λ[i] by using (3.33b);

19: q[i]←
∑K

k=1

∑N
n=1 φnk(pnk, αnk, λk[i]);

20: while (|q[i]− q[i− 1]| > ϵ)

21: return (α,P ,T );
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descending order of the data rate of the UEs. This time fraction allocation of the

mth AP continues as long as the sum of the allocated time fractions does not ex-

ceed 1. Once time fraction is allocated to a UE, then its minimum rate requirement

gets satisfied. Thus, Rmin
k should be set to 0 [Line 6]. However, if the residual time

fraction is not large enough to meet the minimum data rate requirement of UE k∗,

then all the residual time fraction is allocated to that UE and the BS additionally

allocates resource to that UE to meet the remaining data rate requirement [Line 7].

After completing time fraction allocation, the BS performs power and subcarrier

allocation to all UEs such that the energy-per-bit gets minimized. The procedure of

power and subcarrier allocation of the BS is similar to that in Algorithm 4, except

that optimization is not needed for the time fraction matrix T and the Lagrange

multipliers ν and µ.

3.5.2 Normalized Time-Fraction Allocation (NTA) Algorithm

Normalized time-fraction allocation (NTA) algorithm allocates the time fraction

required to guarantee a minimum rate to all the UEs communicating with APs and

normalizes the time fractions such that they sum up to one. Then, the BS performs

power and subcarrier allocation to all UEs including the UEs that have not received

sufficient data rate to meet a minimum requirement from APs.

Algorithm 6 describes the NTA algorithm. The mth AP allocates time fraction

to satisfy the minimum data rate of all the UEs communicating with itself [Lines

3–6]. It normalizes all the time fraction values to the sum of the allocated time
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Algorithm 6 Normalized time-fraction algorithm (T allocation)
1: for m = 1 to M do

2: Sm = {k|r̃mk > 0};

3: while Sm ̸= ϕ do

4: k∗ ← arg max
k∈Sm

r̃mk, tmk∗ ← Rmin
k∗ /r̃mk∗;

5: Sm ← Sm − {k∗};

6: end while

7: if
∑K

k=1 tmk > 1 then

8: tmk ← tmk/
∑K

i=1 tmi,∀k;

9: Rmin
k ← Rmin

k − tmkr̃mk,∀k;

10: end if

11: end for

fraction values when the sum is greater than 1 [Lines 7 and 8]. The procedure of

optimal power and subcarrier allocation is omitted because it is the same as in the

TAF algorithm [Lines 13–21].

3.6 Performance Evaluation

We have performed simulations to evaluate the performance of the proposed algo-

rithms for the heterogeneous network model shown in Fig. 3.2. We use a Monte

Carlo simulation method and get the average values from hundreds of trials. We as-

sume that the BS is located at the center of a cell of radius 500 m, all APs (M = 4)

are symmetrically located at equal distance of 350 m, from the BS, and UEs are

54



Figure 3.2: Heterogeneous network topology for simulations.
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Table 3.1: SNR versus Rate [1].

SNR range (dB) Rate (Mbps)

>24.56 54

[24.05, 24.56) 48

[18.8, 24.05) 36

[17.04, 18.8) 24

[10.79, 17.04) 18

[9.03, 10.79) 12

[7.78, 9.03) 9

[6.02, 7.78) 6

<6.02 0

uniformly distributed within the cell. We determine the achievable data rates of the

UEs served by APs by applying the rate adaptation scheme based on SNR threshold,

as shown in Table 3.1 [1]. We assume that the OFDMA system under consideration

has 1,024 traffic subcarriers with the subcarrier spacing of 15 kHz. We set the mini-

mum rate requirement for each UE to 3.5 Mbps (i.e.,Rmin
k = 3.5 Mbps,∀k) and take

the drain efficiency of 35% for the power amplifier in the BS (i.e., 1/ξBS = 0.35).

We set the parameters related to power consumption as follows: PAP
tx = 10.1 W;

PAP
idle = 9.2 W; and P BS

static = 77 W [19, 20].

We compare the performances of six different schemes, which are the optimal,

TAF, NTA, the power and subcarrier allocation only (PSAO) algorithms, the ECM

algorithm proposed in [49],8 and the sum rate maximization (SRM) algorithm. The

8The problem presented in [49] is the same as the optimization problem P2 with θ = 0. Thus,
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optimal scheme represents the optimal solution of the energy-per-bit minimization

problem P1. The PSAO algorithm assumes that WLAN AP does not exist and

thus the BS performs only power and subcarrier allocation without time fraction

allocation. In the SRM scheme, we limit total transmit power to 40 W [53] (i.e.,∑K
k=1

∑N
n=1 pnk ≤ 40). The SRM scheme maximizes total throughput by utilizing

full transmit power under minimum rate requirements.

Fig. 3.3(a) depicts the energy-per-bit of resource allocation schemes with re-

spect to the number of UEs. We observe that the energy-per-bit of the PSAO scheme

is quasiconvex as proved in [32]. We also observe that the optimal algorithm outper-

forms the NTA and TAF algorithms, and the TAF scheme is more energy-efficient

than the NTA scheme. This implies that assigning time fraction first to the UEs

getting a high data rate from APs is more beneficial than assigning time fraction to

all the UEs in the vincinity of APs. As the number of UEs increases, energy-per-bit

may decrease due to multi-user diversity. However, the energy-per-bits of the SRM

and optimal schemes increase although the number of UEs increases. This happens

because total QoS requirement becomes more strict with the increasing number of

UEs, which dominates the multi-user diversity effect.

