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Abstract

NEW METHODS OF EFFICIENT
BASE STATION CONTROL FOR
GREEN WIRELESS COMMUNICATIONS

SEONWOOK KIM

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

This dissertation reports a study on developing new methods of efficient base
station (BS) control for green wireless communications. The BS control schemes
may be classified into three different types depending on the time scale — hours
based, minutes based, and milli-seconds based. Specifically, hours basis pertains to
determining which BSs to switch on or off; minutes basis pertains to user equip-
ment (UE) association; and milli-seconds basis pertains to UE scheduling and ra-

dio resource allocation. For system model, the dissertation considers two different



models — heterogeneous networks composed of cellular networks and wireless lo-
cal area networks (WLANS), and cellular networks adopting orthogonal frequency
division multiple access (OFDMA) with carrier aggregation (CA). By combining
each system model with a pertinent BS control scheme, the dissertation presents
three new methods for green wireless communications: 1) BS switching on/off and
UE association in heterogeneous networks, 2) optimal radio resource allocation in
heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA
based cellular networks.

The first part of the dissertation presents an algorithm that performs BS switching-
on/off and UE association jointly in heterogeneous networks composed of cellular
networks and WLANS. It first formulates a general problem which minimizes the
total cost function which is designed to balance the energy consumption of over-
all network and the revenue of cellular networks. Given that the time scale for
determining the set of active BSs is much larger than that for UE association, the
problem may be decomposed into a UE association algorithm and a BS switching-
on/off algorithm, and then an optimal UE association policy may be devised for the
UE association problem. Since BS switching-on/off problem is a challenging com-
binatorial problem, two heuristic algorithms are proposed based on the total cost
function and the density of access points of WLANs within the coverage of each
BS, respectively. According to simulations, the two heuristic algorithms turn out to
considerably reduce energy consumption when compared with the case where all
the BSs are always turned on.

The second part of the dissertation presents an energy-per-bit minimized radio
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resource allocation scheme in heterogeneous networks equipped with multi-homing
capability which connects to different wireless interfaces simultaneously. Specifi-
cally, an optimization problem is formulated for the objective of minimizing the
energy-per-bit which takes a form of nonlinear fractional programming. Then, a
parametric optimization problem is derived out of that fractional programming and
the original problem is solved by using a double-loop iteration method. In each
iteration, the optimal resource allocation policy is derived by applying Lagrangian
duality and an efficient dual update method. In addition, suboptimal resource al-
location algorithms are developed by using the properties of the optimal resource
allocation policy. Simulation results reveal that the optimal allocation algorithm
improves energy efficiency significantly over the existing resource allocation al-
gorithms designed for homogeneous networks and its performance is superior to
suboptimal algorithms in reducing energy consumption as well as in enhancing net-
work energy efficiency.

The third part of the dissertation presents an energy efficient scheduling algo-
rithm for CA in OFDMA based wireless networks. In support of this, the energy
efficiency is newly defined as the ratio of the time-averaged downlink data rate and
the time-averaged power consumption of the UE, which is important especially for
battery-constrained UEs. Then, a component carrier and resource block allocation
problem is formulated such that the proportional fairness of the energy efficiency is
guaranteed. Since it is very complicated to determine the optimal solution, a low-
complexity energy-efficient scheduling algorithm is developed, which approaches

the optimal algorithm. Simulation results demonstrate that the proposed scheduling
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scheme performs close to the optimal scheme and outperforms the existing schedul-

ing schemes for CA.

Keywords: Green communication, heterogeneous networks, carrier aggregation

(CA), BS switching-on/off, user association, radio resource allocation.
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Chapter 1

Introduction

Green wireless communications target at energy-efficient operation of wireless com-
munication systems to combat against ever-increasing energy consumption in cel-
lular networks. The number of mobile subscribers has rapidly increased for the
last decade years and recent forecasts predict that overall mobile data traffic will
increase 13-fold in 2017 [2]. Such heavy traffic demands will cause a significant
increase of energy consumption in radio access networks, which is directly linked
to an increase of operational expenditure (OPEX) of the wireless network oper-
ators. Furthermore, the drastic increase in mobile data traffic volume may bring
more greenhouse gas emissions. Therefore, due to the economic and ecological
benefits, the energy efficient communication has recently received much attention
and several international research projects devote great efforts to it [3,4].
Motivated by the necessity for reducing the energy consumption, a large amount

of work has been reported on improving the energy efficiency in all available com-

-



ponents of cellular networks, e.g., base stations (BSs), user equipments (UEs), and
the core network [5, 6]. Specifically, it is of great importance to enhance the en-
ergy efficiency of the BSs because recent surveys reported that the BSs consume
60-80% of energy used in cellular networks [7]. Energy efficient communication
is also important for battery constrained UEs because UEs operate based on battery
power in the most practical cases.

To meet the increasing demand for mobile data traffic, wireless network opera-
tors are interested in integrating wireless local area networks (WLANs) and cellular
networks such as 3GPP-LTE and WiMAX. In general, cellular data offloading is
cost-effective and energy-efficient since WLANS can offer high data rate at lower
energy consumption than cellular networks. However, excessive data offloading
leads to revenue reduction of the cellular operators. In addition, using WLANS is
not always more energy-efficient than using cellular networks for a UE which is
near to the BS but not to the access point (AP) of WLANSs. Therefore, it is neces-
sary to study how to efficiently combine heterogeneous networks, considering the
economic factors and the energy efficiency of the overall network.

Another way to satisfy high demand for wireless data is to combine multiple
spectrums in licensed band, which is referred as to carrier aggregation (CA). The
LTE-Advanced standard [8] describes that CA supports up to 100 MHz system
bandwidth by aggregating up to five component carriers (CCs) of 20 MHz and al-
lows a UE to use one or multiple CCs simultaneously. Thus, if a UE uses two CCs
simultaneously to communicate with the BS, it can get roughly two times higher ca-

pacity than the single CC case. However, in case that the UE continuously uses CA,



Table 1.1: BS control strategies based on time scale.

Time scale Hours Minutes Milli-seconds
BS control UE scheduling,
BS switching-on/off | UE association . .
strategy radio resource allocation

its energy consumption rapidly increases, which can be fatal to the battery powered
UEs.

The dissertation investigates BS control strategies for greening wireless net-
works under the above two different system models. As shown in Table 1.1, the
BS control strategies can be classified based on their operational time-scale. It is
reasonable to consider the communication system to operate on different time scale
because different type of parameters is needed in different time scale. It is assumed
that the BS operation is determined at hours level, the UE association is performed
at minutes level, and the UE scheduling or radio resource allocation is conducted
at milli-seconds level. Specifically, three BS control scenarios are considered by
combining the system model and time-scale based operation; the first scenario is a
joint algorithm for BS operation and UE association in heterogeneous networks, the
second scenario is a radio resource allocation algorithm in heterogeneous networks,
and the third scenario is a UE scheduling algorithm for CA. Note that all those sce-
narios commonly aim at green communication. The detailed explanation on each
scenario is as follows:

1) BS switching-on/off and UE association: Large amount of energy can be

saved by switching-off under-utilized BSs at night since the traffic load exhibits
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wide-range fluctuations in time [9]. However, if some BSs are switched-off, the
UESs connecting to those switched-off BSs have to be newly associated with other
switched-on BSs. Hence, several hours based BS on/off operation should be con-
sidered jointly with several minutes based UE association.

In the case of heterogeneous networks, cellular data offloading through WLANSs
leads to not only the decrease of BSs’ utilization but also the reduction of total
energy consumption. However, if a majority of cellular data is served by APs,
instead of BSs, the revenue of the cellular operators may considerably diminish,
which makes it hard to maintain healthy cellular network and good cellular services.
Hence, there is a tradeoff relationship between the energy consumption and the
network revenue. Therefore, a joint algorithm for BS on/off and UE association
needs to be developed to balance the energy consumption and the network revenue.

Based on time scale, the dissertation deals with the joint algorithm by decom-
posing it into a UE association algorithm and a BS switching-on/off algorithm. For
the UE association problem, it presents an optimal UE association policy and, for
the BS switching-on/off problem, it presents two heuristic algorithms based on the
total cost function and the density of access points of WLANSs within the coverage
of each BS, respectively.

2) Radio resource allocation: Once the BS on/off operation is determined,
several milli-seconds based radio resource allocation may be performed in hetero-
geneous networks consisting of an orthogonal frequency division multiple access
(OFDMA) based cellular network and multiple WLANs. The dissertation presents

a downlink resource allocation algorithm which minimizes the energy-per-bit of the



entire network under minimum data rate requirements. It assumes that all UEs sup-
port multi-homing access, which means that each UE can communicate with the
BS of cellular network and the AP of a WLAN simultaneously. Multi-homing ac-
cess enables more energy-efficient communications by exploiting network diversity
using multiple interfaces.

Allowing traffic sharing and interworking between cellular network and WLAN,
the dissertation formulates the resource allocation problem as a nonlinear fractional
programming and then, solves it by using a double-loop iteration method. In addi-
tion, it develops suboptimal resource allocation algorithms by using the properties
of the optimal resource allocation policy.

3) UE scheduling: Another several milli-seconds based BS control, UE schedul-
ing may be conducted in OFDMA based wireless networks with CA. The CA may
be classified into three types based on how to configure multiple CCs, among which,
inter-band CA merging CCs within different bands is of main interest. In the inter-
band CA case, it may not be desirable to allocate multiple CCs simultaneously to
a UE. It is because the UE has to turn on additional radio frequency (RF) elements
for the concurrent transmission, which significantly reduces the battery lifetime of
the UE. Hence, it is necessary to devise a novel UE scheduling for CA considering
UE power consumption.

In OFDMA based wireless networks with CA, the BS allocates CCs and re-
source blocks (RBs) to appropriate UEs at each time slot. The energy efficiency
may be defined as the ratio of the time-averaged downlink data rate and the UE

power consumption. The proportional fairness criterion may be considered to bal-



ance the tradeoff between maximizing the overall energy efficiency and preserving
some degree of fairness. The dissertation presents a CC and RB scheduling algo-
rithm to guarantee the proportional fairness of the energy efficiency in the above
sense. Since it is very complicated to determine the optimal solution, it develops a
low-complexity energy-efficient scheduling algorithm which turns out to approach
the optimal scheme.

The remainder of this dissertation is organized as follows: Chapter 2 investigates
how to determine a set of active BSs and how to perform UE association in heteroge-
neous networks. Chapter 3 presents a radio resource allocation scheme optimizing
the overall energy efficiency with multi-homing capability. Chapter 4 provides an
energy efficiency proportional fair scheduler in OFDMA based networks with CA.

Finally, Chapter 5 concludes the dissertation.



Chapter 2

A Joint Algorithm for Base Station
Operation and User Association in

Heterogeneous Networks

2.1 Introduction

Reducing energy consumption of base stations (BSs) is of great importance in wire-
less communication systems. According to recent surveys, for operating a cellular
network including BSs, user equipments (UEs), and the core network, about 80%
of the total energy is consumed at the BS sites [10, 11]. Today, BSs are densely
deployed to support peak time traffic load [12]. However, since the traffic load fluc-

tuates over time [9], the utilization of BSs may be very low during off-peak hours,



e.g., at night. Therefore, it is possible to save large amount of energy by turning off
under-utilized BSs during such off-peak hours [13—17]. However, turning on/off of
BSs results in a new problem of UE association. If some BSs are turned off, the
UEs communicating with those turned-off BSs need to be newly associated with
other BSs. Therefore, turning on/off of BSs should be considered jointly with UEs’
association problem.

In the next generation wireless networks, integration of heterogeneous networks,
including wireless local area networks (WLANs) and cellular networks such as
3GPP-LTE and WiMAX, is considered a promising architecture to meet the in-
creasing demand for mobile data traffic. Since WLANSs can offer high data rate
at lower energy consumption than cellular networks do, offloading cellular data
through WLANS leads to the reduction of BSs’ energy consumption. However, if
a majority of cellular data is offloaded through WLANSs, the revenue of the cellu-
lar operators may drop exceedingly, thus making it hard to maintain good cellular
services and healthy cellular network. Hence, there exists a tradeoff between reduc-
ing the energy consumption and maintaining the network revenue at a reasonable
level. In [15], the authors propose efficient BS control mechanisms for energy-delay
tradeoff. However, different from [15], we investigate the tradeoff between energy
consumption and network revenue in heterogeneous networks.

