37 research outputs found

    Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning

    Full text link
    Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize the current research on instruction learning, particularly, by answering the following questions: (i) what is task instruction, and what instruction types exist? (ii) how to model instructions? (iii) what factors influence and explain the instructions' performance? (iv) what challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.Comment: Early Draft. Will be further reorganized and polished. The paper list is available at https://github.com/RenzeLou/awesome-instruction-learnin

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Automatic Learning Improves Human-Robot Interaction in Productive Environments: A Review

    Get PDF
    In the creation of new industries, products and services -- all of which are advances of the Fourth Industrial Revolution -- the human-robot interaction that includes automatic learning and computer vision are elements to consider since they promote collaborative environments between people and robots. The use of machine learning and computer vision provides the tools needed to increase productivity and minimizes delivery reaction times by assisting in the optimization of complex production planning processes. This review of the state of the art presents the main trends that seek to improve human-robot interaction in productive environments, and identifies challenges in research as well as in industrial - technological development in this topic. In addition, this review offers a proposal on the needs of use of artificial intelligence in all processes of industry 4.0 as a crucial linking element among humans, robots, intelligent and traditional machines; as well as a mechanism for quality control and occupational safety.This work has been funded by the Spanish Government [TIN2016-76515-R] grant for the COMBAHO project, supported with Feder funds

    Integration of multi-scale protein interactions for biomedical data analysis

    Get PDF
    With the advancement of modern technologies, we observe an increasing accumulation of biomedical data about diseases. There is a need for computational methods to sift through and extract knowledge from the diverse data available in order to improve our mechanistic understanding of diseases and improve patient care. Biomedical data come in various forms as exemplified by the various omics data. Existing studies have shown that each form of omics data gives only partial information on cells state and motivated jointly mining multi-omics, multi-modal data to extract integrated system knowledge. The interactome is of particular importance as it enables the modelling of dependencies arising from molecular interactions. This Thesis takes a special interest in the multi-scale protein interactome and its integration with computational models to extract relevant information from biomedical data. We define multi-scale interactions at different omics scale that involve proteins: pairwise protein-protein interactions, multi-protein complexes, and biological pathways. Using hypergraph representations, we motivate considering higher-order protein interactions, highlighting the complementary biological information contained in the multi-scale interactome. Based on those results, we further investigate how those multi-scale protein interactions can be used as either prior knowledge, or auxiliary data to develop machine learning algorithms. First, we design a neural network using the multi-scale organization of proteins in a cell into biological pathways as prior knowledge and train it to predict a patient's diagnosis based on transcriptomics data. From the trained models, we develop a strategy to extract biomedical knowledge pertaining to the diseases investigated. Second, we propose a general framework based on Non-negative Matrix Factorization to integrate the multi-scale protein interactome with multi-omics data. We show that our approach outperforms the existing methods, provide biomedical insights and relevant hypotheses for specific cancer types

    Counterfactual inference to predict causal knowledge graph for relational transfer learning by assimilating expert knowledge --Relational feature transfer learning algorithm

    Get PDF
    Transfer learning (TL) is a machine learning (ML) method in which knowledge is transferred from the existing models of related problems to the model for solving the problem at hand. Relational TL enables the ML models to transfer the relationship networks from one domain to another. However, it has two critical issues. One is determining the proper way of extracting and expressing relationships among data features in the source domain such that the relationships can be transferred to the target domain. The other is how to do the transfer procedure. Knowledge graphs (KGs) are knowledge bases that use data and logic to graph-structured information; they are helpful tools for dealing with the first issue. The proposed relational feature transfer learning algorithm (RF-TL) embodies an extended structural equation modelling (SEM) as a method for constructing KGs. Additionally, in fields such as medicine, economics, and law related to people’s lives and property safety and security, the knowledge of domain experts is a gold standard. This paper introduces the causal analysis and counterfactual inference in the TL domain that directs the transfer procedure. Different from traditional feature-based TL algorithms like transfer component analysis (TCA) and CORelation Alignment (CORAL), RF-TL not only considers relations between feature items but also utilizes causality knowledge, enabling it to perform well in practical cases. The algorithm was tested on two different healthcare-related datasets — sleep apnea questionnaire study data and COVID-19 case data on ICU admission — and compared its performance with TCA and CORAL. The experimental results show that RF-TL can generate better transferred models that give more accurate predictions with fewer input features

