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A crucial aspect of time–frequency (TF) analysis is the
identification of separate components in a multicomponent signal.
The Wigner–Ville distribution is the classical tool for representing
such signals, but it suffers from cross-terms. Other methods, which
are members of Cohen’s class of distributions, also aim to remove the
cross-terms by masking the ambiguity function (AF), but they result
in reduced resolution. Most practical time-varying signals are in the
form of weighted trajectories on the TF plane, and many others are
sparse in nature. Therefore, in recent studies the problem is cast as
TF distribution reconstruction using a subset of AF domain
coefficients and sparsity assumption. Sparsity can be achieved by
constraining or minimizing the l1 norm. In this article, an l1
minimization approach based on projections onto convex sets is
proposed to obtain a high-resolution, cross-term-free TF distribution
for a given signal. The new method does not require any parameter
adjustment to obtain a solution. Experimental results are presented.
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I. INTRODUCTION

Signals with time-varying frequency content are
encountered in many areas, such as AM/FM
communication, radar, sonar applications, medicine
(electroencephalograms), gravitational analysis, speech,
and audio. An important aspect of time–frequency (TF)
analysis is the identification of separate components in a
multicomponent signal. High-resolution TF
representations and methods based on instantaneous
frequency (IF) are needed for analysis, detection, and
classification of this type of signals. TF signal
representations enable separation of time-varying
components overlapping in both time and frequency
domains. It may not be possible to isolate some signal
components in one domain using ordinary frequency
domain filtering.

An important application area of high-resolution TF
analysis is radar imaging [1–3]. The image of the target is
obtained from the spatial distribution of the reflected
signal. But tracking a moving target is a challenging task
due to Doppler spectra estimation.

In inverse synthetic-aperture radar [4], signals from
many small apertures are coherently combined to obtain a
large-aperture antenna, and the reflectivity distribution of
the target is obtained by Doppler spectra. Doppler
information is difficult to obtain using only the Fourier
transform, because the scatters may not remain in their
range cells during the imaging time. When the scatters
drift out of their range cells, the Doppler frequency shift
will be time varying and the radar image will be blurred. A
high-resolution joint-TF analysis is necessary to obtain a
focused image of the target [2, 3, 5, 6].

In addition to constant Doppler frequency shift caused
by bulk motion of some target, the target itself or any
structure on it may have some micromovements.
Mechanical vibrations and rotations are examples of such
micromovements. These micromovements cause a
modulation in Doppler frequency, and the effect is called a
micro-Doppler effect [7]. Micro-Doppler radar signature
detection [8–10], micro-Doppler removal [11, 12],
and FM signal classification [13, 14] all require
high-resolution TF analysis of signals.

Another application area requiring high-resolution TF
analysis is fault detection in electric motors operating
under nonstationary conditions in aerospace and
transportation. TF analysis is used to extract nonstationary
fault signatures from brushless DC motor current. For this
purpose, the Motor Current Signature Analysis technique
[15, 16] is used. Accurate detection of signatures requires
cross-term-free and high-resolution TF analysis [17, 18].

The classical tool for TF analysis is the Wigner–Ville
(WV) distribution [19, 20]. Smoothed versions of the WV
distribution are grouped under the name of Cohen’s class
of distributions [21]. The WV distribution is a quadratic
TF representation, which provides a good time–frequency
resolution especially for chirp-type signals. Because of its
quadratic definition, for multicomponent signals [22] the
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WV representation shows cross-terms together with actual
components or auto-terms. Since the cross-terms result
from cross correlation of different components, they have
an oscillatory shape on the TF plane. Therefore, in
smoothed versions of the WV distribution they are
attenuated or completely removed—but at the expense of
highly reduced resolution. Because of this trade-off
between resolution and cross-term reduction, there have
been many smoothing efforts, which try to reduce
cross-terms but obtain a good TF resolution [23].

Compressive sensing (CS) is a recently introduced
concept which tries to recover a signal from a limited
number of random measurements with the assumption that
the signal under consideration is sparse in some transform
domain [24–26, 41]. In CS problems, a sparsity
assumption is imposed on the recovered signal by
minimizing a cost function based on the l0 or l1 norm.
Frequency-modulated (FM) signals used in radar signal
processing can be considered to be sparse in the TF plane.
The problem of obtaining a high-resolution and
cross-term-free TF distribution is studied in [27] using the
CS perspective [28]. In this approach, a sparse TF
distribution is obtained using l1 minimization among all
TF distributions whose Fourier transform coefficients are
equal to a given subset in the ambiguity domain. The cost
function used in [27] consists of two terms linearly
combined or an upper bound variance of the error. A
proper choice of the mixture parameter (regularization
parameter) is required to obtain a sparse solution.
Regularization-parameter selection is left as an open
problem in [27].