In the following, we will discuss how to determine an optimal set of active BSs
and how to perform optimal UE association in heterogeneous networks consisting
of cellular networks and WLANs. We will first develop a total cost minimization

problem that reflects the energy-revenue tradeoff. We will assume that the inter-



vals of turning on/off a BS is in the order of hours while UE association is deter-
mined in much shorter time scale (e.g., several minutes). Based on this assumption,
we decompose the problem into two subproblems, namely, UE association prob-
lem and BS switching-on/off problem, to make the total cost minimization problem
tractable. For the UE association problem, we devise an optimal UE association
policy and provide insights on the characteristics of the optimal policy. As to the
BS switching-on/off problem, since the problem has a combinatorial form which
is very difficult to solve, we develop two greedy BS operation algorithms which
enable us to solve the problem in polynomial time.

The rest part of this chapter is organized as follows. We first describe the sys-
tem model in Section 2.2. Then, we formulate a total cost function minimization
problem in Section 2.3. We propose a UE association algorithm and heuristic BS
operation algorithms in Section 2.4 and Section 2.5, respectively. Finally, we eval-

uate the performance of the proposed algorithms in Section 2.6.

2.2 System Model

We consider the downlink transmission in a time division multiple access (TDMA)
based heterogeneous network consisting of a set B of BSs of cellular networks and
a set A of APs of WLANs as shown in Fig. 2.1. We consider a region K C R?
that is served by all the BSs and APs. We assume that file transfer requests follow a
heterogeneous Poisson point process with an arrival rate A(x) and a mean file size

1/p(x) that are independently distributed at location z(€ k). We define the traffic
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Figure 2.1: Heterogeneous networks with cellular networks and WLANS.

intensity at location x as y(x) £ \(z)/u(x).

We denote the set of active BSs by B,,. We assume that each AP works on

non-overlapping channels, so that no interference exists among APs.! In addition,

since WLANs operate in an unlicensed band, no APs interfere with the BSs. Then,

the maximum achievable data rate of a UE served by the ith BS or AP at location z

is given by

Piomgi(ﬂf)
o+ > PMg(v)
. JEBon,jF#1
Py, .
i () e A

1+ 1 € Bon,

log,
2.1

10g2 (1 -+ —2>
L o

where P is the transmission (or radiated) power of the ith BS or AP, g;(x) is the

'For example, 4 and 19 non-overlapping channels are available in 2.4 GHz and 5 GHz bands,

respectively, in Korea, to make it possible to assign non-overlapping channels to neighboring APs.
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channel gain of a UE at location = from the ith BS or AP, and o2 is the noise power.
We define the system load density as 7;(z) = ~(z)/C;(z), which is interpreted as
the time fraction required to deliver the traffic intensity (z) from the ith BS or AP
to UEs at location z.

We denote the region that can be served by any AP in A by
Ka={z e K|P™gi(x)/0* > SNRy,Vi € A}, (2.2)

where SNRy, is the signal-to-noise ratio (SNR) threshold that determines whether
a UE at location x is in the coverage of any AP. UEs in K4 can communicate
with either BS or AP while other UEs can communicate only with BS. We define a

feasible set 1 of load vector p(= (po, p1, - * *, PlauB.,|)) for both BSs and APs by

v={plp= ¥ Jc, @)ui(x)de,

iEBOH
pi = [ie i(@)ui(x) dz, Vi € (AU Bo),
0<pi<l—e¢ Vie (AUBy),

> w(z) =1, Ve e K,
1€(AUBg)

0 <w(z) <1,i€ (AUBy)andVz € K}, (2.3)

where pg indicates the amount of traffic load that is served by BSs even if the
traffic could be served by APs, p;(i # 0) indicates the amount of offered load
of the ith BS or AP, u;(x) indicates the probability that a UE at location x is
associated with the ith BS or AP, and € is an arbitrarily small positive constant.
Then, the feasible load vector p is characterized by the UE association vector

w(r) = (u1(z), -, U AuBL| (T))-

11



2.3 Problem Formulation

Based on the system model, we consider a cost function minimization problem in
the heterogeneous networks. The cost function is formulated as the difference of
total energy consumption E(.A, B,,, p) and network revenue R(py). Accordingly,
minimizing the cost function is equivalent to minimizing the total energy consump-
tion and maximizing the revenue jointly. Then, the optimization problem which

finds the optimal set B, of active BSs and the load vector p (i.e., UE association)

is given by
minimize (A, Bon, p) (= E(A, Bon, p) = 1R(p0)) (2.42)
ons P
subjectto p € 1, (2.4b)

where (A, Boy, p) is the total cost function and 77 (> 0) is a parameter that balances
the tradeoff between the energy consumption and revenue. When 7 is zero, it only
considers the energy consumption but, as 7 increases, it pays more weight on the
revenue side.

We assume that the revenue is generated when the BSs deliver the data that can
be offloaded by APs. Hence, the cost function of revenue is proportional to p,

taking the expression

R(po) = pod, (2.5)

where ¢ indicates the revenue per unit traffic load.
Total energy consumption of the ¢th BS may be divided into two parts: Static

and dynamic. Static power PiBS’Sta is consumed irrespective of whether the BS is

12



BS.d
L

in transmit mode, whereas dynamic power is consumed only when it is in

transmit mode. Similarly, when the jth AP is in idle state, constant power PJAP’i‘“e
is consumed but, when in transmit state, PJAP’tx is consumed. Hence, total energy
consumption is given by

E(A’ Bon, p) = Z (,OiPiBS’dyn + PZ,BS’m‘)

1€ Bon

+ Z (ijjAP,tx + (1 o pj)PjAP,idle) ’ (26)
jeA

where the first term indicates the energy consumed by the BSs and the second term
consumed by the APs.

The optimization problem given in (2.4) is very difficult to solve because the
process of switching-on/off BSs is highly coupled with the process of associating
the related UEs to new BSs. In order to make the problem tractable, we decompose
the problem into two subproblems. If we assume that the time scale for BS oper-
ation is much larger than that for UE association, we may decompose the overall
problem into a combination of BS operation process and UE association process as
described in Algorithm 1. The decomposed process indicates that a BS switching-
on/off algorithm is performed at every 7}, hours and a UE association algorithm at
every T,, minutes. We additionally perform BS switching-on/off algorithm if some
BSs get over-loaded due to a sudden increase of traffic load. We will deal the two
algorithms in two subsequent sections: UE association algorithm in Section 2.4 and

BS operation algorithm in Section 2.5, respectively.

13



Algorithm 1 BS operation and UE association algorithm
1: Every T}, hours,

2:  Execute BS switching-on/off algorithm;

3: Every 7, minutes,

4: Execute UE association;

5: if Some BSs are over-loaded, then

6: Execute BS switching-on/off algorithm;
7: Execute UE association;

8:  endif

2.4 UE Association Algorithm

We first solve the optimization problem in (2.4) for a given set B,, of active BSs.
Then, we present an optimal UE association policy that each UE associates with an

AP or a BS depending on energy efficiency and revenue.

Lemma 2.1 For a given set B, the problem in (2.4) is a convex optimization prob-

lem.

Proof : It is trivial to prove that the feasible set 1 is convex by applying the
proof in [15]. The objective function is also convex since it is linear with respect
to the load vector p. Therefore, the problem in (2.4) becomes a problem of min-
imizing the convex function under convex constraints, which is a standard convex

optimization problem. |

14



Lemma 2.2 It is the optimal UE association policy to associate a UE located at x

with the i*th AP or BS satisfying

i* = argmin 7;(z), (2.7)
J€(AUBon)

where

4 BS,dyn
J

2 — 1o, x € K4, V) € By,

PJAP,tX _ _P]AP’idle

mi(r)= ) € K4, VjEA, (2.8)
J
BS,dyn
Pj—’ T ¢ ICA> Vj € Bon-
L Cj(2)

Proof : As the problem (2.4) is a convex optimization problem by Lemma
2.1, to prove optimality of the association, it is sufficient to prove the following

inequality [18]:
VSO(AJ BOm p) ’ Ap* > 07 (29)

where V(A B,,, p) indicates the gradient vector of ¢(-) with respect to p and
Ap* = p — p* for the optimal load vector p*. The above inner product may be

expanded as follows:

Vo(A, B, p) - Ap*
[AUBon

‘ .
= > M;Lpim)(pi - i)

=0
=D BP0 = pi) + (P = P (g — pj) = md(po = p)- (2.10)

1€Bon jeA

15



Let u*(x) denote the optimal association vector for the optimal p*. Then, by (2.7),

the optimal association probability is determined by

1, if i = argmin 7;(x)
u*(;p) = J€(AUBa) 2.11)

0, otherwise.

By applying (2.8) and (2.11) to (2.9), we obtain

VoA Bnp) 29 = 0 P50 [ ) — (o)

1€Bon K CZ (;E)

N Z(PJARD{ _ PjAP,idle) /}C gjé)) (u;(x) — uj (x)) dz

JjeA
N néieZBon //CA y(x)(ui(z) — uj (x)) do
= / ’)/(J}) Z ]DZ,BS,dyn o (U(I) _ U*(I)) dr
Ka i€Bon Ci(x) ’ g
( ‘PJAP,tx - _P]AP’idle) | .
i /KA ") ;A C;(x) (u;(x) — uj(x)) dz
prsen

|

By (2.11), the optimal u;(x) is either O or 1, which means that the solution of
the problem in (2.4) yields a deterministic UE association. When n = 0, the de-
terministic rule in Lemma 2.2 implies that each UE associates with a single BS or
a single AP that minimizes the Joule per bit, i.e., the most energy-efficient. Even
when n > 0, a UE not in 4 associates with the most energy-efficient BS in B,

but a UE within K 4 considers the network revenue  as well, thus choosing BS

16



more frequently than AP as 7 increases. Especially when 7 is sufficiently large (to
be specific, 7 > jephax, {Pfs’dyn / Cj(x)} /9), a UE within K 4 always commu-
nicates with the most energy-efficient BS instead of AP. Note that the optimal UE
association policy is independent of v(z) despite its inhomogeneity. Therefore, as
long as the load vector p is feasible, each UE simply selects the most appropriate

single BS or AP based on energy-efficiency and network revenue, regardless of the

amount of traffic load.

2.5 BS Switching-on/off Algorithm

We now determine the optimal set B,, to complete the BS energy saving algorithm.
The problem in (2.4) is a convex optimization problem for a given set B,,, but it
becomes a combinatorial problem when B,, is regarded as a variable. In this case,
an optimal solution may be found through exhaustive search among O(2/5!) possible
cases, and hence, the problem becomes intractable if |B| is large. Therefore, we
devise two heuristic algorithms that enable to solve the problem in polynomial time
by a greedy approach.

We set up a switching-on/off algorithm, assuming that the BSs near the over-
loaded BSs are turned on, that BSs are turned off in the order of the largest turn-off
benefit among all the active BSs. We formalize the procedure of this switching-
on/off algorithm as Algorithm 2. We initialize B,, and define B,;c(;; as the set of
BSs in the vicinity of BS 7. If the optimal load vector obtained by Lemma 2.2 for

a given B,, is not feasible, we add B} of the over-loaded BS ¢ (i.e., p; > 1 —¢)
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Algorithm 2 BS switching-on/off algorithm

1

[\

10:

11:

12:

13:

14:

15:

Initialize, By, = Binic;

: while p* ¢ ¢ do

for i € B,, do
if p7 > 1 — e then
Bon <= Bon U Biiefsys
end if

end for

: end while

Calculate D(i), Vi € Bop;
Find BS 7* < argmax;_z D(j);
if p* € 1 then
Bon < Bon — {i*}, go to Step 9;
else

Stop the algorithm;
end if

to B,,. We define a determinant function D and calculate D(i) of each BS 7 in B,.
Then, we remove the BS i, whose D(i) is the largest, from B,, if the resulting load

vector p* is feasible and iterate this removal process for the BS with the next largest

D(i) until the resulting p* becomes infeasible.

low: Cost function based (CFB) algorithm and AP density based (ADB) algorithm,

with the metrics Dcpg and Dapg, respectively. The computational complexity of

As to the determinant function D(7), we consider two heuristic algorithms be-
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CFB algorithm is in the order of O(|B|?) and that of ADB algorithm is in the order
of O(|B]).

2.5.1 Cost Function Based (CFB) Algorithm

The CFB algorithm is designed to turn off the BS that yields the maximum cost
gain if it is turned off. Then, the determinant function of the CFB algorithm takes

the form
Dern(i) = E(A, Bon, p°) = E(A Bo\i. 5°) — n(R(p") — R(5")),  (2.12)

where p* and p* are the optimal load vectors for B,, and B,,\, respectively. Note
that the metric Dcgg(7) can be determined by the objective function of the problem

in (2.4).

