1,092 research outputs found

    Sparse methods for blind source separation of frequency hopping rf sources

    Get PDF
    Blind source separation (BSS) is performed on frequency hopping (FH) sources. These radio frequency (RF) signals are observed by a uniform linear array (ULA) over a Spatial Channel Model (SCM) in four different propagation environments: (i) line-of-sight (LOS), (ii) single-cluster, (iii) multiple-cluster, and (iv) LOS with interference. The sources are spatially sparse, and their activity is intermittent and assumed to follow a hidden Markov model (HMM). BSS is achieved by utilizing direction of arrival (DOA) of the sources and clusters. A sparse detection framework is applied to obtain estimates of the sources\u27 FH and DOA patterns. The solutions are binned according to a frequency grid and a DOA dictionary. A method is proposed to reduce the effect of falsely detected active sources and mitigate the effects of interference, by leveraging the activity model of the intermittent sources. The proposed method is a state filtering technique, referred to as hidden state filtering (HSF), and is used to improve BSS performance. Multiple activity patterns associated with different DOAs are considered similar if they match over a prescribed fraction of the time samples. A method pairing DOA and FH estimates associates the FH patterns to specific sources via their estimated DOAs. Numerical results demonstrate that the proposed algorithm is capable of separating multiple spatially sparse FH sources with intermittent activity, by providing estimates of their FH patterns and DOA

    Adaptive MIMO Radar for Target Detection, Estimation, and Tracking

    Get PDF
    We develop and analyze signal processing algorithms to detect, estimate, and track targets using multiple-input multiple-output: MIMO) radar systems. MIMO radar systems have attracted much attention in the recent past due to the additional degrees of freedom they offer. They are commonly used in two different antenna configurations: widely-separated: distributed) and colocated. Distributed MIMO radar exploits spatial diversity by utilizing multiple uncorrelated looks at the target. Colocated MIMO radar systems offer performance improvement by exploiting waveform diversity. Each antenna has the freedom to transmit a waveform that is different from the waveforms of the other transmitters. First, we propose a radar system that combines the advantages of distributed MIMO radar and fully polarimetric radar. We develop the signal model for this system and analyze the performance of the optimal Neyman-Pearson detector by obtaining approximate expressions for the probabilities of detection and false alarm. Using these expressions, we adaptively design the transmit waveform polarizations that optimize the target detection performance. Conventional radar design approaches do not consider the goal of the target itself, which always tries to reduce its detectability. We propose to incorporate this knowledge about the goal of the target while solving the polarimetric MIMO radar design problem by formulating it as a game between the target and the radar design engineer. Unlike conventional methods, this game-theoretic design does not require target parameter estimation from large amounts of training data. Our approach is generic and can be applied to other radar design problems also. Next, we propose a distributed MIMO radar system that employs monopulse processing, and develop an algorithm for tracking a moving target using this system. We electronically generate two beams at each receiver and use them for computing the local estimates. Later, we efficiently combine the information present in these local estimates, using the instantaneous signal energies at each receiver to keep track of the target. Finally, we develop multiple-target estimation algorithms for both distributed and colocated MIMO radar by exploiting the inherent sparsity on the delay-Doppler plane. We propose a new performance metric that naturally fits into this multiple target scenario and develop an adaptive optimal energy allocation mechanism. We employ compressive sensing to perform accurate estimation from far fewer samples than the Nyquist rate. For colocated MIMO radar, we transmit frequency-hopping codes to exploit the frequency diversity. We derive an analytical expression for the block coherence measure of the dictionary matrix and design an optimal code matrix using this expression. Additionally, we also transmit ultra wideband noise waveforms that improve the system resolution and provide a low probability of intercept: LPI)

    Adaptive Interference Removal for Un-coordinated Radar/Communication Co-existence

    Full text link
    Most existing approaches to co-existing communication/radar systems assume that the radar and communication systems are coordinated, i.e., they share information, such as relative position, transmitted waveforms and channel state. In this paper, we consider an un-coordinated scenario where a communication receiver is to operate in the presence of a number of radars, of which only a sub-set may be active, which poses the problem of estimating the active waveforms and the relevant parameters thereof, so as to cancel them prior to demodulation. Two algorithms are proposed for such a joint waveform estimation/data demodulation problem, both exploiting sparsity of a proper representation of the interference and of the vector containing the errors of the data block, so as to implement an iterative joint interference removal/data demodulation process. The former algorithm is based on classical on-grid compressed sensing (CS), while the latter forces an atomic norm (AN) constraint: in both cases the radar parameters and the communication demodulation errors can be estimated by solving a convex problem. We also propose a way to improve the efficiency of the AN-based algorithm. The performance of these algorithms are demonstrated through extensive simulations, taking into account a variety of conditions concerning both the interferers and the respective channel states

    Cross-Term-Free Time-Frequency Distribution Reconstruction via Lifted Projections

    Get PDF
    Cataloged from PDF version of article.A crucial aspect of time-frequency (TF) analysis is the identification of separate components in a multicomponent signal. The Wigner-Ville distribution is the classical tool for representing such signals, but it suffers from cross-terms. Other methods, which are members of Cohen's class of distributions, also aim to remove the cross-terms by masking the ambiguity function (AF), but they result in reduced resolution. Most practical time-varying signals are in the form of weighted trajectories on the TF plane, and many others are sparse in nature. Therefore, in recent studies the problem is cast as TF distribution reconstruction using a subset of AF domain coefficients and sparsity assumption. Sparsity can be achieved by constraining or minimizing the l(1) norm. In this article, an l(1) minimization approach based on projections onto convex sets is proposed to obtain a high-resolution, cross-term-free TF distribution for a given signal. The new method does not require any parameter adjustment to obtain a solution. Experimental results are presented
    corecore