Fig. 3.3(b) depicts the total power consumption of various resource allocation

schemes. In the SRM scheme, since the maximum transmit (or radiated) power of

the BS is limited to 40 W, the total power consumption of the overall network is

constant at about 231 W, which can be calculated by (3.9). We observe that the

the aim of the ECM algorithm is not at minimizing the energy-per-bit but at minimizing the total

power consumption.
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Figure 3.3: Performance comparison with respect to the number of UEs: (a) Energy-

per-bit, (b) total power consumption, and (c) average achievable rate per UE.

optimal scheme outperforms the NTA and TAF schemes not only in energy-per-bit

but also in total power consumption. We also observe that the power consumption

of the NTA scheme increases rapidly with the number of UEs. It happens because

APs allocate time fraction to the UEs taking lower rates (e.g., 6 Mbps or 9 Mbps)

when the number of UEs is sufficiently large, which results in a less energy-efficient

usage of time fraction.

Fig. 3.3(c) depicts the average per UE data rate. We may compare the optimal

scheme with the ECM scheme. Since the ECM scheme aims at minimizing the total

energy consumption, the BS does not perform power and subcarrier allocation to the

UEs that are allocated with sufficient time fraction from APs to meet the minimum
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rate requirement. As a result, most UEs tend to opt for single network allocation

than multi-homing access. Hence, in the ECM scheme, the total data rate served

by the BS and APs to all UEs is exactly equal to the minimum rate requirement.

However, in the case of the optimal scheme considering the minimization of the

energy-per-bit, the BS allocates more resource even to the UEs that get sufficient

time fraction from APs, as long as the energy-per-bit decreases. Thus, the optimal

scheme tends to allocate a data rate higher than the minimum rate requirement,

with additional power consumed for reducing the energy-per-bit, as demonstrated

in Fig. 3.3(a). In addition, we may compare the optimal scheme with the SRM

scheme. We observe that the SRM scheme achieves a data rate higher than the

optimal scheme by 25% on the average sense. However, based on Fig. 3.3(a), the

optimal scheme improves energy-per-bit by about 32% compared with the SRM

scheme which consumes full transmit power without considering energy efficiency.

Therefore, the optimal scheme significantly improves energy-per-bit at the cost of

small additional power consumption compared with the ECM scheme and relatively

little decrease of the sum rate compared with the SRM scheme.

Fig. 3.4 depicts the energy-per-bit of the proposed resource allocation schemes

with respect to the minimum rate requirement Rmin, which is identical for all 40

UEs. The energy-per-bit of the optimal scheme increases with the increasing num-

ber of UEs because total minimum rate requirement of all UEs also increases. We

also observe that the performance of the TAF scheme approaches that of the NTA

scheme as Rmin decreases, and approaches the optimal scheme as Rmin increases.

At Rmin = 1 Mbps, the system operates in an under-utilized regime such that the
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total amount of time fraction required to satisfy the minimum data rate of all UEs

associated with APs is less than 1. In this case, the result of time fraction allocation

of the TAF algorithm is exactly the same as that of the NTA algorithm, so that the

additional power and subcarrier allocations of them are also identical. However, as

Rmin increases, it is impossible to allocate time fraction to all UEs communicating

with APs until their minimum rate requirements are met. Thus, in the case of high

Rmin, it is more energy-efficient to allocate time fraction first to the UEs taking

higher data rates from APs.

Fig. 3.5 compares the proposed resource allocation schemes with respect to the

number of APs when the number of UEs is fixed at 40. We observe that the optimal

scheme outperforms the other two schemes in terms of the energy-per-bit as well as
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Figure 3.5: Performance comparison with respect to the number of APs: (a) Energy-

per-bit and (b) total power consumption.
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Figure 3.6: Maximum supportable number of UEs with respect to the number of

APs.

the total power consumption, irrespective of the number of APs. In Fig. 3.5(a), the

energy-per-bit decreases as the number of APs increases. This is the contribution of

the WLANs which enable to achieve a high data rate at small power consumption.

In Fig. 3.5(b), we observe that the total power consumption is convex with respect

to the number of APs. When the number of APs is small, the BS consumes a

considerable amount of power to support the minimum rate requirement of 40 UEs

and thus, WLAN offloading strongly affects the total power consumption. However,

when the number of APs is large, the total power consumption increases as the

number of APs increases, which happens because WLAN offloading affects little

on total power consumption.

Fig. 3.6 depicts the maximum supportable number of UEs with respect to the
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number of APs. In practical systems, the maximum transmit power of the BS is

regulated due to interference mitigation. In order to reflect this practical limitation,

we assume that P1 and P2 are infeasible if
∑K

k=1

∑N
n=1 pnk > 40. Thus, the

maximum supportable number of UEs means the maximum number of UEs that

are guaranteed with the minimum rate requirement by consuming transmit power

of 40 W or less at the BS side. The maximum supportable number of UEs of the

PSAO scheme is constant because the PSAO scheme is irrelevant to the number

of APs. The maximum supportable number of UEs increases as the number of

APs increases due to WLAN offloading and network diversity. In addition, the TAF

scheme performs nearly close to the optimal scheme because the performance of the

TAF scheme approaches that of the optimal scheme as the number of UEs increases,

as appears in Fig. 3.3.

Fig. 3.7 depicts the energy-per-bit with respect to the number of UEs in multi-

cell network, assuming that the center BS is surrounded by six BSs and the center

BS considers the average amount of intercell interference as well as noise. We

observe that the energy-per-bit of each scheme in Fig. 3.3(a) is lower than its coun-

terpart in Fig. 3.7 due to intercell interference. When the number of UEs exceeds

40, the SRM and NTA schemes become infeasible, which means that the QoS re-

quirements of all UEs are not guaranteed even with full power consumption. We

observe that the performance gap between the optimal scheme and the TAF scheme

is wider than that shown in Fig. 3.3(a). It happens because the TAF scheme does

not differentiate cell center UEs with cell edge UEs when it performs time fraction

allocation.
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Figure 3.7: Energy-per-bit with respect to the number of UEs in multi-cell environ-

ment.