2.5.2 AP Density Based (ADB) Algorithm

In case that APs are not uniformly distributed, the traffic of the BS, which contains
the largest number of APs within its coverage, could be most effectively offloaded
through the APs. Thus, the ADB algorithm is designed to turn off the BS with the
largest number of UEs, who are associated with APs, within its coverage. If we
denote by K; the coverage area of BS i, or

Ki = {z € K|i = argmin 7;(x) }, Vi € Bon, (2.13)

J€Bon
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Figure 2.2: Daily traffic profile.

then the determinant function of the ADB algorithm takes the expression

, KNIk,
Daps(i) = % (2.14)

2.6 Performance Evaluation

We have performed simulations to examine the performance of the proposed al-
gorithms. We consider a network composed of 9 BSs?> and 100 APs® deployed
1 km x 1 km area. The BSs are located at 400 m intervals and the APs are randomly

distributed. We set SNRy, to 9 dB; 6 to $5 per gigabyte. For the traffic model, we

Zhttp://www.sitefinder.ofcom.org.uk/search
3http://www.optimum.net/WiFi/Find
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assumed that the arrival rate A(x) of file transfer requests is homogeneous for all
x € K and varies only with time. We also assumed that each file transfer request
has just one file that is log-normal distributed with a mean 1/ (z) = 50 kbytes for
all z € KC. We set the variables related to power consumption as follows: P = 20
W; PPSYY = 420 W; PPS = 460 W; P = 100 mW; PAPY = 10.1 W; PP =
9.2 W, fori € Band j € A[19],[20].

We conducted simulations based on dynamic traffic load distribution in time
domain. In order to obtain time-dependent results, we assumed that the daily traffic
profile repeats periodically, i.e., we neglected the effect of weekend on traffic load.
We modeled the daily behavior as a simple sinusoidal curve shown in Fig. 2.2,
which is not far from the observation reported in [21]. As discussed in Algorithm 1,
we performed Algorithm 2 at every 7}, hours and optimal UE association at every
T,, minutes. Only when the optimal load vector is not feasible, i.e., p* ¢ 1, we
additionally performed BS switching-on/off algorithm. We set 7} to 1 and 7}, to
15.

Fig. 2.3 depicts the resulting total power consumption of the all-on, ADB, CFB,
and optimal schemes with respect to the flow of time during a day. The all-on
scheme represents that all the BSs are switched on and UE association is performed
in every 7, minutes. The optimal scheme represents the optimal solution of BS
switching-on/off problem obtained through exhaustive search, instead of applying
Algorithm 2. We observe that the optimal scheme outperforms all other schemes,
and the ADB and CFB schemes perform close to the optimal scheme with the CFB

scheme outperforming the ADB scheme.
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Figure 2.3: Performance comparison of all-on, ADB, CFB, and the optimal schemes

in terms of total power consumption: (a) n = 0, (b) n = 10, and (¢) n = 1000.

We can check the effect of network revenue on power consumption by com-
paring Figs. 2.3(a)-2.3(c).* In the case of Fig. 2.3(a) with n = 0, which focuses
on reducing the energy consumption by neglecting the revenue, we observe that
the proposed schemes significantly curtail the energy consumption even in peak
times. It happens because most of data generated in /C 4 are offloaded through APs,
which are more energy-efficient than BSs. As 7 increases, with more weight on
network revenue, the number of UEs in K4 communicating with BSs instead of
APs increases. Hence, during the day time peak, the total power consumption of

the proposed schemes approaches that of the all-on scheme. However, during the

“When 7 > 50, a UE within K 4 almost surely associates with the BS instead of the AP by

Lemma 2.2.
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Figure 2.4: Normalized total energy consumption with respect to 7.

night time, the performance gap between the all-on scheme and all others exists
regardless of the values of 7, which happens because most BSs are unutilized or
under-utilized and so turned off during off-peak times.

Fig. 2.4 depicts the total amount of energy consumed for a whole day, normal-
ized by that of the all-on scheme. We observe that as 7 increases the normalized
total energy consumption also increases, which happens because in this case the BSs
are more highly utilized to increase the network revenue. We observe that the CFB
scheme performs close to the optimal scheme for all values of 7 but the performance
gap between the ADB scheme and the optimal scheme increases as 7) increases. It
happens because UEs in 4 may not communicate with APs when 7 is large, and

thus the density of APs is irrelevant with the BS switching-on/off problem.
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2.7 Summary

In this chapter, we have presented a joint algorithm for BS switching and UE as-
sociation in a heterogeneous network which is composed of cellular networks and
WLANS. In devising the algorithm, we illuminated the tradeoff relation between
energy consumption and network revenue. We formulated the problem of mini-
mizing the total cost function such that the tradeoff relation is incorporated by a
balancing parameter 7). In order to make the problem tractable, we decomposed it
into two subproblems: UE association problem and BS switching-on/off problem.
First, for the UE association algorithm, we derived an optimal policy that each UE
associates with a single BS or a single AP based on energy efficiency and network
revenue. In particular, when 7 = 0 (i.e., when network revenue issue is not con-
sidered), each UE communicates with the most energy-efficient AP or BS. Second,
for the BS switching-on/off problem, we proposed a couple of greedy algorithms,
CFB and ADB: The CFB algorithm is designed to switch off the BS that generates
the maximum cost gain while the ADB algorithm is designed to switch off the BS
within which coverage the largest number of UEs are associated with APs.
According to the simulations conducted by applying the daily traffic profile,
the proposed algorithms can reduce energy consumption by up to about 50% when
compared with the all-on scheme. In particular, the CFB scheme turned out sim-
ple and efficient with its performance approaching the optimal solution by about
8%. We observed, as expected, the tendency that as 7 increases the data offloaded

through APs decreases. As a result, during peak time energy consumption of the
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proposed schemes increases as 7 increases. However, during off-peak times, it
decreases significantly without regard to 7, which happens because most BSs are
unutilized or under-utilized. Therefore, we may conclude that the proposed algo-
rithms are effective in reducing energy consumption and keeping balance between

energy consumption and network revenue at the same time.
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Chapter 3

Energy-per-Bit Minimized Radio
Resource Allocation in

Heterogeneous Networks

3.1 Introduction

Today, the number of global mobile phone subscribers approaches 6 billion [22],
and wireless devices and equipments consume about 9% of the total energy of in-
formation technology (i.e., as much as 6.1 TWh/year) [23]. According to recent
surveys, around 80% of the total energy required for the operation of cellular net-
works, including base stations (BSs), user equipments (UEs), and the core network,

is consumed at BS sites [7]. Furthermore, the number of mobile device UEs keeps
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increasing globally and the demanded per-user capacity keeps increasing as well.
Therefore, as a natural consequence, the study for next-generation mobile network
design has been focused on green radio communications with energy-efficient radio
resource allocation playing a key role.

Another important issue of next-generation wireless network design is the in-
tegration of heterogeneous wireless networks [24], including wireless local area
networks (WLANSs) and cellular networks such as 3GPP-LTE and WiMAX, both
utilizing orthogonal frequency division multiple access (OFDMA) technology. In
dealing with heterogeneous wireless networks, there are two different approaches,
namely network selection and multi-homing [25]: Network selection chooses the
most appropriate access network among all available alternatives [26-28], whereas
multi-homing simultaneously accesses to multiple wireless network interfaces [29].
In general, multi-homing is more beneficial in that it enables UEs to exploit network
diversity using multiple interfaces.

Multi-homing capability allows each UE to obtain its required quality of service
(QoS) from all available wireless access networks. This capability has the following
advantages [30]: First, available resources from different wireless access networks
can be aggregated to support applications with high data rate. Second, it can support
mobility since at least one of the used interfaces will remain active during service
provision. Third, the multi-homing concept balances the traffic load across different
wireless access networks.

A large amount of work has been reported on resource allocation in downlink

OFDMA systems [31-33]: Ref. [31] dealt with the joint optimal subcarrier and
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power allocation problem for weighted sum rate maximization. Ref. [32] proposed
a low-complexity resource allocation algorithm that balances the tradeoff between
spectral efficiency and energy efficiency. Ref. [33] approached the energy efficiency
optimization problem as a fractional programming. For resource allocation in het-
erogeneous networks consisting of OFDMA based cellular network and WLAN ac-
cess technologies, there are several radio resource management algorithms adopting
the multi-homing approach [25,30,34-37]: Ref. [25] dealt with sum rate maximiza-
tion problem under the proportional UE rate constraint and Ref. [34] proposed a
max-min fairness based resource management strategy. Refs. [30] and [35] dealt
with maximization of utility function while maintaining QoS. Refs. [36] and [37]
presented a resource allocation algorithm for sum rate maximization in heteroge-
neous WLAN and femto-cell networks. However, to the best of the authors’ knowl-
edge, no work has yet been reported on energy efficiency of heterogeneous wireless
networks.

In this chapter, we study an optimal radio resource management under mini-
mum data rate requirements in heterogeneous networks consisting of an OFDMA
based cellular network and multiple WLANs. The objectives of the chapter are
three-fold — energy-per-bit minimization with multi-homing capability, determin-
ing optimal solution based on double-loop iteration method, and developing simple
suboptimal algorithms. First, we consider an optimization problem that minimizes
the ratio of the required energy and the transmitted bits under the heterogeneous
network with multi-homing access capability. Second, allowing for traffic sharing

and interworking between cellular network and WLAN, we formulate the resource
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allocation problem as a nonlinear fractional programming and then determine its
optimal solution by using a double-loop iteration method. Third, we develop two
simple suboptimal algorithms, namely time-fraction allocation first (TAF) and nor-
malized time-fraction allocation (NTA), by carefully looking into the properties of
the optimal solution.

The rest part of this chapter is organized as follows. In Section 3.2, we in-
troduce the system model of the considered heterogeneous networks and formu-
late an energy-per-bit minimized radio resource allocation problem as a fractional
programming. In Section 3.3, we derive a parametric programming out of the frac-
tional programming and solve the problem by using a double-loop iteration method.
Then, in Section 3.4, we discuss how to determine an optimal allocation of subcar-
riers, power, and time fraction at each iteration and, in Section 3.5, we develop two
suboptimal algorithms. Finally, in Section 3.6, we evaluate the performance of the

proposed algorithms.

3.2 System Model and Problem Formulation

We consider the downlink transmission in a single macro-cell network (e.g., 3GPP-
LTE or WiMAX) in which M WLAN APs (M > 1) are overlaid, as shown in
Fig. 3.1. The BS of the macro-cell network is located at the center of the cell and

APs are scattered around the BS. We assume that the BS and each AP work on non-
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Figure 3.1: A heterogeneous network consisting of a macrocell network and multi-

ple WLAN:S.
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overlapping channels, so that there is no interference among the BS and APs.! We
assume that all networks in the cell are operated by the same service provider and
an intelligent centralized controller exists to manage the radio resource allocation
of both the BS and all APs in the network. In order to synchronize two differ-
ent access technologies operating on different frequency bands, we also assume a
coordination-based time division duplex (TDD) scheme that predetermines the du-
rations of uplink and downlink commonly for the macro-cell network and WLAN
by dividing time into periodic super-frames, each consisting of two phases respec-
tively for uplink and downlink. There are total X' UEs which can communicate with
either the BS or APs or both simultaneously. If a UE is in the coverage of both the
BS and the AP, the UE can connect to both networks, which is called multi-homing
access. We consider fully backlogged buffer model and non-real time traffic such
as file transfer and online video with minimum rate requirement [39].

We consider an OFDMA based macro-cell network in which traffic bandwidth
B is equally divided into N subcarriers, each with a bandwidth of W (= B/N).
We assume that each subcarrier may be shared by multiple UEs in time-division
manner, and denote by a,,;, > 0 the time-sharing factor of UE k& on subcarrier n.
We also denote by p,,; and g, the average transmit power and the channel gain,
respectively, of UE k on subcarrier n, assuming that g, is accurately known at

the transmitter? and contains path loss and Rayleigh fading. Then, the maximum

ISince 13 channels and 24 channels are available in 2.4 GHz and 5 GHz industrial, scientific,
and medical (ISM) bands, respectively [38], it is possible to assign non-overlapping channels to

neighboring APs.
’In a TDD system, the BS obtains an estimate of the channel state information by using the
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achievable data rate of UE k on subcarrier n is

OénkWIOgQ (1 + W) , if a, > 0

0 ; i o = 0,

T = (3.1)

where o2 is the noise spectral density. Note that p,,./, in the equation implies
the actual transmit power of UE & on subcarrier n. We define by A and PP the set
of the feasible subcarrier assignment matrices and the set of the power allocation

matrices, respectively, i.e.,

K

A= {[Oénk]NxK ZOénk S 1,VTL;0 S Qlnk S 1,\V/7’L,\V/k‘}7 (32)
k=1

P = {[pu)vxic [P = 0,0, Yk } . (3.3)

The total throughput of UE £ served by the BS is

N
RS = 1y (3.4)
n=1

Note that r,, is a concave function with respect to (py,cu,x) [40].