In this article we use the POCS framework to solve the
high-resolution and cross-term-free TF distribution
estimation problem. A lifted-domain POCS method is
developed. The new method does not require any
parameter adjustment as in [27, 28]. It does not require
any a priori bounds on the l1 norm of the signal [29],
either. The new algorithm is designed based on making
orthogonal projections onto the epigraph set of the l1 cost
function. It successively imposes constraints on iterates in
the TF and ambiguity function domains, as in the
well-known Papoulis–Gerchberg algorithm [30, 31].

The paper is organized as follows. In section II,
the TF distribution concept and WV distribution are
reviewed. Section III defines the TF distribution
reconstruction problem with a CS perspective. Section IV
explains how the cross-term-free TF distribution is
reconstructed using the lifted-projections method. In
section V, TF estimation examples are presented and
results are compared with other methods in terms of
localization and similarity measures. In section VI, some
conclusions are drawn.

II. REVIEW OF TIME–FREQUENCY
REPRESENTATIONS AND NOTATION

Linear and quadratic representations are the most
widely used TF representations for signals with

time-varying frequency content [32]. The windowed
short-time Fourier transform (STFT) of a signal x(t) is
given by

ST FTx (t, f ) =
∫

x (τ ) w∗(τ − t)e−j2πf τ dτ, (1)

where w(t) is the window or kernel function of the
transformation. Linearity is a favored property in analysis,
but the selection of the window length is the main
challenge for the STFT. While a long window provides
good frequency resolution, it reduces the time resolution,
and vice versa. There have been efforts [33, 34] to adapt
the window length to the signal so that signal dependency
and better TF resolution are obtained.

The representative of the quadratic group is the
Wigner–Ville distribution (WV) [19, 20], which is defined
as follows:

Wx (t, f ) =
∫

x
(
t + τ

2

)
x∗

(
t − τ

2

)
e−j2πf τ dτ. (2)

Cohen’s class of TF distributions [21] are generalized
versions of the VW distributions:

Px (t, f ) = 1

4π2

∫∫
Ax (τ, θ) �(τ, θ)e−j2π (θt+f τ )dθdτ.

(3)
where Ax(τ , θ) is the ambiguity function (AF) of the
signal x and is given by

Ax(τ, θ) =
∫

x
(
t + τ

2

)
x∗

(
t − τ

2

)
ej2πθtdt. (4)

The AF is a 2-D correlation function which correlates
the signal x(t) by its time- and frequency-shifted versions.
The parameter τ (time lag) and the Doppler parameter θ

(frequency lag) represent the time and frequency shifts,
respectively. In (3), �(τ , θ) is the kernel of the Cohen’s
class TF distribution. The WV distribution corresponds to
�(τ , θ) = 1. Therefore, the AF and WV are related to
each other via the 2-D Fourier transformation (FT).
Multiplication of Ax(τ , θ) by �(τ , θ) corresponds to 2-D
convolution of Wx(t, f ) with the 2-D Fourier transformed
kernel function in the TF plane. Therefore, Px(t, f ) is a
smoothed version of Wx(t, f ). Among many other nice
properties of the WV distribution, the main appreciated
feature is its high resolution. But high resolution is
achieved at the expense of the cross-terms. Because of its
quadratic definition, for multicomponent signals the WV
representation shows cross-terms together with actual
components or auto-terms [22]. Even with a mono
component signal having a nonlinear IF function, the WV
distribution may have cross-terms. The kernel function has
the role of shaping the ambiguity function Ax(τ , θ).
Cross-terms are located between auto-terms and are
oscillatory in nature. Therefore the smoothed version
Px(t, f ) of Wx(t, f ) will have cross-terms attenuated or even
removed, depending on the kernel function �(τ , θ).
Spectrogram [32], which is the square magnitude of STFT,
is an example of the smoothed WV distribution. In
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spectrogram analysis, window length causes a trade-off
between time and frequency resolution. The smoothed
pseudo-Wigner distribution [32] is a solution to this
trade-off via selection of independent smoothing functions
for time and frequency parameters.

Beside Cohen’s class, there are other generalizations
of the WV distribution which aim to achieve high
resolution. One example is the L-class WV distribution
proposed by Stankovic [35]. In this distribution, the FT of
xL(t + τ

2L
)x∗L(t − τ

2L
) is computed to get the distribution,

where L is an integer. A value of L = 1 corresponds to the
WV distribution.