3.7 Summary

In this chapter, we have presented an energy-per-bit minimized radio resource al-

location scheme in the heterogeneous networks composed of an OFDMA-based

macro-cell network and multiple TDMA-based WLANs. Specifically, we have in-

vestigated the energy-per-bit minimization problem in multi-homing environment

while guaranteeing minimum data rate requirements. As the resulting optimization

problem is a fractional programming, we have derived a parametric programming

out of the original problem and solved the original problem by using a double-loop

iteration method. Resorting to the Lagrangian dual approach, we have determined

the optimal resource allocation policies as follows:

• For subcarrier allocation, we allocate each subcarrier exclusively to the UE
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that has the smallest Jnk(λk).

• For power allocation, we determine the optimal power by adopting the water-

filling algorithm with the water level of each UE decreasing as the data rate served

by an AP increases for a given θ. As a result, we found that the BS allocates a

smaller power to the UE getting a higher data rate from the corresponding AP.

• For time fraction allocation, we arrange each AP to allocate time fraction to

the UEs that cannot get sufficient resource from the BS due to low water level. We

allocate the residual time fraction of an AP to the UE getting the highest data rate

from the AP if this additional allocation decreases the energy-per-bit.

Based on the above optimal subcarrier, power, and time fraction allocation poli-

cies, we have developed two suboptimal algorithms, TAF and NTA, which first

allocate the time fraction of UEs getting a high data rate from APs and then allocate

power and subcarriers to all UEs. In the TAF algorithm, each AP determines the

time fraction allocation in the descending order of data rate but, in the NTA algo-

rithm, each AP allocates time fraction to all UEs with the time fractions normalized

to sum up to 1. According to simulations, the TAF scheme has turned out to out-

perform the NTA scheme. This means that assigning time fraction first to the UEs

getting high rates from APs is more energy-efficient than assigning time fraction to

all the UEs located near to APs. Also the proposed optimal algorithm has turned out

to outperform not only the PSAO scheme which does not use WLANs but also the

TAF and NTA schemes in terms of power consumption and energy efficiency. By

comparing the optimal scheme with the SRM scheme, we may confirm the trade-

off relation between spectral efficiency and energy efficiency. Whereas the ECM
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scheme allocates a data rate equal to the minimum rate requirement to reduce the

total power consumption, the optimal algorithm tends to allocate a data rate higher

than the minimum rate requirement with the exceeding power consumption, which

contributes to the reduction of the energy-per-bit. Therefore, we may conclude that

the proposed energy-per-bit minimized resource allocation scheme is suitable for an

energy-efficient design of heterogeneous networks.
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Chapter 4

Energy Efficient Scheduling for

Carrier Aggregation in OFDMA

Based Wireless Networks

4.1 Introduction

Carrier aggregation (CA) is perceived as one of the most promising techniques

to provide a higher data rate. According to the LTE-Advanced standard [8], CA

supports up to 100 MHz system bandwidth by aggregating up to five component

carriers (CCs) of 20 MHz and allows a user equipment (UE) to use one or multi-

ple CCs simultaneously. Based on how to configure multiple CCs, there are three

types of CA [54]: i) Intra-band contiguous aggregation which combines adjacent
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CCs within the same band, ii) intra-band non-contiguous aggregation which merges

multiple CCs within the same band but in a non-contiguous manner, and iii) inter-

band non-contiguous aggregation which connects CCs separated across multiple

bands. Among them, we concentrate on the inter-band non-contiguous CA.

Energy efficient communication is a vital aspect of next generation system de-

sign, especially for battery constrained UEs because UEs operate based on battery

power in the most practical cases. A significant portion of the battery is consumed

by network-related part [55]. With CA, it may not be a good idea to always allo-

cate multiple CCs to UEs since the concurrent transmission using CA forces UEs to

turn on additional radio frequency (RF) elements, which leads to considerable in-

crease of UE power consumption. Hence, it is meaningful to study energy efficient

scheduling for CA considering UE power consumption.

There are several researches reported on scheduling algorithm for CA in or-

thogonal frequency multiple access (OFDMA) systems [56–58]. In OFDMA based

wireless networks with CA, the BS allocates CCs and resource blocks (RBs) to

appropriate UEs at each time slot. In [56], the authors proposed a CC allocation

and RB allocation scheme considering load balancing and cross-CC proportional

fairness. In [57] and [58], the authors presented a suboptimal CC/RB allocation

algorithm which maximizes utility function.

Some studies are reported on energy efficient scheduling with the consideration

of UE power consumption [59,60]. Ref. [59] dealt with a low-complexity energy ef-

ficient scheduling for uplink OFDMA transmission without CA. Ref. [60] proposed

a dynamic CC allocation algorithm to improve a new energy efficiency metric with-
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out the RB scheduling. However, no study has yet been reported on enhancing the

energy efficiency considering UE power consumption in OFDMA based wireless

networks supporting CA.

In this chapter, we study an energy efficient scheduling for downlink OFDMA

systems with inter-band non-contiguous CA. Specifically, we focus on the power

consumption of UEs utilizing CA and define the energy efficiency of each UE as the

ratio of the downlink data rate and the UE power consumption. Then, we formulate

a CC and RB scheduling problem to achieve the proportional fairness of the energy

efficiency of all UEs. To get over the high computational complexity of determining

the optimal solution, we develop a low complexity scheduling algorithm, namely

energy efficiency proportional fairness (EEPF) algorithm.

The rest part of the chapter is as follows. In Section 4.2, we describe the system

model. In Section 4.3, we present an energy efficient scheduling algorithm for

OFDMA based CA system. Then, in Section 4.4, we evaluate the performance of

the proposed algorithm.