When the BS is in the transmit mode, total power consumption of the BS may
be divided into two parts, i.e., static and dynamic power consumption [19]. Static
power consumption represents the power consumed by the baseband signal process-
ing and additional circuit blocks such as analog-to-digital conversion, modulation,
channel coding, and signal detection [41,42], whereas dynamic power consumption
represents the power consumed by power amplifier which changes dynamically in

proportion to the transmit power. Then, total power consumption at the BS may be

uplink pilot signals transmitted by UEs and using uplink-downlink reciprocity.
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expressed by
K N
Pod = Py + €% Z ank;a (3.5)
k=1 n=1
where PBS. indicates the static power consumption and 1/£B5 the efficiency of
power amplifier at the BS, which is defined by the ratio of transmit power to in-
put DC power.

In the case of IEEE 802.11 WLAN, we consider an improved version of dis-
tributed coordination function (DCF) with a reservation-based medium access con-
trol (MAC) protocol, namely, early backoff announcement (EBA) [43]. In EBA, the
UEs can completely avoid collision by announcing the future backoff information
in the MAC header. Thus, we may consider that WLAN operates in time division
multiple access (TDMA) manner with each UE occupying the whole bandwidth
in its allocated time fraction. We denote by %, the time fraction of UE £ in the
mth AP. We assume that an AP consumes a constant power P4F in idle state and
PA2¥ in transmit state. Note that P2¥ denotes the total power consumed in transmit
mode including the output power (PAP) radiated at transmit antenna. Then, the total

power consumption at the mth AP may be expressed by
K K
PAP ="t PP + (1 — Ztmk> PAP. (3.6)
k=1 k=1
The first term represents the transmit power consumed at the mth AP while it is
in active state and the second term indicates the power consumed in inactive state.
We denote by 7, the achievable data rate of UE £ through the mth AP, which is

determined by the instantaneous signal-to-noise ratio (SNR) between the UE k and
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the mth AP as follows.
Pk = (P Gk /52) 3.7)

where g, indicates the channel gain of UE k in the mth AP, 62 is noise variance of
WLAN channel, and ¢(-) decides the achievable data rate based on SNR threshold
[1]. Note that P2P is constant and same for all associated UEs. If we assume that

each UE communicates with only one AP that provides the highest data rate among

all APs, then the total throughput of UE k served by WLAN

RY" =" toukfmk- (3.8)

Therefore, the total power consumption and the total throughput of the overall net-

work are respectively given by

foow(P, o, T) = PBS 1 ZPAP (3.9)
K

fue(P o, T) = (RS + RY), (3.10)
k=1

where P = [pui|nxi, @ = [k nvxr, and T = [tk] sk

Based on the above system model, we now formulate an energy-efficient re-
source allocation problem in the heterogeneous network. For the formulation, we
adopt the concept of energy-per-bit, or the amount of energy needed to convey a

bit [44,45].% Since the energy-per-bit of the entire network can be determined by

3Note that the energy-per-bit is the inverse of the energy-efficiency defined as bit-per-Joule, in

general [46].
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the ratio of the total power consumption to the total network throughput (Joule/bit),
it takes the relation fpow (P, o, T')/ (P, o, T).

As the energy efficiency of the entire system increases as the energy-per-bit
decreases, the optimization problem that maximizes the energy efficiency of the
entire system is equivalent to that for minimizing the energy-per-bit under minimum
rate constraints. Therefore, in the case of the heterogeneous network consisting of

a BS and M APs, we can formulate the optimization problem as follows:

fp0W<P7aaT)

Pl: Irjnelﬁrnlglgxg o Poo T) (3.11a)
N M
subject t0 > "7+ Y kT = BE", Vk (3.11b)
n=1 m=1
K
> i < 1, Ym (3.11c)
k=1
e > 0, Y, Vk (3.11d)

where R denotes the minimum rate requirement of UE k. Note that the optimiza-

tion problem P1 is a fractional programming [33], which is non-convex.

3.3 Parametric Approach to Fractional Programming

The objective function of a fractional programming, as we observe in P1, takes
the form of a ratio of two functions which are non-linear in general [47]. Since
it is a very challenging task to solve a fractional programming directly, we derive

a parametric convex optimization problem out of the fractional programming by
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introducing a parameter. Then, the parametric problem can help us to solve the

fractional programming by using a double-loop iteration method.

3.3.1 Parametric Approach

We adopt a non-negative parameter ¢ to formulate a parametric optimization prob-

lem P2 which is closely related with P1.

P2 minimize foow(P, o, T) — 0 foe(P, o, T) (3.12a)
N M
subject to Y 1+ Y kP > R, (3.12b)
n=1 m=1
K
> i <1, Ym (3.12¢)
k=1
tmi > 0, Y, Vk. (3.12d)

Then, P2 is a convex optimization problem for a given 6 since the objective function
is formulated as the difference between a convex function and a concave function
and the constraint functions (3.12b)—(3.12d) are convex due to the concavity of 7.

The set I of feasible resource allocation matrices for problems P1 and P2 is
convex by the property of the convex optimization problem [18]. We define the

minimum value of the objective function of P2 as follows

2(0) = min  foow(P, o, T) — 0 fu(P, 0, T). (3.13)

(P,o,T)EI

Then, the two problems P1 and P2 are related as described by the following theo-
rem [47].
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Algorithm 3 Dinkelbach’s method
1: Initialize 6;

2: do

3:  Determine z(#) and (a*, P*,T") (by applying Algorithm 4);
fpow(a*a P*, T*) .

fthr(a*a P*aT*) ,

: while (|z(0)] > ¢)

4: 0

9

6: return 6, (o*, P*, T"),

Turorem 3.1 The optimal solution set (P*,&*, T") of P1 is the same as that of P2
for 0 = 0*, where 0* is the root of z(0). In addition, 0* is the optimal energy-per-bit,

ie.,
g _ Jow(P7 0" T7)

SRt Ry 3.14
Jue(P™, 0%, T) G4

Theorem 1 implies that for the fractional program P1, there exists an equivalent
problem which yields the same optimal solution and whose objective function takes
the subtractive form fpow (P, &, T') — 0 fune(P, o, T'). In other words, solving P1
is essentially equivalent to determining 6* with z(6*) = 0. Therefore, we may focus

on solving the parametric problem P2 to determine 6*.

3.3.2 Double-Loop Iteration to Determine Optimal 6

In order to determine the optimal #, we adopt the Dinkelbach’s method [47],

as described in Algorithm 3, which applies Newton’s method.* This algorithm is

“Various iterative algorithms are presented in [48] for fractional programming, including New-

ton’s method, binary search method, and their modifications. One may use another numerical algo-
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proved to converge to the optimal point for any 6 that satisfies z(0) < 0 [47]. We
set 0 to a value that meets the condition z(f) < 0 [Line 1]. In each iteration, we
solve P2 for a given 6 using Algorithm 4 to be described in the next section [Line
3]. If the resulting z(0) is sufficiently small (i.e., |2(0)| < ¢), then the determined
o, P*, T are the optimal variables and @ is the optimal energy-per-bit. Otherwise,
we calculate new 6 using the determined a*, P*, T™ [Line 4], and then start the next
iteration. We may call this approach a double-loop iteration method as two loops of

iterations are involved — one in Algorithm 3 and the other in Algorithm 4.

3.4 Optimal Resource Allocation Algorithm

Since P2 is a standard convex optimization problem for a given 6, we solve the
optimization problem P2 using the Lagrangian dual approach [18]. Note that if
6 = 0, P2 is the same as the energy-minimized resource allocation problem under
minimum rate constrains in our earlier work [49]. This implies that the problem

in [49] is a special case of P2.°

rithm to obtain the root of z(0).
3In this sense, we may call the allocation algorithm proposed in [49] the energy consumption

minimization (ECM) algorithm.
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If we take the Lagrangian of P2 and incorporate (3.4)—(3.10), we get

K
L(Po T o) = P+ MPE+ MR

static
k=1
K N
VUm + E E ©nk pnk7 Ank, )\k)

k=1 n=1

K
Z 77Z)Tr7¢k(t'n‘Ll€) Vm, Aka /’Lmk)a

1 k=1

Ms

3
[}

NE

+

3
I

where v,,, > 0, A\, > 0, and p,,,5 > 0 are the Lagrangian multipliers and

@nk(pnlw Qnk, Ak) é stpnk’ - (Ak + Q)Tnlw

wmk( mks Vm, )\ka ,umk) {PAP Pll(?ll; - ()\k + e)fmk + VUm — ,umk}tmk

Then, the dual problem of P2 is

maximize D(v, A, p),
v>0,A>0,u>0

ZUWAZ U

for the dual function,

Dw,A\,u)= inf L(P,a,T,v, A\ p).

PeP,acAT

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Since P2 is a convex optimization problem and satisfies the Slater’s condition, the

strong duality holds, that is, the duality gap is zero. Therefore, we can get the

optimal solution of P2 by solving (3.18). Let (v*, A", u*) denote the dual optimal

solution. Then, the optimal P(v*, X", u*), a(v*, X*, u*), and T'(v*, X",

p*) that

minimize L(P, a, T, v*, A", p*) in (3.19) are the optimal variables of P2, provided

that the complementary slackness condition is satisfied [18].
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The dual function D (v, A, p) for given v, A, and p takes the expression

Dlv, A w) = PeIP’l,gfeA,TL(P’ o, T,v,\ p)
K M
= Pt MPI+ 3B = > v
k=1 f—
PE%P’nieA Zl ; Pk pnlm Onk, )\k)
’ i%fz_l ; Yok Vs A k) (3.20)

We decompose the dual function into two parts — one for minimizing the ,,;, term
by allocating power and subcarriers, and the other for minimizing the ¢, term
by adjusting time fraction. The dual function cannot be exclusively divided into
two parts because the minimum rate constraint (3.12b) should be met by both parts.
However, it is possible to get the optimal solution even if we deal with the two parts

separately, as will be proved in the next two subsections.

3.4.1 Optimal Allocation of Subcarrier and Power

We first derive the optimal subcarrier assignment and the optimal power allocation
by solvmg Zk SN k(Do ks Ax) as similarly done in [31]. Since
Ok (Ppjes Qs )\k) is convex in p, ., the optimal transmit power p;, that minimizes

©nk can be easily derived by differentiating ¢, with respect to p,,;, i.e.,

B _ (4 0) Lk —0. 3.21)

8pnk Prk=Ph

890nk
ap nk Ip,,=ph
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By the well-known water-filling method, we get

)\k; + 9 02 +

n -— 3.22
DPn @ kW |:§BS 1Il2 gnk:| ( )

where [z]" = max (0, z). By substituting (3.22) into (3.16), we obtain
O (s Ak) = i (Ar), (3.23)

where
Ap+0 2¢BS 2¢BS
T (i) 2 +W(k‘|— 0§ ) ,if)\k>U§ ln2_0
1112 Ink gnk
| 0 , otherwise.

(3.24)

ProposiTion 3.2 Forany A\, > 0, J,u(A\y) < 0; and Jop(Ar) < 0, if A, > 026851n2/g,, —

6.

Proof : By differentiating (3.24), we get

M+ )9\ %% In2
W] Mk T Ik —_— —
OJue(\e) ) ~Wlog ( g ) T

PV
F 0 , otherwise.

Since 0J,x (M) /O, < 0, Jux(Ak) is a non-increasing function of \j. In addition,
Jor (M) = 0, for all A, < 02¢BSIn2/g , — 0. Consequently, we get J,x(\) < 0
for any \; > 0, and get J,,,.(\g) < 0if A, > 02685 1n2/g, , — 0. [ |
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Provosition 3.3 For ergodic fading channels with a continuous cumulative distri-
bution function (CDF) and a given A, the almost surely unique solution of (3.19)

yields the following optimal time-sharing factors and power

+
A + 60 2
a k* — 1,p:;k:;; — W k'n, 0-

HSm2 g, (3.26)
kX = argmin J,,(Ag). (3.27)
k
Proof : For the UE £ determined by (3.27) and for a given A, it holds
K N K N
ZZSOnk Prkes Qnks Ak) = ZZ ke Ik (k)
k=1 n=1 k=1 n—1
N N
>y (Jnk (Aes) Zm) > Juky (Mg (3.28)
n=1 n=1

where the first inequality holds due to the optimal ), in (3.23); the second one

holds due to the definition of k*;

n°

and the third one follows from J,x(A\z) < 0 in
Proposition 3.2 and the condition Z,le nr < 11in (3.2). The equality holds for the
optimal allocation (a*, P*) specified in (3.26), which is optimal for 1n£ " S
Zﬁle Ok Dy Onk, Ak ). The almost sure uniqueness of (a*, P*) can be similarly

proved as in [31] by using the fact that the event of two UEs having the same J,,;,(A)

has Lebesgue-measure zero when the fading process has a continuous CDF. |

Proposition 3.3 has established two important facts: First, the optimal value of
o 18 either O to 1, which means that each subcarrier is dedicated to a single UE,

though it is assumed to be shared among multiple UEs. Second, the optimal single
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UE to which a subcarrier is entirely allocated is that with the smallest .J,,x(\z). In
this sense, J,,x(Ax) plays a key role in determining the subcarrier assignment.