The WV distribution is ideally suitable to chirp-type
signals which have linear frequency variation or
second-order polynomial phase functions. The polynomial
Wigner–Ville distribution (PWVD) [36, 37] is designed to
localize higher order polynomial phase signals. But for
multicomponent signals, it also suffers from cross-terms.
In fact, in PWVD there exist nonoscillating cross-terms,
which cannot be removed by smoothing. Therefore other
approaches are needed to remove them. In [36],
LPWVD—which is a combination of L-class WV and
PWVD—is developed to solve this problem. In both
PWVD and LPWVD, the order of transformation needs to
be arranged according to the polynomial order of the
polynomial phase signal. It is shown in [37] that the
sixth-order PWVD achieves the delta function
concentration for polynomial FM signals of up to the
cubic order.

Among many other TF methods, the reassigned
spectrum [38, 39] is the one which achieves the best
localization. With this method, cross-term-free
high-resolution TF distribution is obtained in two steps. In
the first step, cross-terms are removed by a proper
smoothing method, such as the spectrogram or smoothed
pseudo-WV method. In the second step, each time and
frequency point on the TF plane is moved to a new
location according to the center of gravity of the
neighboring region. In this way, the TF localization or
resolution enhancement is obtained.

Since the AF is a correlation function, its values close
to the origin correspond to auto-terms and those far from
the origin are mainly due to the cross-terms. This is the
main idea behind shaping the AF to obtain a
cross-term-free distribution. Therefore efforts have been
made to shape the ambiguity function by a kernel in a
signal-dependent manner to both smooth the TF
distribution and obtain a high resolution [40]. In the next
section, the TF reconstruction problem using sparse signal
processing is revisited.

III. TF RECONSTRUCTION USING SPARSITY

Most practical time-varying signals are in the form of
weighted trajectories on the TF plane. In this respect,
although they are sparse neither in time nor in the
frequency domain, they are sparse in the
joint TF plane. A multicomponent [22] amplitude- and

Fig. 1. Effect of shaping ambiguity function on WV distribution. Top
left: Ambiguity function of time-varying signal. Top right: WV

distribution. Bottom left: Masked ambiguity function. Bottom right: WV
distribution corresponding to masked ambiguity function. Horizontal and

the vertical axes show time and normalized frequency, respectıvely.

frequency-modulated signal expressed as

x(t) =
L∑

k=1

ak(t)ej∅k(t) (5)

is an example of a signal that is sparse in the TF plane. In
this expression, ak(t) and ∅k(t) are the amplitude and
phase functions of the kth signal component. The TF
distribution of the kth component can be expressed as

Pk(t, f ) = a2
k (t)

1

2π
δ

(
f − d∅k(t)

dt

)
. (6)

This is a trajectory on the TF plane, with d∅k (t)/dt being
the instantaneous frequency (IF) function and δ (f ) the
Dirac delta function. Though not all the time-varying
signals can be expressed in this form, most practical ones
are sparse as in (5). In other words, they are localized in a
small area of the TF plane.

The WV distribution is the 2-D Fourier transform (FT)
of the AF, and the values of the AF around the origin are
due to auto-terms of a multicomponent signal. Therefore,
masking the AF with a filter around the origin and
computing the 2-D FT may reduce the cross-terms in the
WV distribution. But this approach also reduces the
resolution, as shown in Fig. 1. The signal has three
components or auto-terms in this example. However, the
WV distribution has five components (top right). After
masking the AF around the origin, the three main
components are clearly visible (bottom right). Although
the original WV distribution has high resolution, the three
reconstructed components appear with a reduced
resolution.

Due to the uncertainty principle, perfect localization
cannot be obtained in both the TF and AF domains at the
same time. Therefore, there is a trade-off between the TF
domain resolution and cross-terms. In order to reduce the
cross-terms of the TF distribution as much as possible, a
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set of optimization problems is proposed by Flandrin and
Borgnat [27] as follows:

P∗ = argmin
P

‖P‖1

s.t. F−1 {P} = Ax [k, l] k, l ∈ �, (7)

where P and Ax are matrices of size n × n obtained by
discretizing P (t, f ) and Ax (τ, θ), respectively, and n is
the length of the discrete-time time-varying signal x. The

l1-norm is defined as ‖P‖1 =
n∑

i=1

n∑
j=1

∣∣Pi,j

∣∣. The set �

defines the filter mask around the origin in the AF domain,
and k and l are the discrete indices corresponding to the
delay and Doppler parameters, respectively. It is
established in CS theory that minimization of the l1-norm
of P provides sparsity in the WV domain [27].

The second optimization problem is a relaxed version
of (7):

P∗ = argmin
P

‖P‖1

s.t. ‖F−1 {P} − Ax [k, l] ‖2 ≤ ε k, l ∈ � (8)

where the parameter ε is a user-defined upper bound on
the error variance between the inverse Fourier transform
of the WV distribution P and the ambiguity function Ax

over the filter mask �. Obviously, (8) is equivalent to (7)
when ε = 0.