4.2 System Model

We consider a downlink OFDMA system in which traffic bandwidthBW is equally

divided into N RBs, each with a bandwidth of W . The BS supports CA technology

in which up to C CCs can be aggregated. We assume that each CC belongs to dif-

ferent frequency band (inter-band non-contiguous CA) and has the same amount of

BW and also the same number of RBs. There are total K UEs that can communi-
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Figure 4.1: Network architecture supporting CA.

cate with either single CC or multiple CCs at the same time, as shown in Fig. 4.1.

We denote by Pmax and gk,c,n the maximum transmission power available on

each CC and the channel gain of UE k on RB n of CC c, respectively. Then, the

maximum achievable data rate of UE k on RB n of CC c at time slot t is

rk,c,n[t] = W log2

(
1 +

Pmaxgk,c,n[t]

Nσ2

)
, (4.1)

where σ2 is the noise variance. Since we assume equal power allocation on each

RB,1 the allocated power on each RB is equal to Pmax/N . We denote by Ck andN c
k

1Equal power allocation leads to a throughput degradation compared with the water-filing power
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the index set of CCs allocated to UE k and the index set of RBs allocated to UE k

on CC c, respectively. Each RB is assigned to only one UE, so that N c
i

∩
N c

j ̸=

ϕ, ∀i ̸= j, ∀c. The total throughput of UE k served by the BS at time slot t is

r̃k[t] =
∑
c∈Ck

∑
n∈N c

k

rk,c,n[t]. (4.2)

We model the power consumption of downlink CA UEs by applying the model

designed in [62], [63]. The network-related power of a downlink UE k is con-

sumed at receive RF (RxRF), analog-to-digital converter (ADC), and receive base-

band (RxBB) as shown in Fig. 4.2. The RxRF power consumption, PRxRF, is de-

pendent on the amount of received power, the RxBB power consumption, PRxBB, is

dependent on the downlink data rate, and the ADC power consumption, PADC, is

dependent only on the bandwidth. Thus, the total UE power consumption at time

slot t is expressed by

p̃k[t] =
∑
c∈Ck

{
PRx + PRxRF

(
Pmax

N

N∑
n=1

gk,c,n[t]

)

+ PRxBB

( ∑
n∈N c

k

rk,c,n[t]

)
+ PADC(BW )

}
+ Pcon, (4.3)

where PRx is the base power when a UE is in Rx mode and Pcon is the average power

while a UE is in active mode. Note that we consider inter-band CA, and thus there

are additional RFs, narrowband ADCs, and BBs. The terms PRxRF, PRxBB, and PADC

allocation but the degradation negligible if the power is poured on the RBs with good channel gains.

Fortunately, in a multi-user system with an adaptive resource allocation scheme, the transmission

power is usually allocated to the UEs with good channel gains [61].
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Figure 4.2: UE power consumption model for inter-band CA.

are linearly dependent on variables, i.e., PRxRF(x) = α0x+α1, PRxBB(x) = β0x+β1,

and PADC(x) = γ0x+ γ1.

If we denote by Rk[t] and Pk[t] the average throughput and average power con-

sumption of UE k at time slot t respectively, they are given by

Rk[t] =

(
1− 1

T

)
Rk[t− 1] +

1

T
r̃k[t] (4.4)

Pk[t] =

(
1− 1

T

)
Pk[t− 1] +

1

T
p̃k[t], (4.5)

where T indicates the effective window size during which the throughput or power

consumption is averaged. Then, we define the energy efficiency of UE k as the ratio

of the average data rate to the average power consumption of UE k as follows

ηk[t] =
Rk[t]

Pk[t]
. (4.6)

Note that although we consider a downlink transmission, the denominator of the

energy efficiency is the power consumption of UE k, not that of the BS. Since we

allocate the transmission power equally to each RB, the BS always consumes a con-

stant amount of power regardless of how the CCs/RBs are allocated and to which
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UEs they are allocated. However, at the UE side, the more CCs are allocated, the

much more power is consumed, because it has to use additional RF, ADC, and BB.

Therefore, we consider energy efficiency in conjunction with UE power consump-

tion.

4.3 Energy Efficiency Proportional Fairness (EEPF)

Scheduling

In this section, we discuss how to perform energy efficient scheduling for CA in

consideration of proportional fairness. To achieve the proportional fairness in terms

of the energy efficiency, it is necessary to allocate CCs/RBs with the objective of

maximizing the product of the energy efficiency of all UEs [64]. Thus, we can for-

mulate an energy efficiency proportional fairness (EEPF) scheduling for CA system

that determines the optimal allocation sets Ck and N c
k as follows

max
Ck,N c

k

U [t] =
K∑
k=1

log(ηk[t]), (4.7)

where U [t] is the utility function for CA system at time slot t. Note that the propor-

tional fairness criterion enables the scheduler to balance the tradeoff between max-

imizing the overall energy efficiency and preserving some degree of fairness [65].

Since U [t− 1] is given at time slot t, maximizing U [t] is equivalent to maximizing
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the difference ∆U of the utility function. That is,

max
Ck,N c

k

∆U = max
Ck,N c

k

U [t]− U [t− 1] (4.8)

= max
Ck,N c

k

K∑
k=1

{
log

(
Rk[t]

Pk[t]

)
− log

(
Rk[t− 1]

Pk[t− 1]

)}
(4.9)

= max
Ck,N c

k

k∑
k=1

{
log

(
Rk[t]

Rk[t− 1]

)
− log

(
Pk[t]

Pk[t− 1]

)}
(4.10)

By using the Taylor expansion with the assumption that T ≫ 1, we get

max
Ck,N c

k

∆U (4.11)

≈ max
Ck,N c

k

K∑
k=1

{
r̃k[t]

Rk[t− 1]
− p̃k[t]

Pk[t− 1]

}
(4.12)

= max
Ck,N c

k

K∑
k=1

∑
c∈Ck

J(c, k,N c
k ), (4.13)

where

J(c, k,N c
k ) =

∑
n∈N c

k

(
rk,c,n[t]

Rk[t− 1]
− β0

rk,c,n[t− 1]