As to power allocation, we can determine an optimal power allocation jointly
with subcarrier allocation, similar to [31], which leads to water-filling and “winner-
takes-all” strategies. That is, the allocated power is determined by the water-filling
algorithm and a subcarrier is exclusively allocated to a single UE, if the channel
fading has a continuous CDF. However, differently from [31], we minimize the
energy-per-bit coupled with the power and subcarrier allocation of the macro-cell
network as well as the time fraction allocation of the WLAN in the heterogeneous
networks.®

In the case of heterogeneous network we are dealing with, it happens that the BS
limits the amount of allocatable resource by the upper bound of the water level of
each UE and then APs allocate the time fraction for the UEs that require additional

resource to minimize the energy-per-bit, as will be discussed in the next subsection.

3.4.2 Optimal Allocation of Time Fraction

Next, we determine the optimal time fraction by solving igf Zf\f:l > sz1 Uk (Emk

Vs My fmi )- Note that ¢,,,, = 0 for all UEs that do not communicate with any APs,

®If we compare the difference between Proposition 3.3 and the algorithm in [31] in terms of
the double-loop iteration method discussed in Section 3.3, the latter only deals with the power and
subcarrier allocation which is a part of the inner loop (pertaining to Algorithm 4). Note that the
inner loop deals with the time fraction allocation as well in combination with power and subcarrier

allocation.
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so that they get the resource only from the BS. Thus, in allocating time fraction, we
consider only the UEs that are within the coverage of APs and capable of communi-
cating with one or more APs. Recalling the assumption that each UE communicates
with only one AP that provides the highest data rate among all APs, we denote by

my, the AP that communicates with the UE £.

ProrosiTioN 3.4 For the AP mj, that communicates with the UE k,

Mo = (PRF — P+ Vi — Mm;k)/fm;k — 0. (3.29)

Proof : For the optimal time fraction of APs, we get by (3.17)
M K
lgfz Z wmk mks Vm, )\ka ,U/mk)

=1 k=

K
lgqu ; (P?P ‘Pldle + Uy — (>\k + 0>fmk‘ - :U’mk) tmk

—

di = (A 0)F ek “k (3.30)

—00, otherw1se

Note that Pz > 0 because the achievable rate Ttk of UE £ from AP m; should

be positive. Therefore, we get (3.29). |

Proposition 3.4 claims that each UE has its own upper bound of the water level
which decreases as fm; . increases. Since fi,,; > 0, the Lagrangian multiplier Ay
has the upper bound \; (i.e., A\, = (PAP — PAP + Vi )/ Tz, — 0). Hence, A+ 0
is inversely proportional to fm; - The transmit power allocation specified in (3.26)

shows that the water level increases as \j increases for a given §. Thus, UE k&

45



getting a higher data rate fm;? ;. from the AP is allocated with small power from the
BS because )\, is lower for a given 6. In contrast, if UE k gets a lower data rate from
AP, the UE takes a higher priority of power allocation from the BS as its )y, is higher.
Therefore, A\ plays a key role in balancing wireless resources, i.e., the amount of
power of the BS and the time fraction of the AP. Proposition 3.4 established that A\
determines the water level in the BS power allocation. On the other hand, A\, also

controls the time fraction allocation, as the following proposition describes.

Prorosition 3.5 For (a*, P*) obtained from Proposition 3.3 and for (v, \, p) sat-

isfying Proposition 3.4, the solution of (3.19) yields the optimal time fraction

( 1 . + ;
bk = %[R}gmn —; rnk(a;k,p;k)] , if A\, = A (3.31a)
Uk =0 L if \e < Ak (3.31b)
bk =0 , Vm # mj. (3.31c)

\

IkaK:l tmk < 1for any mth AP, the residual time t,,;- = 1— Zle toi 18 allocated

to

k' = arg max Tk - (3.31d)
tmk>0,)\k:5\k,R¢P—Piﬁll;<9fmk

Proof : From Proposition 3.4, A, = (Pe* — P4t + vy —Hiyes) /Ty — 0-

By the complementary slackness condition, the optimal Ho should satisfy either

1) i > 0 and bk = 0 or 22) e = 0 and bk > 0. Thus, if e > 0,

then )\, < )\ and bk = 0, and thus (3.31b) holds. Otherwise, A\, = A&, then the

UE £ is allocated with the amount of time fraction which satisfies in (3.12b) with
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equality, and thus (3.31a) holds. Since we assume that each UE is connected to only
one AP, the time fraction allocated to the other AP’s is zero, and thus (3.31c¢) holds.
Regardless of ,,x, ¥, has the infimum for the Lagrangian multipliers satisfying
(3.29). However, t,,,;, is determined by the minimum data rate constraint in (3.12b).
Once the equality condition of (3.12b) is met through (3.31a)—(3.31c), we addition-
ally allocate the residual time fraction to the UE that will get the largest benefit if
the time fraction is allocated. The benefit is determined by the objective function of
P2in (3.12a).
foow(P*, o, T) — 0 fue(P*, *, T)

M K
= > ok (P = P& — 0Fi) + QUP", "), (3.32)

m=1 k=1

where 2(-) indicates the remaining part of (3.12a) which is irrelevant to time frac-
tion. Therefore, if PA¥ — PAP < 07,1, the UE k that will take the largest data rate

from mth AP takes all the residual time fraction of the mth AP. [ |

The time fraction allocation in Proposition 3.5 implies that \; is an indicator
that determines whether or not the aid of APs is needed by UE k. If )\ is strictly
less than \;, UE % can meet the minimum data rate requirement without the help
of APs. However, if A\, = 5\k, it needs support of APs. Hence, each AP allocates
time fraction to the UEs that cannot meet the required QoS without the support of
APs due to a high data rate from the corresponding APs and a low water level. In
addition, if there is any time fraction of an AP left after the allocation of (3.31a)—
(3.31c¢), the residual time fraction is allocated to the UE getting the highest data

rate from the AP when PAF — PAP < 07,.,;. Note that if § = 0, the residual time
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fraction is not allocated to any UEs since (P4F — PAF) > 0 by (3.31d) [49]. This
happens because in the case of considering only the minimization of the total power
consumption, any additional allocation of time fraction would result in an increase
of the total power consumption.

As shown in Proposition 3.5, ¢, is determined by means of the condition in
(3.12b) in case A\, = Xk. Therefore, despite the decomposition of the dual function
D(v, A, p) into two parts, we can determine the optimal time fraction by using the

constraint (3.12b), commonly valid for the two parts of D(v, A, p).

3.4.3 Lagrangian Multipliers Update Algorithm

By optimizing the allocation of power and subcarrier as given in Proposition 3.3 and
by optimizing the allocation of time fraction as in Proposition 3.5, for the given (v,
A, p) satisfying Proposition 3.4, we can minimize the energy-per-bit of the whole
network. The resulting terms o, p;,, and ¢; . then form an optimal solution to the
optimization problem. However, the individual rate constraint or the time fraction
constraints in P2 may not be satisfied.

To determine the optimal values of v*, A", and p*, we adopt an iterative updat-
ing algorithm such that the constraints in P2 are satisfied. For given v* and A", it

is easy to determine p* by Proposition 3.4, which yields

[he = P — Pae + v — (Ao + 0)F . (3.33a)
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We update v* and A* using the subgradient method [50] such that

Meli+1]= Akmwm( ?i“—Zrnk[z’J—Ztmk[ﬂw)] . (333b)
Unli + 1= |vmli] + 1] <Z tmk[i]—1>] , (3.33¢)

where [3[i] and v[i] are sufficiently small positive values that can be tuned by using
different procedures [50].”

Based on the above discussions, we may formalize an optimal resource allo-
cation algorithm as described in Algorithm 4: First, we initialize the Lagrangian
multipliers. Then, for a given set of multipliers, we conduct the process of op-
timal subcarrier assignment, power allocation, and time fraction allocation. We
iterate this process by updating the multipliers using the subgradient method until it
reaches convergence. According to [51], this iteration converges to v* and A* from
any initial v[0] and A[0] as long as /[i] and ~[¢] are chosen to be sufficiently small.

If the total time fraction allocated to an AP is larger than 1, all the time fraction
values of that particular AP are set to 0 [Lines 7-9]. In practice, it is not possible that
an AP is connected to its UEs for more than one time fraction. We can avoid such
situation by arranging the BS to allocate more resource to the UEs coupled with the
AP. If the time fraction of each UE communicating with the AP is set to 0, \;, of each
UE increases due to (3.33b). Hence, the amount of power allocated by BS to the
UEs increases as described in Proposition 3.3. The number of iterations required to
achieve the e—optimality (i.e., D* — D < ¢) is in the order of O(1/¢*) [18], and the
resulting computational complexity is in the order of O (M + N)K (1/¢?)) [52].

"For example, 8[i] = ¢/+/i where c is the initial step size and 4 is the iteration number.
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Algorithm 4 Optimal resource allocation algorithm

1: Initialize (©[0], A[0]), ¢[0] < 0,7 «+ 0;
2: do
3: 11+ 1;
4:  Determine (a, P) by applying Proposition 3.3;
5: Determine T' by applying Proposition 3.5;
6:  Update v[i] from (3.33c);
7. form=1to M do
8: if S8t > 1 then t,;, « 0,Vk;
9:  end for
10:  Update A[i] by using (3.33b);
11:  Update u[i] by using (3.33a);
12: qli] < DW[il, Ali], pli]);
13: while (|¢[i] — ¢q[i — 1]| > ¢€)

14: return (o, P, T);
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3.5 Design of Suboptimal Algorithms

Note that a UE that gets a higher data rate service from APs tends to take a lower
priority in getting resource allocation from the BS due to a lower water level. This
property motivates to develop two simple and suboptimal algorithms, namely, time-
fraction allocation first (TAF) algorithm and normalized time-fraction allocation
(NTA) algorithm. They are designed to allocate the time fraction of UEs whose data
rates served by APs are high enough to meet the minimum data rate requirements
without the BS, and then assign power and subcarriers to the remaining UEs to be
served by the BS. Although a UE is guaranteed with a minimum data rate only
from time fraction allocation, the BS may allocate additional power and subcarrier
resource to the UE to minimize the energy-per-bit of the entire network and allow

multi-homing access to all UEs. Their computational complexities are in the order

of O (MK + NK(1/€2)).

3.5.1 Time-Fraction Allocation First (TAF) Algorithm

As discussed above, the key idea of suboptimal algorithm is to determine the time
fraction allocation at APs first and then to allocate power and subcarriers at the BS.
We name it time-fraction allocation first (TAF) algorithm.

Algorithm 5 describes the procedures of the TAF algorithm. The term S,,, rep-
resents the set of UEs that can communicate with the mth AP [Line 3] and the UE
with the highest data rate in .S,, is denoted as k* [Line 5]. At first, each AP allo-

cates to its UEs the time fraction required for guaranteeing a minimum rate, in the
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Algorithm 5 TAF algorithm

1:

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

(T allocation)
for m =1to M do
Sm < {k|Fmr > 0};
while S,, # ¢ do
k* < argmax g, tygs < R/
keSm
if S°F |t < 1then R < 0;
else ¢, < [1 — ZkK:Lk#k* ok +;
R ¢ R — e Py
end if
Sy Sy — {E*};
end while
end for
(e, P) allocation)
Initialize A[0], ¢[0] <= 0,7 < 0;
do
11+ 1
Determine (o, P) based on Proposition 3.3;
Update A[i] by using (3.33b);
qli) <= 311 Yo Pk (Pogs ks Aeli]):
while (|g[i] — ¢[i — 1]| > €)
return (o, P, T);
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descending order of the data rate of the UEs. This time fraction allocation of the
mth AP continues as long as the sum of the allocated time fractions does not ex-
ceed 1. Once time fraction is allocated to a UE, then its minimum rate requirement
gets satisfied. Thus, R?i“ should be set to O [Line 6]. However, if the residual time
fraction is not large enough to meet the minimum data rate requirement of UE £*,
then all the residual time fraction is allocated to that UE and the BS additionally
allocates resource to that UE to meet the remaining data rate requirement [Line 7].
After completing time fraction allocation, the BS performs power and subcarrier
allocation to all UEs such that the energy-per-bit gets minimized. The procedure of
power and subcarrier allocation of the BS is similar to that in Algorithm 4, except
that optimization is not needed for the time fraction matrix T' and the Lagrange

multipliers v and p.