    FireAct: Toward Language Agent Fine-tuning

    Full text link
    Recent efforts have augmented language models (LMs) with external tools or environments, leading to the development of language agents that can reason and act. However, most of these agents rely on few-shot prompting techniques with off-the-shelf LMs. In this paper, we investigate and argue for the overlooked direction of fine-tuning LMs to obtain language agents. Using a setup of question answering (QA) with a Google search API, we explore a variety of base LMs, prompting methods, fine-tuning data, and QA tasks, and find language agents are consistently improved after fine-tuning their backbone LMs. For example, fine-tuning Llama2-7B with 500 agent trajectories generated by GPT-4 leads to a 77% HotpotQA performance increase. Furthermore, we propose FireAct, a novel approach to fine-tuning LMs with trajectories from multiple tasks and prompting methods, and show having more diverse fine-tuning data can further improve agents. Along with other findings regarding scaling effects, robustness, generalization, efficiency and cost, our work establishes comprehensive benefits of fine-tuning LMs for agents, and provides an initial set of experimental designs, insights, as well as open questions toward language agent fine-tuning.Comment: Code, data, and models are available at https://fireact-agent.github.i

    RODE: Learning Roles to Decompose Multi-Agent Tasks

    Full text link
    Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents. Learning a role selector based on action effects makes role discovery much easier because it forms a bi-level learning hierarchy -- the role selector searches in a smaller role space and at a lower temporal resolution, while role policies learn in significantly reduced primitive action-observation spaces. We further integrate information about action effects into the role policies to boost learning efficiency and policy generalization. By virtue of these advances, our method (1) outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark and (2) achieves rapid transfer to new environments with three times the number of agents. Demonstrative videos are available at https://sites.google.com/view/rode-marl

    A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal

    Full text link
    Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Intelligent Knowledge Transfer for Multi-Stage and Multi-Task Learning

    Get PDF
    Machine learning plays a significant role in powering artificial intelligence advances in many areas like natural language processing and personalized recommendation, aiming to build models to fit the labeled training data and then predict on the held-out testing data. A key challenge for these machine learning models is the imbalance between scarce labeled data and continuously increased model capacity. On the one hand, the labeled data of many tasks is scarce because human annotations are expensive, which is especially true for some specialized domains like biomedical. On the other hand, the capacity of models are growing continuously in the last decade, with parameters ranging from millions to billions. Without enough labeled data, such large-scale models may overfit on low-resource tasks, resulting in performance deterioration. Recently, many work demonstrate that transferring useful knowledge from pre-training stages or jointly trained related tasks to the target task may alleviate the label scarcity problem and significantly boost the performance of the target task. Despite the prominence achieved in the recent work, there are still many challenges and open problems to be explored for the knowledge transfer. First, transferring domain-specific knowledge from pre-training stages to large-scale language models remains under-explored, which limits the performance of natural language understanding over the corresponding domains. Second, training multiple tasks jointly hinders the performance on individual tasks, which is more serious in transformer-based multi-task co-training because all tasks share a single set of parameters. Third, transferring knowledge from the source might have a negative impact on the target learner, leading to worse results than training the target task alone. To overcome these challenges, three contributions are made in this dissertation: • To transfer disease knowledge to enhance BERT-like language models over health-related tasks, we propose a new pre-training procedure named disease knowledge infusion, which efficiently exploit the self-supervised learning signals of Wikipedia pages. • The second contribution is a novel method named HyperPrompt that utilizes HyperNetworks to generate task-conditioned prompts for multi-task learning, where the task-specific knowledge can be flexibly shared via the HyperNetworks. • To alleviate the negative transfer problem from the perspective of gradient magnitudes, we propose a novel algorithm named MetaBalance to dynamically and adaptively balance the gradients of auxiliary tasks to better assist the target task
    corecore