Pk[t− 1]

)

−

(PRx + α0
Pmax

N

N∑
n=1

gk,c,n[t] + γ0BW + α1 + β1 + γ1

Pk[t− 1]

)
. (4.14)

It is very difficult to determine the optimal solution for (4.7) because the com-

putational complexity of the optimal scheduler is in the order of O(KCN), so that

the complexity exponentially increases as the number of CCs or the number of RBs

increases. Therefore, we propose a low-complexity EEPF scheduling algorithm that

maximizes
∑K

k=1

∑
c∈Ck J(c, k,N

c
k ).
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We define D(n, c, k) as the RB allocation metric which takes the expression

D(n, c, k) =
rk,c,n[t]

Rk[t− 1]
− β0

rk,c,n[t]

Pk[t− 1]
, (4.15)

which is a part of J in (4.14). Since only the metric D is concerned with the index

set N c
k of allocated RBs, we refer to D as the RB allocation metric. When β0 is

extremely small, the second term of D becomes negligible. Then, the RB allocation

metric D is given by

D(n, c, k) ≈ rk,c,n[t]

Rk[t− 1]
. (4.16)

The scheduler that allocates RBs to the UEs having the largestD in (4.16) is equiva-

lent to the traditional proportional fairness scheduler for CA system [56]. We denote

by J(c, k,N c
k ) the CC allocation metric because J is the whole part related to the

index set Ck of allocated CCs. The metric J may be divided into two parts; the

first part which is the sum of D and the residual second part which decreases as the

number of allocated CCs increases. If we only consider the first part, it is beneficial

to allocate RBs to the UEs having the largest D. However, although a UE is allo-

cated with several RBs which belong to multiple CCs by considering only the first

part, this allocation may not be the solution that maximizes the sum of the metric

J because the second part decreases. Therefore, the basic principle of the proposed

algorithm is that each RB is allocated to the UE having the largest D and the UE

having the smallest J is prevented from being allocated with the corresponding CC.

We formalize the procedure of this scheduling algorithm as Algorithm 7.

We define Bc as the set of UEs blocked from being allocated with CC c and

initialize Bc for all CCs. In each iteration, RB n in CC c is assigned to UE k having
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Algorithm 7 EEPF scheduling
1: Initialize Bc ← ϕ for all c, m← 0;

2: while m < K do

3: for c = 1 to C do

4: for n = 1 to N do

5: k∗ ← argmax
k/∈Bc

D(n, c, k);

6: Ck∗ [m]← Ck∗ [m]
∪
{c};

7: N c
k∗ [m]← N c

k∗ [m]
∪
{n};

8: end for

9: end for

10: (c′, k′)← argmin
k/∈

C∪
c=1

Bc,N c
k [m] ̸=ϕ

J(c, k,N c
k [m]);

11: Bc′ ← Bc′
∪
{k′};

12: m← m+ 1;

13: end while

14: m∗ ← argmax
m

K∑
k=1

∑
c∈Ck[m]

J(c, k,N c
k [m]);

15: C̃k ← Ck[m∗];

16: Ñ c
k ← N c

k [m
∗];
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the largest value of the RB allocation metric D(n, c, k) [Lines 3–9]. However, if

UE k is included in Bc, RB n is assigned to the other UE having the second largest

D. After the RB and CC allocation, we calculate the CC allocation metric J using

(4.14). Then, we determine the pair (c′, k′) that minimizes the CC allocation metric

J and add UE k′ to the CC allocation blocking set Bc′ [Lines 10–12]. Note that

UE k′ is prohibited from being allocated only with CC c′. In other words, UE k′ is

permitted to be allocated with all other CCs except for CC c′. Since we conduct the

iteration K times, each UE can be allocated with all CCs except at most one CC.

When the iteration ends, we compare the utility of each iteration and determine the

optimal allocation sets that maximize
∑K

k=1

∑
c∈Ck J(c, k,N

c
k ) [Lines 14–16]. The

computational complexity of the EEPF algorithm is in the order of O(K2CN).

4.4 Performance Evaluation

We have performed simulations to evaluate the performance of the proposed algo-

rithm for CA system. We assume that the OFDMA based CA system under consid-

eration has 2 CCs at 800 MHz band and 2.1 GHz band, and each CC has 10 MHz

bandwidth with 50 RBs and 180 kHz spacing. Each channel model of 800 MHz

band CC and 2.1 GHz band CC is based on Winner II [66] and 3GPP LTE [67], re-

spectively. We limit the total transmit power of BS in each CC to 10 W. We set the

parameters related to power consumption as follows: PRx = 0.42 W; Pcon = 1.53

W; α0 = −1.11 mW/dBm; α1 = −60.7 mW; β0 = 2.89 mW/Mbps; β1 = −26.6

mW; γ0 = 11.6 mW/MHz; γ1 = −229 mW [63].
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We compare the performances of five different schemes, which are the optimal,

cross-CC, maximal rate (MR), round robin (RR), and no CA scheduling schemes.

In the optimal scheme, we determine the optimal allocation sets Ck andN c
k through

the exhaustive search. The cross-CC scheme is the conventional PF scheduling for

CA system [56], so that with the cross-CC scheduler, each RB is assigned to the

UE that maximizes D in (4.16) at each time slot t. Since β0 is extremely small, the

RB allocation metric D in (4.15) is almost the same as D in (4.16). Therefore, the

procedure of the cross-CC scheme is the same as Lines 3–9 in Algorithm 7, which

means that the cross-CC scheme is equivalent to the proposed EEPF scheme without

performing the iteration. The MR scheduling aims at maximizing total throughput,

thus each RB is assigned to the UE that maximizes rk,c,n[t] at each time slot t. The

RR scheduling allocates RBs to UEs regardless of instantaneous UE channel gains.