3.5.2 Normalized Time-Fraction Allocation (NTA) Algorithm

Normalized time-fraction allocation (NTA) algorithm allocates the time fraction
required to guarantee a minimum rate to all the UEs communicating with APs and
normalizes the time fractions such that they sum up to one. Then, the BS performs
power and subcarrier allocation to all UEs including the UEs that have not received
sufficient data rate to meet a minimum requirement from APs.

Algorithm 6 describes the NTA algorithm. The mth AP allocates time fraction
to satisfy the minimum data rate of all the UEs communicating with itself [Lines

3-6]. It normalizes all the time fraction values to the sum of the allocated time
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Algorithm 6 Normalized time-fraction algorithm (7" allocation)
1: form =1to M do

2: S = {k|Fmr > 0};

3: while S,,, # ¢ do

4: k* < arg max Fpp, tgs < RIS/ i
keSm

5: S Sm — {k*};

6: end while

7: if >, > 1 then

8: tmk < tmk/ Zfil i, VE;

9: Rin ¢ Rmin Pk, VK

10: end if

11: end for

fraction values when the sum is greater than 1 [Lines 7 and 8]. The procedure of
optimal power and subcarrier allocation is omitted because it is the same as in the

TAF algorithm [Lines 13-21].

3.6 Performance Evaluation

We have performed simulations to evaluate the performance of the proposed algo-
rithms for the heterogeneous network model shown in Fig. 3.2. We use a Monte
Carlo simulation method and get the average values from hundreds of trials. We as-
sume that the BS is located at the center of a cell of radius 500 m, all APs (M = 4)

are symmetrically located at equal distance of 350 m, from the BS, and UEs are
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Figure 3.2: Heterogeneous network topology for simulations.
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Table 3.1: SNR versus Rate [1].

SNR range (dB) | Rate (Mbps)
>24.56 54
[24.05, 24.56) 48
[18.8, 24.05) 36
[17.04, 18.8) 24
[10.79, 17.04) 18
[9.03, 10.79) 12
[7.78, 9.03)
[6.02, 7.78)
<6.02

uniformly distributed within the cell. We determine the achievable data rates of the
UEs served by APs by applying the rate adaptation scheme based on SNR threshold,
as shown in Table 3.1 [1]. We assume that the OFDMA system under consideration
has 1,024 traffic subcarriers with the subcarrier spacing of 15 kHz. We set the mini-
mum rate requirement for each UE to 3.5 Mbps (i.e., R" = 3.5 Mbps, Vk) and take
the drain efficiency of 35% for the power amplifier in the BS (i.e., 1/£85 = 0.35).
We set the parameters related to power consumption as follows: PAP = 10.1 W;

tx

PAP =9.2 W; and PBS. =77 W [19,20].
We compare the performances of six different schemes, which are the optimal,
TAF, NTA, the power and subcarrier allocation only (PSAO) algorithms, the ECM

algorithm proposed in [49],® and the sum rate maximization (SRM) algorithm. The

8The problem presented in [49] is the same as the optimization problem P2 with § = 0. Thus,
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optimal scheme represents the optimal solution of the energy-per-bit minimization
problem P1. The PSAO algorithm assumes that WLAN AP does not exist and
thus the BS performs only power and subcarrier allocation without time fraction
allocation. In the SRM scheme, we limit total transmit power to 40 W [53] (i.e.,
Eszl ZnN:1 Dni < 40). The SRM scheme maximizes total throughput by utilizing
full transmit power under minimum rate requirements.

Fig. 3.3(a) depicts the energy-per-bit of resource allocation schemes with re-
spect to the number of UEs. We observe that the energy-per-bit of the PSAO scheme
is quasiconvex as proved in [32]. We also observe that the optimal algorithm outper-
forms the NTA and TAF algorithms, and the TAF scheme is more energy-efficient
than the NTA scheme. This implies that assigning time fraction first to the UEs
getting a high data rate from APs is more beneficial than assigning time fraction to
all the UEs in the vincinity of APs. As the number of UEs increases, energy-per-bit
may decrease due to multi-user diversity. However, the energy-per-bits of the SRM
and optimal schemes increase although the number of UEs increases. This happens
because total QoS requirement becomes more strict with the increasing number of
UEs, which dominates the multi-user diversity effect.

Fig. 3.3(b) depicts the total power consumption of various resource allocation
schemes. In the SRM scheme, since the maximum transmit (or radiated) power of
the BS is limited to 40 W, the total power consumption of the overall network is

constant at about 231 W, which can be calculated by (3.9). We observe that the

the aim of the ECM algorithm is not at minimizing the energy-per-bit but at minimizing the total

power consumption.
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Figure 3.3: Performance comparison with respect to the number of UEs: (a) Energy-

per-bit, (b) total power consumption, and (c) average achievable rate per UE.

optimal scheme outperforms the NTA and TAF schemes not only in energy-per-bit
but also in total power consumption. We also observe that the power consumption
of the NTA scheme increases rapidly with the number of UEs. It happens because
APs allocate time fraction to the UEs taking lower rates (e.g., 6 Mbps or 9 Mbps)
when the number of UE:s is sufficiently large, which results in a less energy-efficient
usage of time fraction.

Fig. 3.3(c) depicts the average per UE data rate. We may compare the optimal
scheme with the ECM scheme. Since the ECM scheme aims at minimizing the total
energy consumption, the BS does not perform power and subcarrier allocation to the

UE:s that are allocated with sufficient time fraction from APs to meet the minimum
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rate requirement. As a result, most UEs tend to opt for single network allocation
than multi-homing access. Hence, in the ECM scheme, the total data rate served
by the BS and APs to all UEs is exactly equal to the minimum rate requirement.
However, in the case of the optimal scheme considering the minimization of the
energy-per-bit, the BS allocates more resource even to the UEs that get sufficient
time fraction from APs, as long as the energy-per-bit decreases. Thus, the optimal
scheme tends to allocate a data rate higher than the minimum rate requirement,
with additional power consumed for reducing the energy-per-bit, as demonstrated
in Fig. 3.3(a). In addition, we may compare the optimal scheme with the SRM
scheme. We observe that the SRM scheme achieves a data rate higher than the
optimal scheme by 25% on the average sense. However, based on Fig. 3.3(a), the
optimal scheme improves energy-per-bit by about 32% compared with the SRM
scheme which consumes full transmit power without considering energy efficiency.
Therefore, the optimal scheme significantly improves energy-per-bit at the cost of
small additional power consumption compared with the ECM scheme and relatively
little decrease of the sum rate compared with the SRM scheme.

Fig. 3.4 depicts the energy-per-bit of the proposed resource allocation schemes
with respect to the minimum rate requirement ™", which is identical for all 40
UEs. The energy-per-bit of the optimal scheme increases with the increasing num-
ber of UEs because total minimum rate requirement of all UEs also increases. We
also observe that the performance of the TAF scheme approaches that of the NTA
scheme as R™" decreases, and approaches the optimal scheme as R™™ increases.

At R™" = 1 Mbps, the system operates in an under-utilized regime such that the
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Figure 3.4: Energy-per-bit with respect to ™",

total amount of time fraction required to satisfy the minimum data rate of all UEs
associated with APs is less than 1. In this case, the result of time fraction allocation
of the TAF algorithm is exactly the same as that of the NTA algorithm, so that the
additional power and subcarrier allocations of them are also identical. However, as
R™™ increases, it is impossible to allocate time fraction to all UEs communicating
with APs until their minimum rate requirements are met. Thus, in the case of high
R™ it is more energy-efficient to allocate time fraction first to the UEs taking
higher data rates from APs.

Fig. 3.5 compares the proposed resource allocation schemes with respect to the
number of APs when the number of UEs is fixed at 40. We observe that the optimal

scheme outperforms the other two schemes in terms of the energy-per-bit as well as
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the total power consumption, irrespective of the number of APs. In Fig. 3.5(a), the
energy-per-bit decreases as the number of APs increases. This is the contribution of
the WLANSs which enable to achieve a high data rate at small power consumption.
In Fig. 3.5(b), we observe that the total power consumption is convex with respect
to the number of APs. When the number of APs is small, the BS consumes a
considerable amount of power to support the minimum rate requirement of 40 UEs
and thus, WLAN offloading strongly affects the total power consumption. However,
when the number of APs is large, the total power consumption increases as the
number of APs increases, which happens because WLAN offloading affects little
on total power consumption.

Fig. 3.6 depicts the maximum supportable number of UEs with respect to the
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number of APs. In practical systems, the maximum transmit power of the BS is
regulated due to interference mitigation. In order to reflect this practical limitation,
we assume that P1 and P2 are infeasible if S_r SN p.x > 40. Thus, the
maximum supportable number of UEs means the maximum number of UEs that
are guaranteed with the minimum rate requirement by consuming transmit power
of 40 W or less at the BS side. The maximum supportable number of UEs of the
PSAO scheme is constant because the PSAO scheme is irrelevant to the number
of APs. The maximum supportable number of UEs increases as the number of
APs increases due to WLAN offloading and network diversity. In addition, the TAF
scheme performs nearly close to the optimal scheme because the performance of the
TAF scheme approaches that of the optimal scheme as the number of UEs increases,
as appears in Fig. 3.3.

Fig. 3.7 depicts the energy-per-bit with respect to the number of UEs in multi-
cell network, assuming that the center BS is surrounded by six BSs and the center
BS considers the average amount of intercell interference as well as noise. We
observe that the energy-per-bit of each scheme in Fig. 3.3(a) is lower than its coun-
terpart in Fig. 3.7 due to intercell interference. When the number of UEs exceeds
40, the SRM and NTA schemes become infeasible, which means that the QoS re-
quirements of all UEs are not guaranteed even with full power consumption. We
observe that the performance gap between the optimal scheme and the TAF scheme
is wider than that shown in Fig. 3.3(a). It happens because the TAF scheme does
not differentiate cell center UEs with cell edge UEs when it performs time fraction

allocation.
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Figure 3.7: Energy-per-bit with respect to the number of UEs in multi-cell environ-

ment.

3.7 Summary

In this chapter, we have presented an energy-per-bit minimized radio resource al-
location scheme in the heterogeneous networks composed of an OFDMA-based
macro-cell network and multiple TDMA-based WLANSs. Specifically, we have in-
vestigated the energy-per-bit minimization problem in multi-homing environment
while guaranteeing minimum data rate requirements. As the resulting optimization
problem is a fractional programming, we have derived a parametric programming
out of the original problem and solved the original problem by using a double-loop
iteration method. Resorting to the Lagrangian dual approach, we have determined
the optimal resource allocation policies as follows:

e For subcarrier allocation, we allocate each subcarrier exclusively to the UE
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that has the smallest .J,,; (A ).

e For power allocation, we determine the optimal power by adopting the water-
filling algorithm with the water level of each UE decreasing as the data rate served
by an AP increases for a given 6. As a result, we found that the BS allocates a
smaller power to the UE getting a higher data rate from the corresponding AP.

e For time fraction allocation, we arrange each AP to allocate time fraction to
the UEs that cannot get sufficient resource from the BS due to low water level. We
allocate the residual time fraction of an AP to the UE getting the highest data rate
from the AP if this additional allocation decreases the energy-per-bit.

Based on the above optimal subcarrier, power, and time fraction allocation poli-
cies, we have developed two suboptimal algorithms, TAF and NTA, which first
allocate the time fraction of UEs getting a high data rate from APs and then allocate
power and subcarriers to all UEs. In the TAF algorithm, each AP determines the
time fraction allocation in the descending order of data rate but, in the NTA algo-
rithm, each AP allocates time fraction to all UEs with the time fractions normalized
to sum up to 1. According to simulations, the TAF scheme has turned out to out-
perform the NTA scheme. This means that assigning time fraction first to the UEs
getting high rates from APs is more energy-efficient than assigning time fraction to
all the UEs located near to APs. Also the proposed optimal algorithm has turned out
to outperform not only the PSAO scheme which does not use WLANS but also the
TAF and NTA schemes in terms of power consumption and energy efficiency. By
comparing the optimal scheme with the SRM scheme, we may confirm the trade-

off relation between spectral efficiency and energy efficiency. Whereas the ECM
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scheme allocates a data rate equal to the minimum rate requirement to reduce the
total power consumption, the optimal algorithm tends to allocate a data rate higher
than the minimum rate requirement with the exceeding power consumption, which
contributes to the reduction of the energy-per-bit. Therefore, we may conclude that
the proposed energy-per-bit minimized resource allocation scheme is suitable for an

energy-efficient design of heterogeneous networks.
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Chapter 4

Energy Efficient Scheduling for
Carrier Aggregation in OFDMA

Based Wireless Networks

4.1 Introduction

Carrier aggregation (CA) is perceived as one of the most promising techniques
to provide a higher data rate. According to the LTE-Advanced standard [8], CA
supports up to 100 MHz system bandwidth by aggregating up to five component
carriers (CCs) of 20 MHz and allows a user equipment (UE) to use one or multi-
ple CCs simultaneously. Based on how to configure multiple CCs, there are three

types of CA [54]: 1) Intra-band contiguous aggregation which combines adjacent
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CCs within the same band, ii) intra-band non-contiguous aggregation which merges
multiple CCs within the same band but in a non-contiguous manner, and iii) inter-
band non-contiguous aggregation which connects CCs separated across multiple
bands. Among them, we concentrate on the inter-band non-contiguous CA.