The third problem is a regularized optimization
problem:

P∗ =argmin
P

l‖P‖1+ 1

2
‖F−1 {P} − Ax [k, l] ‖2

2 k, l ∈ �,

(9)
where the regularization parameter l is also a user-defined
parameter adjusting the trade-off between the l1-norm
minimization and the error between the actual and
estimated ambiguity functions. A large l value
corresponds to a sparse WV distribution in the TF plane,
but it may correspond to a large deviation from the actual
ambiguity function. Optimization problems (8) and (9) are
actually equivalent to each other [27, 42]. It is always
possible to find a l value corresponding to each ε value.

In Fig. 2, a reconstructed solution obtained by
minimizing (7) is shown. The signal is the same as the
signal in Fig. 1. A circular mask � with radius r = n/16
around the origin is applied to the AF as in Fig. 1.

The TF distribution in Fig. 2 (top) was obtained using
the l1-MAGIC TOOLBOX [28]. The 3-D plot of the WV
distribution is shown in Fig. 3. The solution has high
resolution and cross-terms are removed, but the
reconstructed solution is too sparse to be called a TF
distribution as stated in [27]. This is because the estimated
distribution is not smooth at all; it is discontinuous and
spiky.

Therefore, instead of solving the minimization
problem (7), which has a strict constraint in the AF
domain, the minimization problem (8) with relaxed
constraints is solved in [27] to obtain an acceptable result.

Fig. 2. TF distribution obtained by minimization of (7) using
l1-MAGIC TOOLBOX (top) and corresponding reassigned smoothed

pseudo-Wigner-Ville (RSPWV) distribution [39] (bottom). Frequency is
normalized according to sampling frequency in all TF figures.

Fig. 3. 3-D plot of TF distribution obtained by minimization of (7)
using l1-MAGIC TOOLBOX. Frequency is normalized according to

sampling frequency.

But in this modified problem, the parameter ε > 0 needs
to be properly defined in advance. Therefore, the choice of
the regularization parameter l (or equivalently the upper
bound ε > 0) is left as an open problem in [27].

Among many other TF representation, the reassigned
spectrum [38, 39] results in good TF localization. In Fig. 2
(bottom), the TF was obtained with reassigned smoothed
pseudo-WV (RSPWV) using the Time–Frequency
Toolbox [43]. In Fig. 4, the 3-D plot of the result is shown.

The reassignment spectrum produces a good
localization around the IF law, as shown in Figs. 2 and 4.
This is similar to the result obtained by the l1-MAGIC
TOOLBOX, but it has a spiky nature. In this respect it
deviates from the physical meaning of the signal being
analyzed. However, it is still the best method in terms of
TF localization.

In this paper a lifted POCS method [44, 45] which
does not require any regularization parameter or upper
bound on the l1-norm of the signal is used to estimate the
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Fig. 4. 3-D plot of RSPWV, which is obtained by using
Time-Frequency-Toolbox [43].

Fig. 5. Left: POCS iterates converge to a vector in intersection of
convex sets C1 and C2. Vector x0 is initial vector and x∗ is in

intersection of sets C1 and C2. Right: Iterates oscillate between two
vectors when intersection is empty. Vectors x∗

1 and x∗
2 minimize distance

between sets C1 and C2.

TF distribution. The algorithm is iterative. Iterates go back
and forth between the Fourier and AF domains. In the AF
domain, the masking filter is applied on the current iterate.
In the TF domain, an orthogonal projection onto the
epigraph set of the l1-norm is performed. In the next
section this method is explained.

IV. TF RECONSTRUCTION WITH LIFTED POCS

Bregman’s (POCS) framework [30, 31] has been
successfully applied to many inverse and design problems
in signal and image processing [30, 31, 42, 44, 46–53].
POCS is an iterative signal reconstruction method in
which the goal is to find a solution satisfying all the
constraints of a given problem in a Hilbert space
framework. The solution vector should be in the
intersection of all the constraint sets corresponding to the
constraints. If the constraint sets happen to be closed and
convex, the algorithm globally converges regardless of the
initial vector. In each step of the algorithm, an orthogonal
projection onto one of the convex sets is performed.
Bregman showed that iterates converge to a vector in the
intersection of all the convex sets provided that the
intersection of the constraint sets is nonempty. If the sets
do not intersect, iterates oscillate between members of the
sets [46–48]. This process is graphically illustrated in

Fig. 5 for both intersecting and nonintersecting cases.
Both x∗ as well as x∗

1 and x∗
2 are accepted as solutions in

inverse problems [46–48].
A POCS-based solution is proposed here based on the

cost function (l1-norm) of the TF reconstruction problem
defined in (8):

f (P) = ‖P‖1 =
n∑

i=1

n∑
j=1

∣∣Pi,j

∣∣ . (10)