The no-CA scheme allows only single CC allocation to all UEs. We formalize the

procedure of the no-CA algorithm as Algorithm 8.

Fig. 4.3 compares the proposed EEPF scheduling algorithm with the optimal

scheme for the different size of time window, T . The utility of the EEPF scheme is

normalized by that of the optimal scheme. We observe that the performance of the

EEPF scheme approaches that of the optimal scheme as T increases. This happens

because the approximation in (4.12) becomes more accurate as T increases. We also

observe that when T is larger than 90, the normalized utility of the EEPF scheme

converges for all N . Therefore, we set T to 150 in the following simulation results.

Fig. 4.4(a) depicts the average sum of the energy efficiency of all UEs, with

respect to the number of UEs. We observe that except the RR scheduling case, the
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Algorithm 8 No CA scheduling
1: Initialize Bc ← ϕ for all c;

2: for c = 1 to C do

3: for n = 1 to N do

4: k∗ ← argmax
k/∈Bc

D(n, c, k);

5: Ck∗ ← Ck∗
∪
{c};

6: N c
k∗ ← N c

k∗
∪
{n};

7: Bc′ ← Bc′
∪
{k∗}, ∀c′, c′ ̸= c;

8: end for

9: end for

Figure 4.3: Normalized utility of the EEPF with respect to T .
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Figure 4.4: Performance comparison with respect to the number of UEs: (a) Aver-

age sum of the energy efficiency, (b) total throughput, and (c) total power consump-

tion.

performances of all other schemes increase as the number of UEs increases. We also

observe that the EEPF scheme outperforms other schemes and the performance gap

between the EEPF and no CA schemes increases as the number of UEs increases.

Fig. 4.4(b) depicts the total throughput with respect to the number of UEs. We

observe that the performances of the MR, cross-CC, EEPF, no CA increase as the

number of UEs, which results from the multi-user diversity. We also observe that

the MR and cross-CC schemes outperform the EEPF scheme. In detail, the MR and

cross-CC schemes achieve a total throughput higher than the EEPF scheme by 14%

and 4%, respectively. However, based on Fig. 4.4(a), the EEPF scheme improves

the energy-efficiency by about 64% and 66% over the MR and cross-CC schemes,
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respectively.

Fig. 4.4(c) depicts the total power consumption with respect to the number of

UEs. We observe that when the number of UEs exceeds 25, the MR scheme outper-

forms other schemes. This occurs because the MR scheme allocates RBs to only a

few UEs which are beneficial in the aspect of the total throughput, which leads to

significant unfairness as will be discussed below based on the next figure. We also

observe that with the exception of the MR scheme, the total power consumption of

the EEPF scheme is superior to that of other schemes. This power consumption gain

causes the EEPF scheme to enhance the energy efficiency at the cost of relatively

little decrease of the total throughput compared with the cross-CC scheme.

Fig. 4.5 compares the fairness performance of the proposed schemes by using

the Jain’s fairness index [68]: ∣∣∣∣ K∑
k=1

ηk

∣∣∣∣2
K

K∑
k=1

η2k

. (4.17)

In Fig. 4.5(a), we observe that the fairness of the MR scheme is significantly worse

than the other schemes as mentioned earlier. In Fig. 4.5(b), we observe that the

EEPF scheme is quite fair since its fairness index is always more than 0.97 irre-

spective of the number of UEs.

Fig. 4.6 depicts the ratio of the single CC allocation with respect to the number

of UEs. The ratio is concerned with how many CCs are allocated to UEs at each

time slot. If the ratio is one, only single CC is allocated to all UEs at all time slots.

However, in case that the ratio is zero, multiple CCs are simultaneously allocated
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Figure 4.5: Fairness index of the energy efficiency: (a) With the MR scheduling and

(b) without the MR scheduling.
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Figure 4.6: Ratio of single CC allocation.

to all UEs at all time slots. Thus, the ratios of the no CA and the RR scheme is

equal to one and zero, respectively. We observe that the ratio of the EEPF scheme

is always over 0.9, thus the EEPF scheme tends to allocate a single CC to each

UE for reducing the UE power consumption, which makes the EEPF scheme more

energy-efficient.

4.5 Summary

In this chapter, we have presented an energy efficient and proportional fair CC/RB

allocation algorithm for inter-band non-contiguous CA in OFDMA based networks

which is the most common modulation scheme for broadband wireless standards
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such as WiMAX and 3GPP LTE. We define the utility as the log-sum of the energy

efficiency of all UEs, and the energy efficiency as the ratio of the time-averaged

downlink data rate and the UE power consumption, respectively. Note that the BS

power consumption is not considered in the definition of the energy efficiency due to

the equal power allocation on each RB. To achieve the proportional fairness in terms

of the energy efficiency, we developed a CC/RB allocation problem that maximizes

the utility. With an approximation of the utility, we found that the utility increases

as we allocate the RBs to the UEs having the largest RB allocation metric D and

prevent the UEs having the smallest CC allocation metric J from being allocated

with the corresponding CCs. Based on this property, we devised a low-complexity

scheduling algorithm, called EEPF scheduling scheme.

According to the simulation results comparing the EEPF scheme with the op-

timal, no CA, cross-CC, MR, and RR scheduling schemes, we have observed that

the proposed EEPF scheme performs close to the optimal scheme and it outperforms

other schemes. In terms of the energy efficiency, the EEPF scheme achieves a higher

performance than the cross-CC scheme dose by about 66% at the cost of relatively

little (4%) decrease of the total throughput. We have also observed the probability

that the scheduled UE uses a single CC is always higher than 90% for any number

of UEs. Therefore, we may conclude that CA can be used to increase the data rate

but we have to carefully exploit it not to deteriorate the energy efficiency.
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Chapter 5

Conclusion

5.1 Research Contributions

The dissertation has studied novel methods of efficient BS control for green wire-

less communications. The BS control strategies may be classified based on various

time scales, i.e., from several hours time scale to several milli-seconds time scale,

which covers the BS switching-on/off, UE association, radio resource allocation,

and UE scheduling. Then, those strategies are considered under two different sys-

tem models – heterogeneous networks consisting of cellular networks and WLANs,

and cellular networks adopting OFDMA with CA. Above system models are two

typical ways of meeting the increasing demand for mobile data traffic. However, an

abuse of the network diversity of heterogeneous network or CA incurs significant

increase of energy consumption. Thus, in order to improve the system’s energy effi-

ciency, efficient BS control strategies have been developed by combining the system
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Table 5.1: Characteristics of the proposed BS control approaches.