Energy efficient communication is a vital aspect of next generation system de-
sign, especially for battery constrained UEs because UEs operate based on battery
power in the most practical cases. A significant portion of the battery is consumed
by network-related part [55]. With CA, it may not be a good idea to always allo-
cate multiple CCs to UEs since the concurrent transmission using CA forces UEs to
turn on additional radio frequency (RF) elements, which leads to considerable in-
crease of UE power consumption. Hence, it is meaningful to study energy efficient
scheduling for CA considering UE power consumption.

There are several researches reported on scheduling algorithm for CA in or-
thogonal frequency multiple access (OFDMA) systems [56—58]. In OFDMA based
wireless networks with CA, the BS allocates CCs and resource blocks (RBs) to
appropriate UEs at each time slot. In [56], the authors proposed a CC allocation
and RB allocation scheme considering load balancing and cross-CC proportional
fairness. In [57] and [58], the authors presented a suboptimal CC/RB allocation
algorithm which maximizes utility function.

Some studies are reported on energy efficient scheduling with the consideration
of UE power consumption [59,60]. Ref. [59] dealt with a low-complexity energy ef-
ficient scheduling for uplink OFDMA transmission without CA. Ref. [60] proposed

a dynamic CC allocation algorithm to improve a new energy efficiency metric with-
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out the RB scheduling. However, no study has yet been reported on enhancing the
energy efficiency considering UE power consumption in OFDMA based wireless
networks supporting CA.

In this chapter, we study an energy efficient scheduling for downlink OFDMA
systems with inter-band non-contiguous CA. Specifically, we focus on the power
consumption of UEs utilizing CA and define the energy efficiency of each UE as the
ratio of the downlink data rate and the UE power consumption. Then, we formulate
a CC and RB scheduling problem to achieve the proportional fairness of the energy
efficiency of all UEs. To get over the high computational complexity of determining
the optimal solution, we develop a low complexity scheduling algorithm, namely
energy efficiency proportional fairness (EEPF) algorithm.

The rest part of the chapter is as follows. In Section 4.2, we describe the system
model. In Section 4.3, we present an energy efficient scheduling algorithm for
OFDMA based CA system. Then, in Section 4.4, we evaluate the performance of

the proposed algorithm.

4.2 System Model

We consider a downlink OFDMA system in which traffic bandwidth BW is equally
divided into N RBs, each with a bandwidth of 1. The BS supports CA technology
in which up to C' CCs can be aggregated. We assume that each CC belongs to dif-
ferent frequency band (inter-band non-contiguous CA) and has the same amount of

BW and also the same number of RBs. There are total & UEs that can communi-

70



Figure 4.1: Network architecture supporting CA.

cate with either single CC or multiple CCs at the same time, as shown in Fig. 4.1.
We denote by P« and gj ., the maximum transmission power available on
each CC and the channel gain of UE k on RB n of CC c, respectively. Then, the

maximum achievable data rate of UE & on RB n of CC ¢ at time slot ¢ is

Pmaxgk,c,n[t]
Tk,c,n[t] =W 1Og2 1 + N—0‘2 s (41)

where o2 is the noise variance. Since we assume equal power allocation on each

RB,' the allocated power on each RB is equal to P,,.,/N. We denote by C;, and N

'Equal power allocation leads to a throughput degradation compared with the water-filing power
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the index set of CCs allocated to UE £ and the index set of RBs allocated to UE &
on CC ¢, respectively. Each RB is assigned to only one UE, so that N/¢ ﬂ/\/'jC +

¢, Vi # j,Vc. The total throughput of UE £ served by the BS at time slot ¢ is
ARl =D D rhenlt]: (4.2)

c€Cy, nENE

We model the power consumption of downlink CA UEs by applying the model
designed in [62], [63]. The network-related power of a downlink UE £ is con-
sumed at receive RF (RxRF), analog-to-digital converter (ADC), and receive base-
band (RxBB) as shown in Fig. 4.2. The RxRF power consumption, Prxgr, is de-
pendent on the amount of received power, the RxBB power consumption, Pgrxgg, 1S
dependent on the downlink data rate, and the ADC power consumption, Papc, is
dependent only on the bandwidth. Thus, the total UE power consumption at time

slot ¢ is expressed by

N

~ PnlaX

Prlt] = Z {PRX + PRxRF( N ng,qn[t])
n=1

ceCx

+ PryeB ( Z Tk:,c,n[ﬂ> + PADC(BW)} + Peon, (4.3)

neNE
where Py, is the base power when a UE is in Rx mode and P, is the average power
while a UE is in active mode. Note that we consider inter-band CA, and thus there

are additional RFs, narrowband ADCs, and BBs. The terms FPrxrr, Prxgr, and Papc

allocation but the degradation negligible if the power is poured on the RBs with good channel gains.
Fortunately, in a multi-user system with an adaptive resource allocation scheme, the transmission

power is usually allocated to the UEs with good channel gains [61].
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Figure 4.2: UE power consumption model for inter-band CA.

are linearly dependent on variables, i.e., Pryrp(7) = gz +0a1, Prygp() = Box+ 1,
and PADc(JJ) = Y& + Y1-
If we denote by Ry[t] and Py[t] the average throughput and average power con-

sumption of UE k at time slot ¢ respectively, they are given by

Rylt] = (1 - %) Rilt = 1]+ i (4.4)
nll = (1= 1) Pl -1+ 2o @)

where 7' indicates the effective window size during which the throughput or power
consumption is averaged. Then, we define the energy efficiency of UE k as the ratio

of the average data rate to the average power consumption of UE £ as follows

_ Ryt]
Rt

Nk [t] . (46)

Note that although we consider a downlink transmission, the denominator of the
energy efficiency is the power consumption of UE £k, not that of the BS. Since we
allocate the transmission power equally to each RB, the BS always consumes a con-

stant amount of power regardless of how the CCs/RBs are allocated and to which
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UEs they are allocated. However, at the UE side, the more CCs are allocated, the
much more power is consumed, because it has to use additional RF, ADC, and BB.
Therefore, we consider energy efficiency in conjunction with UE power consump-

tion.

4.3 Energy Efficiency Proportional Fairness (EEPF)
Scheduling

In this section, we discuss how to perform energy efficient scheduling for CA in
consideration of proportional fairness. To achieve the proportional fairness in terms
of the energy efficiency, it is necessary to allocate CCs/RBs with the objective of
maximizing the product of the energy efficiency of all UEs [64]. Thus, we can for-
mulate an energy efficiency proportional fairness (EEPF) scheduling for CA system

that determines the optimal allocation sets Cy, and N} as follows

K
waxU[t] = ; log (1 [t]), 4.7)

where Ult] is the utility function for CA system at time slot ¢. Note that the propor-
tional fairness criterion enables the scheduler to balance the tradeoff between max-
imizing the overall energy efficiency and preserving some degree of fairness [65].

Since U[t — 1] is given at time slot ¢, maximizing U [t] is equivalent to maximizing
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the difference AU of the utility function. That is,

maxAU = maxU[t] — U[t — 1]
Ck’le Ck,./\/}s

- 3 s () o (=),

= max :1 {log (%) ~log (%) }

By using the Taylor expansion with the assumption that 7' > 1, we get

maxAU

CrN¢E
K 5 -

N T [t] Pr(t]

N&%}E; Ryt —1] B[t —1]
K

= max Z Z J (e, ky NY),

C k k=1 ceCy
where
J(C k’ NC) :Z Tk,c,n[t] . B Tk,c,n[t - 1]
TR S Rt —1] Y R -1
neNg

P,

N
Pry + ao% ng,c,n[t] +%BW + a1+ 61 +m
n=1
( Pelt — 1]

(4.8)

4.9)

(4.10)

4.11)

(4.12)

4.13)

) . (4.14)

It is very difficult to determine the optimal solution for (4.7) because the com-

putational complexity of the optimal scheduler is in the order of O(K“Y), so that

the complexity exponentially increases as the number of CCs or the number of RBs

increases. Therefore, we propose a low-complexity EEPF scheduling algorithm that

maximizes 3 1, > eee, J (¢ ke, NE).
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We define D(n, ¢, k) as the RB allocation metric which takes the expression

Tk.emn [t]
Pt — 1)

D(”? c, k) = f;‘:i;n_[t]l] - 60

(4.15)

which is a part of J in (4.14). Since only the metric D is concerned with the index
set \V; < of allocated RBs, we refer to D as the RB allocation metric. When f is
extremely small, the second term of D becomes negligible. Then, the RB allocation

metric D is given by

Tk.en [t]

D(n,c, k) ~ m

(4.16)

The scheduler that allocates RBs to the UEs having the largest D in (4.16) is equiva-
lent to the traditional proportional fairness scheduler for CA system [56]. We denote
by J(c, k, N) the CC allocation metric because .J is the whole part related to the
index set C;, of allocated CCs. The metric J may be divided into two parts; the
first part which is the sum of D and the residual second part which decreases as the
number of allocated CCs increases. If we only consider the first part, it is beneficial
to allocate RBs to the UEs having the largest D). However, although a UE is allo-
cated with several RBs which belong to multiple CCs by considering only the first
part, this allocation may not be the solution that maximizes the sum of the metric
J because the second part decreases. Therefore, the basic principle of the proposed
algorithm is that each RB is allocated to the UE having the largest DD and the UE
having the smallest .J is prevented from being allocated with the corresponding CC.
We formalize the procedure of this scheduling algorithm as Algorithm 7.

We define B. as the set of UEs blocked from being allocated with CC ¢ and

initialize B, for all CCs. In each iteration, RB n in CC c is assigned to UE k having
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Algorithm 7 EEPF scheduling

1: Initialize B, < ¢ for all ¢, m <+ 0;

2: while m < K do

3:

4:

10:

11:

12:

forc=1to C' do
forn =1to N do
k* < argmaxD(n,c, k);
k¢ B
Cr<[m] = Ci+[m] U{c};
g Im] < N m] U{n};
end for

end for

(¢ k)« argmin  J(c, k,Ngm]);
b U BeNilml2o
BC/ — BC/ U{k?,},

m<+— m+1;

13: end while

K
14: m* < argmax > > J(c, k, N¢[m]);

m k=1 ceCy[m]

15: CNk <—Ck[m*],
16: N < NEm*);

77



the largest value of the RB allocation metric D(n, ¢, k) [Lines 3-9]. However, if
UE £ is included in B., RB n is assigned to the other UE having the second largest
D. After the RB and CC allocation, we calculate the CC allocation metric J using
(4.14). Then, we determine the pair (¢, k') that minimizes the CC allocation metric
J and add UE £’ to the CC allocation blocking set B. [Lines 10-12]. Note that
UE £’ is prohibited from being allocated only with CC ¢’. In other words, UE £’ is
permitted to be allocated with all other CCs except for CC ¢/. Since we conduct the
iteration K times, each UE can be allocated with all CCs except at most one CC.
When the iteration ends, we compare the utility of each iteration and determine the
optimal allocation sets that maximize 5, > eec, (¢ k, Ni) [Lines 14-16]. The

computational complexity of the EEPF algorithm is in the order of O(K2CN).

4.4 Performance Evaluation

We have performed simulations to evaluate the performance of the proposed algo-
rithm for CA system. We assume that the OFDMA based CA system under consid-
eration has 2 CCs at 800 MHz band and 2.1 GHz band, and each CC has 10 MHz
bandwidth with 50 RBs and 180 kHz spacing. Each channel model of 800 MHz
band CC and 2.1 GHz band CC is based on Winner II [66] and 3GPP LTE [67], re-
spectively. We limit the total transmit power of BS in each CC to 10 W. We set the
parameters related to power consumption as follows: Frx = 0.42 W; P, = 1.53
W; ap = —1.11 mW/dBm; oy = —60.7 mW; [y = 2.89 mW/Mbps; 51 = —26.6
mW; 79 = 11.6 mW/MHz; v, = —229 mW [63].
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We compare the performances of five different schemes, which are the optimal,
cross-CC, maximal rate (MR), round robin (RR), and no CA scheduling schemes.
In the optimal scheme, we determine the optimal allocation sets Cj, and N through
the exhaustive search. The cross-CC scheme is the conventional PF scheduling for
CA system [56], so that with the cross-CC scheduler, each RB is assigned to the
UE that maximizes D in (4.16) at each time slot £. Since [ is extremely small, the
RB allocation metric D in (4.15) is almost the same as D in (4.16). Therefore, the
procedure of the cross-CC scheme is the same as Lines 3-9 in Algorithm 7, which
means that the cross-CC scheme is equivalent to the proposed EEPF scheme without
performing the iteration. The MR scheduling aims at maximizing total throughput,
thus each RB is assigned to the UE that maximizes 7 ., [t] at each time slot ¢. The
RR scheduling allocates RBs to UEs regardless of instantaneous UE channel gains.
The no-CA scheme allows only single CC allocation to all UEs. We formalize the
procedure of the no-CA algorithm as Algorithm 8.