Since the TF distribution P has n2 entries, it can be
converted to a vector in Rn2

.
In the lifted POCS approach, we increase the

dimension of the vectors by one. In Rn2+1, any vector on
the graph of the l1-norm can be represented as follows:

w = [
vec (P)T f (P)

]T
(11)

where vec(P) ∈ Rn2
is the vector form of the TF

distribution matrix P and the last entry represents the
l1-norm of the TF distribution P. For the TF reconstruction
problem, the epigraph set Cf of the l1-norm is defined as

Cf =
{
w = [

vec (P)Tv
]T ∈ Rn2+1 |f {P} = ‖P‖1 ≤ v

}
,

(12)

where w is an arbitrary vector in the lifted domain Rn2+1

and v is the last element of the vector w. The epigraph set
Cf contains all the vectors above the graph of the l1-norm
[54]. The epigraph set of a function is graphically
illustrated in the appendix. Since the l1-norm is a convex
function, the epigraph set is a convex set in the vector
space Rn2+1. The set Cf represents our TF domain
constraint on the solution of the TF distribution estimation
problem.

The second convex set is simply based on the AF
domain information. It is the set of TF distributions whose
2-D inverse FT is equal to Ax [k, l] on the filter mask �. It
is defined as follows:

CAF =
{
w=[

vec(P)T v
]T ∈ Rn2+1

∣∣F−1 {P}= Ax [k, l]
}
,

k, l ∈ �. (13)

It can be shown that CAF is also a closed and convex set.
It may not be possible to know if the sets Cf and CAF

intersect or not a priori. This depends on the values of the
ambiguity function. But we can easily understand if they
intersect or not during the implementation of the POCS
algorithm. If the iterates converge to a single solution, they
intersect. If they oscillate between the two solutions, then
it means that the sets Cf and CAF do not intersect.

Next we describe the orthogonal projection operations
onto the sets Cf and CAF.

Given an initial TF distribution P0, we construct a
corresponding vector in Rn2+1 by padding a 0 at the very
end as follows: w0 = [

vec (P0)T 0
]T ∈ Rn2+1, whose

orthogonal projection w1 onto Cf is defined as

w1 = min
w∈Cf

‖w − w0‖2
2. (14)

DEPREM & ÇETIN: CROSS-TERM-FREE TIME–FREQUENCY DISTRIBUTION RECONSTRUCTION VIA LIFTED PROJECTIONS 483



The vector w1 is the closest vector in Cf to w0. The
solution TF distribution matrix P1 is obtained from the
first n × n entries of w1 = [

vec (P1)T f (P1)
]T

. The last
entry of w1 is f (P1) because the projection should be on
the boundary of the convex set, which is the graph f (P1).
If w0 is inside Cf , its projection is itself by definition. The
projection of w0 onto the epigraph set Cf can be also
defined as follows:

w1 = [
vec (P1)T f (P1)

]T

= min
P

‖vec (P) − vec(P0)‖2
2 + f 2(P), (15)

where the first term is obtained from the first n2 entries
and the second term is obtained from the last entries of w

and w0, respectively. Notice that square of the l1-norm
f 2(P) is different from the l2-norm. The solution of the
minimization problem (15) is discussed in the appendix.

Next, the vector w1 is projected onto CAF, producing
the next iterate w2. The corresponding TF matrix P2

satisfies F−1 {P2} = Ax [k, l] , k, l ∈ �. This projection
corresponds to the AF domain constraint. It is
implemented very easily using the 2-D inverse Fourier
transform. The ambiguity function corresponding to P1 is
computed as follows:

A1 = F−1 {P1} . (16)

The ambiguity function A2 is defined using the actual Ax

values in the mask �,

A2 [k, l] = Ax[k, l], k, l ∈ �, (17)

and the remaining entries from A1:

A2 [k, l] = A1[k, l], k, l /∈ �. (18)

Next, P2 is obtained by computing the 2D FT of A2.
In the second round of POCS iterations, P2 or

equivalently w2 = [
vec (P2)T f (P1)

]T
is constructed

where first n entries are taken from P2 and (n + 1)th entry
is taken from previous projection onto Cf because we have
not changed the last entry during projection onto CAF. This
vector is projected back onto Cf to obtain P3. After this
projection operation, the constraint (17) is probably no
longer valid. Therefore, P3 is projected back onto CAF to
obtain P4, and so on. The lifted POCS iterations continue
in this manner. Assuming that the intersection of Cf and
CAF is nonempty, the iterations will converge to a point in
the intersection set—or they will oscillate between Cf and
CAF, as shown in Fig. 5. Both cases are fine with us
because we look for a compromise solution for the TF
distribution.