BS control
BS switching-on/off Radio resource

UE scheduling
and UE association management

System model
Heterogeneous networks

Inter-band CA
(cellular + WLAN)

Objective

Balancing tradeoff Optimizing energy Achieving PF of

between energy efficiency of entire energy efficiency

consumption and network considering UE

network revenue power consumption

Way to find Time scale Double-loop Low-complexity

solution based problem iteration method algorithm

decomposition

Property

Network selection Allocate smaller Tendency to

based on both power to UEs allocate

energy efficiency getting higher rate single CC

and revenue from APs

model and time-scale based operation in three aspects: 1) BS switching-on/off and

UE association in heterogeneous networks, 2) optimal radio resource allocation in

heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA

based cellular networks. Table 5.1 summarizes the characteristics of the proposed

BS control approaches.

The first part of the dissertation has presented a joint algorithm for BS switching-

on/off and UE association for a heterogeneous network consisting of cellular net-

works and WLANs. To develop the algorithm, the tradeoff relationship between
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energy consumption and network revenue was identified. Then, a problem was

formulated with the objective of minimizing the total cost function such that the

tradeoff relation is incorporated by a balancing parameter η. In order to make the

problem tractable, it was decomposed into two subproblems based on time scale,

i.e., UE association problem and BS switching-on/off problem, and the correspond-

ing algorithms were developed. Simulation results based on daily traffic profile

demonstrated that the proposed algorithms are effective in reducing energy con-

sumption while keeping balance between energy consumption and network revenue

at the same time.

The second part of the dissertation has presented an energy-per-bit minimized

radio resource allocation scheme for a heterogeneous network composed of an

OFDMA-based cellular network and TDMA-based WLANs with multi-homing ca-

pability. Specifically, the energy-per-bit minimization problem was investigated

while guaranteeing minimum data rate requirements. As the resulting optimization

problem is a fractional programming, a parametric programming was derived out

of the original problem and the original problem was solved by using a double-loop

iteration method. Resorting to the Lagrangian dual approach, the optimal resource

allocation policies were determined. Above optimal subcarrier, power, and time

fraction allocation policies leaded to developing two suboptimal algorithms, TAF

and NTA, which first allocate the time fraction of UEs getting a high data rate from

APs and then allocate power and subcarriers to all UEs. Simulation results demon-

strated that the proposed optimal algorithm outperforms not only the PSAO scheme

which does not use WLANs but also the TAF and NTA schemes in terms of power
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consumption and energy efficiency.

The third part of the dissertation has presented an energy efficient CC/RB allo-

cation algorithm for OFDMA based networks using CA. Specifically, it was focused

on the UE power consumption for the inter-band CA in downlink transmission. The

utility is defined as the log-sum of the energy efficiency which is the ratio of the

time-averaged downlink data rate and the UE power consumption. To achieve the

proportional fairness in terms of the energy efficiency, a CC/RB allocation problem

was developed for maximizing the utility. With an approximation of the utility, the

tendency was found that the utility increases as the RBs are allocated to the UEs

having the largest RB allocation metric and the UEs having the smallest CC alloca-

tion metric are prevented from being allocated with the corresponding CCs. Based

on this property, a low-complexity scheduling algorithm was developed, namely

EEPF scheduling scheme. Simulation results demonstrated that the proposed EEPF

scheme performs close to the optimal scheme and is the most energy efficient among

the existing schemes for CA.

As such, the dissertation has presented several solutions for green wireless com-

munications in consideration of specific deployment scenarios, operating condi-

tions, and optimization time scale. The first part is adequate for heterogeneous

networks on several minutes or hours time scale. The second part is suitable for a

singe cellular network and WLANs with multi-homing capability on several milli-

seconds time scale. The last part is for CA in an OFDMA based cellular network

on several milli-seconds time scale. If they operate together in the context of green

communication, this integrated solution will provide a substantial gain on the en-
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ergy performance. Therefore, the integrated solution may present a useful future

direction towards greener communications.

5.2 Future Research Directions

So far, the dissertation has investigated efficient BS control strategies depending on

the time scale for green wireless communications, but the proposed schemes can be

extended and some of the possible future directions are described below.

First, in the BS switching-on/off and UE association scheme, the revenue of

the cellular operators is assumed to be proportional to the amount of data usage

for the analytical simplicity. This pricing plan is referred as to usage based pricing.

However, in reality, most operators offer “tiered” data plans where different flat-rate

prices are set for different data usage caps and the extra volume exceeding the deter-

mined data cap is charged proportional to the usage. Therefore, it is worth studying

how to perform BS operation and UE association under the practical pricing plans.

Second, in the radio resource allocation scheme, the energy-per-bit minimiza-

tion is studied in a single-cell heterogeneous network. Thus, the study can be ex-

tended to multi-cell heterogeneous network scenario. In addition, it can be dealt

with the inter-cell interference issues of cell edge UEs since cell edge UEs suf-

fer from performance degradation due to inter-cell interference in practical cellular

systems. However, it is very difficult to optimize the energy efficiency for multi-

cell networks because the received interference from the adjacent cells causes in a

non-convex and NP-hard problem. It may be possible to resolve the problem by
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applying cooperative or noncooperative game theory.