Fig. 4.3 compares the proposed EEPF scheduling algorithm with the optimal
scheme for the different size of time window, 7. The utility of the EEPF scheme is
normalized by that of the optimal scheme. We observe that the performance of the
EEPF scheme approaches that of the optimal scheme as 7" increases. This happens
because the approximation in (4.12) becomes more accurate as 7" increases. We also
observe that when T is larger than 90, the normalized utility of the EEPF scheme
converges for all N. Therefore, we set 7" to 150 in the following simulation results.

Fig. 4.4(a) depicts the average sum of the energy efficiency of all UEs, with

respect to the number of UEs. We observe that except the RR scheduling case, the
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Algorithm 8 No CA scheduling

1: Initialize B, < ¢ for all c;

2: forc=1to C do

3: forn =1to N do
4: k* < argmaxD(n, c, k);
kB
5: Cr < Ce=- U{c}h
6: e = Ng U{n}:
7: B < Bo U{k*}, V. ¢ # ¢
8: end for
9: end for

>
E
ke
@ L —6—N=3
& ooss " weu
g —>—N=5
o
z
0.98
W
01t ‘ : 1

Figure 4.3: Normalized utility of the EEPF with respect to 7.
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Figure 4.4: Performance comparison with respect to the number of UEs: (a) Aver-
age sum of the energy efficiency, (b) total throughput, and (c) total power consump-

tion.

performances of all other schemes increase as the number of UEs increases. We also
observe that the EEPF scheme outperforms other schemes and the performance gap
between the EEPF and no CA schemes increases as the number of UEs increases.
Fig. 4.4(b) depicts the total throughput with respect to the number of UEs. We
observe that the performances of the MR, cross-CC, EEPF, no CA increase as the
number of UEs, which results from the multi-user diversity. We also observe that
the MR and cross-CC schemes outperform the EEPF scheme. In detail, the MR and
cross-CC schemes achieve a total throughput higher than the EEPF scheme by 14%
and 4%, respectively. However, based on Fig. 4.4(a), the EEPF scheme improves

the energy-efficiency by about 64% and 66% over the MR and cross-CC schemes,
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respectively.

Fig. 4.4(c) depicts the total power consumption with respect to the number of
UEs. We observe that when the number of UEs exceeds 25, the MR scheme outper-
forms other schemes. This occurs because the MR scheme allocates RBs to only a
few UEs which are beneficial in the aspect of the total throughput, which leads to
significant unfairness as will be discussed below based on the next figure. We also
observe that with the exception of the MR scheme, the total power consumption of
the EEPF scheme is superior to that of other schemes. This power consumption gain
causes the EEPF scheme to enhance the energy efficiency at the cost of relatively
little decrease of the total throughput compared with the cross-CC scheme.

Fig. 4.5 compares the fairness performance of the proposed schemes by using
the Jain’s fairness index [68]:

K

an
1

= (4.17)
K>

k

7713

In Fig. 4.5(a), we observe that the fairness of the MR scheme is significantly worse
than the other schemes as mentioned earlier. In Fig. 4.5(b), we observe that the
EEPF scheme is quite fair since its fairness index is always more than 0.97 irre-
spective of the number of UEs.

Fig. 4.6 depicts the ratio of the single CC allocation with respect to the number
of UEs. The ratio is concerned with how many CCs are allocated to UEs at each
time slot. If the ratio is one, only single CC is allocated to all UEs at all time slots.

However, in case that the ratio is zero, multiple CCs are simultaneously allocated
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to all UEs at all time slots. Thus, the ratios of the no CA and the RR scheme is
equal to one and zero, respectively. We observe that the ratio of the EEPF scheme
is always over 0.9, thus the EEPF scheme tends to allocate a single CC to each
UE for reducing the UE power consumption, which makes the EEPF scheme more

energy-efficient.

4.5 Summary

In this chapter, we have presented an energy efficient and proportional fair CC/RB
allocation algorithm for inter-band non-contiguous CA in OFDMA based networks

which is the most common modulation scheme for broadband wireless standards
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such as WIMAX and 3GPP LTE. We define the utility as the log-sum of the energy
efficiency of all UEs, and the energy efficiency as the ratio of the time-averaged
downlink data rate and the UE power consumption, respectively. Note that the BS
power consumption is not considered in the definition of the energy efficiency due to
the equal power allocation on each RB. To achieve the proportional fairness in terms
of the energy efficiency, we developed a CC/RB allocation problem that maximizes
the utility. With an approximation of the utility, we found that the utility increases
as we allocate the RBs to the UEs having the largest RB allocation metric D and
prevent the UEs having the smallest CC allocation metric J from being allocated
with the corresponding CCs. Based on this property, we devised a low-complexity
scheduling algorithm, called EEPF scheduling scheme.

According to the simulation results comparing the EEPF scheme with the op-
timal, no CA, cross-CC, MR, and RR scheduling schemes, we have observed that
the proposed EEPF scheme performs close to the optimal scheme and it outperforms
other schemes. In terms of the energy efficiency, the EEPF scheme achieves a higher
performance than the cross-CC scheme dose by about 66% at the cost of relatively
little (4%) decrease of the total throughput. We have also observed the probability
that the scheduled UE uses a single CC is always higher than 90% for any number
of UEs. Therefore, we may conclude that CA can be used to increase the data rate

but we have to carefully exploit it not to deteriorate the energy efficiency.
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Chapter 5

Conclusion

5.1 Research Contributions

The dissertation has studied novel methods of efficient BS control for green wire-
less communications. The BS control strategies may be classified based on various
time scales, i.e., from several hours time scale to several milli-seconds time scale,
which covers the BS switching-on/off, UE association, radio resource allocation,
and UE scheduling. Then, those strategies are considered under two different sys-
tem models — heterogeneous networks consisting of cellular networks and WLANS,
and cellular networks adopting OFDMA with CA. Above system models are two
typical ways of meeting the increasing demand for mobile data traffic. However, an
abuse of the network diversity of heterogeneous network or CA incurs significant
increase of energy consumption. Thus, in order to improve the system’s energy effi-

ciency, efficient BS control strategies have been developed by combining the system
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Table 5.1: Characteristics of the proposed BS control approaches.

BS switching-on/off | Radio resource

BS control . UE scheduling
and UE association management
Heterogeneous networks
System model Inter-band CA
(cellular + WLAN)
Balancing tradeoff | Optimizing energy | Achieving PF of
between energy efficiency of entire | energy efficiency
Objective ) .
consumption and network considering UE
network revenue power consumption
Way to find Time scale Double-loop Low-complexity
solution based problem iteration method algorithm
decomposition
Network selection | Allocate smaller Tendency to
based on both power to UEs allocate
Property ) . . .
energy efficiency | getting higher rate single CC
and revenue from APs

model and time-scale based operation in three aspects: 1) BS switching-on/off and
UE association in heterogeneous networks, 2) optimal radio resource allocation in
heterogeneous networks, and 3) energy efficient UE scheduling for CA in OFDMA
based cellular networks. Table 5.1 summarizes the characteristics of the proposed
BS control approaches.

The first part of the dissertation has presented a joint algorithm for BS switching-
on/off and UE association for a heterogeneous network consisting of cellular net-

works and WLANs. To develop the algorithm, the tradeoff relationship between
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energy consumption and network revenue was identified. Then, a problem was
formulated with the objective of minimizing the total cost function such that the
tradeoff relation is incorporated by a balancing parameter 7. In order to make the
problem tractable, it was decomposed into two subproblems based on time scale,
i.e., UE association problem and BS switching-on/off problem, and the correspond-
ing algorithms were developed. Simulation results based on daily traffic profile
demonstrated that the proposed algorithms are effective in reducing energy con-
sumption while keeping balance between energy consumption and network revenue
at the same time.

The second part of the dissertation has presented an energy-per-bit minimized
radio resource allocation scheme for a heterogeneous network composed of an
OFDMA-based cellular network and TDMA-based WLANs with multi-homing ca-
pability. Specifically, the energy-per-bit minimization problem was investigated
while guaranteeing minimum data rate requirements. As the resulting optimization
problem is a fractional programming, a parametric programming was derived out
of the original problem and the original problem was solved by using a double-loop
iteration method. Resorting to the Lagrangian dual approach, the optimal resource
allocation policies were determined. Above optimal subcarrier, power, and time
fraction allocation policies leaded to developing two suboptimal algorithms, TAF
and NTA, which first allocate the time fraction of UEs getting a high data rate from
APs and then allocate power and subcarriers to all UEs. Simulation results demon-
strated that the proposed optimal algorithm outperforms not only the PSAO scheme

which does not use WLANSs but also the TAF and NTA schemes in terms of power
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consumption and energy efficiency.

The third part of the dissertation has presented an energy efficient CC/RB allo-
cation algorithm for OFDMA based networks using CA. Specifically, it was focused
on the UE power consumption for the inter-band CA in downlink transmission. The
utility is defined as the log-sum of the energy efficiency which is the ratio of the
time-averaged downlink data rate and the UE power consumption. To achieve the
proportional fairness in terms of the energy efficiency, a CC/RB allocation problem
was developed for maximizing the utility. With an approximation of the utility, the
tendency was found that the utility increases as the RBs are allocated to the UEs
having the largest RB allocation metric and the UEs having the smallest CC alloca-
tion metric are prevented from being allocated with the corresponding CCs. Based
on this property, a low-complexity scheduling algorithm was developed, namely
EEPF scheduling scheme. Simulation results demonstrated that the proposed EEPF
scheme performs close to the optimal scheme and is the most energy efficient among
the existing schemes for CA.

As such, the dissertation has presented several solutions for green wireless com-
munications in consideration of specific deployment scenarios, operating condi-
tions, and optimization time scale. The first part is adequate for heterogeneous
networks on several minutes or hours time scale. The second part is suitable for a
singe cellular network and WLANSs with multi-homing capability on several milli-
seconds time scale. The last part is for CA in an OFDMA based cellular network
on several milli-seconds time scale. If they operate together in the context of green

communication, this integrated solution will provide a substantial gain on the en-
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ergy performance. Therefore, the integrated solution may present a useful future

direction towards greener communications.

5.2 Future Research Directions

So far, the dissertation has investigated efficient BS control strategies depending on
the time scale for green wireless communications, but the proposed schemes can be
extended and some of the possible future directions are described below.

First, in the BS switching-on/off and UE association scheme, the revenue of
the cellular operators is assumed to be proportional to the amount of data usage
for the analytical simplicity. This pricing plan is referred as to usage based pricing.
However, in reality, most operators offer “tiered” data plans where different flat-rate
prices are set for different data usage caps and the extra volume exceeding the deter-
mined data cap is charged proportional to the usage. Therefore, it is worth studying
how to perform BS operation and UE association under the practical pricing plans.

Second, in the radio resource allocation scheme, the energy-per-bit minimiza-
tion is studied in a single-cell heterogeneous network. Thus, the study can be ex-
tended to multi-cell heterogeneous network scenario. In addition, it can be dealt
with the inter-cell interference issues of cell edge UEs since cell edge UEs suf-
fer from performance degradation due to inter-cell interference in practical cellular
systems. However, it is very difficult to optimize the energy efficiency for multi-
cell networks because the received interference from the adjacent cells causes in a

non-convex and NP-hard problem. It may be possible to resolve the problem by
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applying cooperative or noncooperative game theory.

Third, in the UE scheduling scheme for CA, only the inter-band CA is consid-
ered out of three types of CA. In the inter-band non-contiguous CA case, each UE
has to turn on additional RF elements to use multiple CCs at the same time. On
the other hand, in the intra-band contiguous CA case, even if a UE is allocated with
multiple CCs simultaneously, the UE can successfully receive desired signals by
using a single RF element. Hence, it may be more energy-efficient to allocate mul-
tiple CCs to each UE in the intra-band contiguous CA. Therefore, it is necessary
to extend the UE scheduling scheme to the intra-band CA case, furthermore, the

hybrid CA case where the inter-band CA and intra-band CA coexist.
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