The method proposed here also provides globally
convergent solutions for other convex cost functions, such
as total variation [55], filtered variation [49], l1, and the
entropic function, that are widely used in signal and image
processing problems because all convex cost functions can
be represented as closed and convex sets in a lifted vector
space.

Fig. 6. Example 1: TF reconstruction using various methods. Left
column: Ideal model, spectrogram, l1-MAGIC TOOLBOX, L-class

polynomial WV distribution (LPWVD); right column: WV distribution,
smoothed pseudo-WV (SPWV) distribution, reassigned SPWV
(RSPWV), lifted POCS. Frequency is normalized frequency.

Fig. 7. 3-D plot of estimated TF distribution of Example 1 with lifted
POCS method. Frequency is normalized frequency.

V. EXPERIMENTAL RESULTS

In order to test the effectiveness of the lifted POCS
method introduced in section IV, TF distributions for
several example signals are estimated. The examples used
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Fig. 8. Example 2: TF reconstruction using various methods. Left
column: Ideal model, spectrogram, l1-MAGIC TOOLBOX, LPWVD;

right column: WV distribution, SPWV, RSPWV, lifted POCS. Frequency
is normalized frequency.

Fig. 9. 3-D plot of estimated TF distribution of Example 2 with lifted
POCS method. Frequency is normalized frequency.

in [27] are also used here. Reconstruction results are
shown in Figs. 6–13. In all the examples, the set � is
chosen as a circular mask around the origin in the
ambiguity domain. The radius of the mask is selected as
r = n/16, where n is the length of the discrete-time signal

Fig. 10. Example 3: TF reconstruction using various methods. Left
column: Ideal model, spectrogram, l1-MAGIC TOOLBOX, LPWVD;

right column: WV distribution, SPWV, RSPWV, lifted POCS. Frequency
is normalized frequency.

Fig. 11. 3-D plot of estimated TF distribution of Example 3 with lifted
POCS method. Frequency is normalized frequency.

as in [27]. Together with model TF and Lifted POCS, the
results obtained using spectrogram (SP), SPWV,
RSPWV[39], LPWVD [36], and TF reconstruction using
l1-MAGIC TOOLBOX (interior point methods) as in [27]
are shown in Figs. 6, 8, 10, 12. For the purpose of
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Fig. 12. Example 4: TF reconstruction using various methods. Left
column: Ideal model, spectrogram, l1-MAGIC TOOLBOX, LPWVD;

right column: WV distribution, SPWV, RSPWV, lifted POCS. Frequency
is normalized frequency.

Fig. 13. 3-D plot of estimated TF distribution of Example 4 with lifted
POCS method. Frequency is normalized frequency.

comparison, the desired ideal TF model of the signals is
also included in the figures. The TF model is nothing but
the TF constructed from the IF law of the signal
components scaled by their power, as in (6). Though not
all examples are polynomial phase signals and have

Fig. 14. Convergence plot of lifted POCS iterations for Example 1.
Figure shows l1-norm of TF distribution versus number of iterations.

time-varying amplitude, LPWVD [36] with order 6 was
also used to obtain the related TF distribution. The related
MATLAB code was obtained from [36]. In order to get, on
average, good results, the SPWV time-smoothing window
length for all the example signals at hand was set to the
odd integer closest to n/10, and the length of the
frequency smoothing filter at the time domain was set to
the odd integer closest to n/4, with n being the signal
length. In this way, any parameter adaptation to the signal
was avoided.

The convergence of the lifted POCS method is
monitored with the help of normalized error, defined by

err = ‖vect (P i) − vec (P i−1) ‖2

‖vect (P i−1) ‖2
. (19)

The l1-norm of the TF distribution versus the number of
iterations is shown in Fig. 14 for Example 1.

Reconstruction results in Figs. 6–13 show that the
solutions obtained with l1-MAGIC TOOLBOX are too
sparse. As pointed out by Borgnat and Flandrin [27] they
cannot be accepted as a TF representation of the signal.
RSPWV has good localization and better smoothness than
the l1-MAGIC TOOLBOX result, but it also has a spiky
nature, as shown in Fig. 4. On the other hand, the lifted
POCS (LPOCS) method generates better and acceptable
results without adjusting any parameters during the
optimization process. In this respect, the LPOCS method
provides a good compromise between localization and
smoothness, which is a physical property of the original
signal. Both SPWV and LPOCS have good resolution and
smoothness based on visual comparison. But the
resolution of LPOCS is better than that of SPWV. SPWV
additionally requires the time and frequency window
lengths to be adapted to the signal for good resolution.