Third, in the UE scheduling scheme for CA, only the inter-band CA is consid-

ered out of three types of CA. In the inter-band non-contiguous CA case, each UE

has to turn on additional RF elements to use multiple CCs at the same time. On

the other hand, in the intra-band contiguous CA case, even if a UE is allocated with

multiple CCs simultaneously, the UE can successfully receive desired signals by

using a single RF element. Hence, it may be more energy-efficient to allocate mul-

tiple CCs to each UE in the intra-band contiguous CA. Therefore, it is necessary

to extend the UE scheduling scheme to the intra-band CA case, furthermore, the

hybrid CA case where the inter-band CA and intra-band CA coexist.
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국문 초록

본 논문에서는 친환경 무선 통신을 위한 효율적인 기지국 제어 기법들에 관하여 논의

한다. 제안하는 기지국 제어 기법들은 시간 척도에 따라 크게 세 종류로 나뉠 수 있다. 시

간 단위의 기지국 제어는 기지국을 켜고 끄는 것과 관계되고, 분 단위의 기지국 제어는 기

지국과 단말 사이의 접속과 관계되고, 그리고 밀리초 단위의 기지국 제어는 단말 스케쥴링

또는 무선 자원 할당과 관계된다. 본 논문에서는 두 가지 시스템을 고려하는데, 그 하나는

셀룰러 네트워크와 무선 LAN (local area network) 으로 구성된 이종 네트워크이고 다른

하나는 캐리어 집성(carrier aggregation)을 적용한 OFDMA (orthogonal frequency

division multiple access; 직교 주파수 분할 다중 접속) 기반의 셀룰러 네트워크이다. 각

각의 시스템 모델과 적절한 기지국 제어 기법을 결합하여, 본 논문에서는 친환경 무선 통신

을 위한 세 가지의 새로운 기지국 제어 기법들을 제안한다. 구체적으로 1) 이종 네트워크에

서 기지국 개폐 및 단말 접속 기법, 2) 이종 네트워크에서 최적의 무선 자원 할당 기법, 3)

OFDMA 기반의 셀룰러 네트워크에서 캐리어 집성을 위한 에너지 효율적인 단말 스케쥴

링 기법 등이다.

논문의 첫 번째 부분에서는 셀룰러 네트워크와 무선 LAN으로 구성된 이종 네트워크

에서 기지국 개폐와 단말 접속을 동시에 수행하는 알고리즘을 제안한다. 우선 전체 네트워

크의 에너지 소모와 네크워트 사업자의 수익 사이의 균형을 맞추도록 고안된 전체 비용 함

수를 최소화하는 문제를 형성한다. 활성화된 기지국의 집합을 결정하는 시간 척도가 단말

접속 결정을 위한 시간 척도보다 상당히 크다고 가정하면, 형성된 문제는 단말 접속 문제와

기지국 개폐 문제로 분해할 수 있고, 이때 단말 접속 문제는 볼록 문제이므로 최적해를 구

할 수 있다. 기지국 개폐 문제는 조합 최적화(combinatorial optimization) 문제이므로 풀

기 어렵기 때문에, 전체 비용 함수를 고려하거나 각 기지국 커버리지 내의 AP (access



point) 밀도를 고려하는 두 개의 휴리스틱 알고리즘을 제안한다. 시뮬레이션을 통해 제안한

두 개의 휴리스틱 알고리즘이 기지국을 항상 켜는 알고리즘에 비해 에너지 소모를 현저하

게 감소시킨다는 것을 확인한다.

논문의 두 번째 부분에서는 동시에 다수의 무선 인터페이스에 접속할 수 있는 멀티호

밍이 허용된 이종 네트워크 환경에서 비트 당 에너지를 최소화하는 무선 자원 할당 기법을

제안한다. 비트 당 에너지를 최소화하는 것을 목적으로 하는 최적화 문제는 비선형 분수 계

획(fractional programming) 문제에 속한다. 따라서 형성된 분수 계획 문제를 매개 변수

최적화(parameter optimization) 문제로 변환한 후, 이중 루프 반복(double-loop

iteration) 방법을 적용하고 각 반복마다 라그랑지안 쌍대(Lagrangian duality) 기법을 이

용하여 최적해를 구한다. 또한 최적의 자원 할당 정책의 특성을 활용하여 준최적의 자원 할

당 알고리즘을 제안한다. 시뮬레이션 결과를 통해 제안하는 최적의 자원 할당 기법이 동종

네트워크 환경에서 현존하는 기법들에 비해 에너지 효율을 상당히 향상시키고, 준최적 알

고리즘에 비해 에너지 소모 측면 뿐 아니라 네트워크 전체의 에너지 효율 측면에서도 상당

한 이득이 있음을 확인한다.

논문의 세 번째 부분에서는 OFDMA 기반의 무선 네트워크에서 캐리어 집성을 위한

에너지 효율적인 단말 스케쥴링 알고리즘을 제안한다. 배터리 기반으로 동작하는 단말을

고려하여, 에너지 효율을 시간 평균 하향링크 전송률과 단말 전력 소모의 비로 정의한다.

이때, 에너지 효율의 비례 공정(proportional fair)를 보장하기 위한 CC (component

carrier; 컴포넌트 캐리어) 및 RB (resource block; 자원 블록) 할당 문제를 형성한다. 형

성된 문제의 최적해를 찾는 것은 매우 어렵기 때문에, 낮은 복잡도의 에너지 효율적인 스케

쥴링 알고리즘을 제안한다. 시뮬레이션을 통해 제안한 알고리즘이 최적해에 근접하고, 캐리

어 집성을 위한 기존 스케쥴링 알고리즘들보다 우월한 성능을 보임을 확인한다.

주요어: 친환경 통신, 이종 네트워크, 캐리어 집성, 기지국 개폐, 단말 접속, 무선 자원 할당.
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