In Fig. 15, a reconstructed TF example obtained from
a noisy signal is shown. The time-varying signal in Fig. 8
was corrupted by additive zero-mean white Gaussian
noise. The signal-to-noise ratio is 10 dB. Signal auto-terms
are clearly reconstructed and cross-terms suppressed by
the lifted POCS method in Fig. 15 (bottom right). The
result is comparable to that of the reassigned spectrum.

In Fig. 16, a signal example from frequency-hopping/
M-ary frequency-shift-keyed (FH/MFSK) communication
is shown. It has been shown [56] that using a
cross-term-free TF representation, the parameters of
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Fig. 15. Signal in Fig. 8 corrupted by additive zero-mean white
Gaussian noise. Signal-to-noise ratio is 10 dB. TF reconstruction result

obtained by lifted POCS method (bottom right) is comparable to
reassigned smoothed pseudo-WV (top right). Frequency is normalized

frequency.

Fig. 16. Example 5: TF distribution of a frequency-hopping/M-ary
frequency-shift-keyed signal. Top left: Ideal model. Top right: RSPWV.

Bottom left: LPWVD. Bottom right: Lifted POCS solution. Frequency is
normalized frequency.

FH/MFSK signal, which include hopping frequencies,
hopping rate, hopping sequence, and modulation type can
be estimated without making any assumption about the
alphabet of hopping frequencies or the synchronization. It
is observed that the LPOCS method clearly reveals the
hopping frequencies and the hopping rate without
adjusting any parameters. It provides better localization
than LPWVD and is not spiky.

In Fig. 17, the TF of a short segment from a
dolphin-click signal is shown. It is known that this
acoustic signal should have three FM components starting
at 0.1 Hz, 0.18 Hz, and 0.29 Hz (normalized
frequency)—corresponding to actual 1100 Hz, 1980 Hz,
and 3190 Hz, respectively—in the first half of the
observation duration. Only the spectrogram and the

Fig. 17. Example 6: TF distribution of dolphin-click signal segment.
Top left: Spectrogram. Top right: RSPWV. Bottom left: LPWVD.

Bottom right: Lifted POCS solution. Frequency is normalized frequency.

LPOCS solutions reveal these three components clearly,
and the LPOCS has a better resolution.

In order to measure the localization of each TF
distribution in a quantitative way, we use the l1-norm as a
measure. Rényi entropy [57] is also a preferred method for
measuring the localization. Rényi entropy is given by

Rα
P = 1

1 − α
log2

{
N−1∑
n=0

M−1∑
m=1

Pα[n, m]

}
, (20)

where P[n, m] is the TF distribution and α is the order of
measure. Rényi entropy allows TF distribution to take
negative values. The value of Rényi entropy is expressed
in terms of bits. The lower the Rényi measure, the better
the localization. A Rényi entropy of order 3 has been
shown to be a good measure for localization [57].

Localization alone is not sufficient for a good
comparison. We also need to know how similar the TF
result is to the model TF we desire. Therefore, together
with Rényi entropy, the Pearson correlation of the solution
TF and the model TF is also used as a measure of
similarity. The Pearson correlation between solution TF P
and model TF Pmodel is given by

pcor = ˜vec(P)T ˜vec(P model)

‖ ˜vec(P)‖2‖ ˜vec(P model)‖2
, (21)

where ˜vec(P) represents the vector form of P with the
mean value subtracted. Pearson correlation measures the
shape similarity rather than any exact norm difference. A
value of 1 indicates an exact shape match.

In Table I, the Pearson correlations between the model
and the solution TF are computed, and in Table II, Rényi
entropy is provided for all the examples studied in this
paper.

For a meaningful comparison, we first should look at
the final solution in terms of acceptability as a TF
distribution related to the signal. Therefore, we should first
check how similar the result is to the desired model. Then
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TABLE I
Pearson Correlation Between TF Distributions and the Model TF for

Tested Examples

Note: A higher value shows better similarity to the model.

TABLE II
Rényi Entropy of All the TF Distributions for Tested Examples

Note: A lower value indicates better localization.

we consider the localization. From Table I we observe that
the LPOCS and RPSWV methods are better than all the
other methods in terms of the similarity measure.

When we compare the localization property of the
methods, the TF obtained by l1-MAGIC TOOLBOX has
the highest localization. The second best is RPSWV, and
third is LPOCS. But as we emphasized in Figs. 3 and 4,
TF solutions obtained by RPSWV and l1-MAGIC
TOOLBOX methods are spiky and do not correspond to
the physical reality of the actual signals [27]. In fact, from
Table II we observe that l1-Magic TOOLBOX provides
overlocalized results which have lower Rényi entropy than
the actual model TF in some cases. In Example 6, shown
in Fig. 17, we observe that RPSWV is too weak to
produce the spectral lines clearly. The LPOCS method has
good results in terms of localization, similarity, and
physical interpretation. Furthermore, the LPOCS method
does not require any parameter adjustment nor parameter
selection. Our overall assessment is that LPOCS is
superior to RSPWV. However, the computational cost of
RSPWV is lower than LPOCS.

VI. CONCLUSIONS AND FUTURE WORK

In both the proposed lifted POCS method and in [27],
the cardinality of the set � is very low compared to the
actual TF signal (n × n). In all the examples tried in this
paper, the size of the � set is selected as a circle with
radius r = n/16. This is necessary to remove the

cross-terms [27]. When the sets Cf and CAF intersect,
there may be many solutions satisfying the constraints
specified by those sets. In this case, the solution depends
on the initial vector. In all the examples, iterations start
with a 2-D distribution obtained from the actual AF by a
masking window with radius r = n/16. In Example 1, the
starting distribution for the iterative lifted POCS approach
is shown in the bottom-left plot of Fig. 1. In other
example, the related masked AF is used as the initial
estimate. They are all relatively smooth VW distributions.
When the sets Cf and CAF do not intersect, the iterations
converge to either one of the two unique distributions, as
illustrated in Fig. 5.

We also tried different mask sizes in CAF, ranging
from r = n/12 to n/24. This range of masks successfully
removed cross-terms in all cases. Therefore, the choice of
r is not very critical in estimating a cross-term-free VW
distribution. However, the question of the optimal r value
or the shape of the mask � for a given time-varying signal
remains an open problem.

Both for the lifted POCS method and for the method in
[27], the computational cost is high compared to the
classical VW and other AF shaping- or smoothing-based
methods. This is because the optimization problems posed
by both methods are solved in an iterative manner.
Obviously, estimated VW distributions are better in terms
of cross-terms compared to classical methods. Considering
the good localization achieved in the TF plane without any
regularization parameter, the lifted POCS method is a
promising approach for TF distribution estimation.

The lifted POCS method has a flexible structure. It
also allows other constraints to be incorporated into the
reconstruction problem. One example is using the
frequency marginal requirement for each time slice of the
TF distribution [50] as a constraint. In each iteration cycle
it is possible to satisfy this requirement.

APPENDIX THE PROJECTION ONTO EPIGRAPH SET
OF A CONVEX FUNCTION

In the lifted POCS method, orthogonal projection onto
sets Cf and CAF has to be performed. In this appendix, the
projection operation onto the epigraph set Cf of a convex
function f is described. While the projection onto the
measurement set CAF is obtained using Fourier transform
relations in (16)–(18), the projection onto Cf given in (12)
cannot be obtained in a closed form. The projection onto
CAF is implemented using successive projections onto
supporting hyperplanes.

Given x ∈ Rn, with f : Rn → R a convex function,
the epigraph set of the function f is defined as

Cf =
{
w = [

xTv
]T ∈ Rn+1 |f (x) ≤ v

}
, (22)

where w ∈ Rn+1 is a vector defined in the lifted domain
and v ∈ R is the last element of w.
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Fig. 18. Projection onto epigraph set Cf by successive projections onto
supporting hyperplanes.

Given the initial point w0 = [
xT

0 0
]T

, a supporting
hyperplane for Cf is defined at x0. The supporting
hyperplane is the set of points in Rn+1 satisfying
aT w = b, where a and b are given by

a =
[∇f (x0)

−1

]
∈ Rn+1 (23)

and

b = aT
[

x0

f (x0)

]
∈ R (24)

and ∇f (x0) is the gradient of the cost function f at x0. The
supporting hyperplane, as shown in Fig. 18, is tangent to
Cf at w1 = [

xT
0 f (x0)

]T
. The vector w0 is projected onto

this hyperplane and w2 = [
xT

2 v2
]T

is obtained.
Then a second supporting hyperplane is defined at x2.

This second hyperplane is again tangent to Cf at

w3 = [
xT

2 f (x2)
]T

. The vector w0 is reprojected onto the

second hyperplane and w4 = [
xT

4 v4
]T

is obtained. This
iteration continues until the projected point wk satisfies
w∗ = [

x∗T f (x∗)
]T ∈ Cf . Since this is an iterative

process, the iterations are stopped after a fixed number of
steps or once there is no improvement between
consecutive steps. Once an increase in distance is
detected, a refinement should be done for the point at
which the hyperplane is defined.

The distance ‖wi − w0‖2 between the point to be
projected and the current projection will not always
decrease for high values of iteration i; therefore, the
distance need to be monitored. In this case, the
hyperplane for f should be defined at the point
(xi + xi−1)

/
2.

If the gradient ∇f (x0) is not computable, then the
concept of the subgradient can be used to determine a
supporting hyperplane at x0.
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