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A B S T R A C T   

Transfer learning (TL) is a machine learning (ML) method in which knowledge is transferred from the existing 
models of related problems to the model for solving the problem at hand. Relational TL enables the ML models to 
transfer the relationship networks from one domain to another. However, it has two critical issues. One is 
determining the proper way of extracting and expressing relationships among data features in the source domain 
such that the relationships can be transferred to the target domain. The other is how to do the transfer procedure. 
Knowledge graphs (KGs) are knowledge bases that use data and logic to graph-structured information; they are 
helpful tools for dealing with the first issue. The proposed relational feature transfer learning algorithm (RF-TL) 
embodies an extended structural equation modelling (SEM) as a method for constructing KGs. Additionally, in 
fields such as medicine, economics, and law related to people’s lives and property safety and security, the 
knowledge of domain experts is a gold standard. This paper introduces the causal analysis and counterfactual 
inference in the TL domain that directs the transfer procedure. Different from traditional feature-based TL al-
gorithms like transfer component analysis (TCA) and CORelation Alignment (CORAL), RF-TL not only considers 
relations between feature items but also utilizes causality knowledge, enabling it to perform well in practical 
cases. The algorithm was tested on two different healthcare-related datasets — sleep apnea questionnaire study 
data and COVID-19 case data on ICU admission — and compared its performance with TCA and CORAL. The 
experimental results show that RF-TL can generate better transferred models that give more accurate predictions 
with fewer input features.   

1. Introduction 

Transfer learning (TL) is a machine learning (ML) method in which 
knowledge is transferred from the existing models of related problems to 
models for solving the problem at hand. In real-world applications, such 
as in the field of healthcare, sometimes large numbers of labeled in-
stances are difficult to collect. Solving the problem of limited labeled 
data is one of the applications of TL. TL involves using relationships 
between features (XS) in the source domain (DS) and features (XT) in the 
target domain (DT) and transferring the model from the source task (TS) 

to the target task (TT) [1]. TL can be classified into four categories: 
instance-based, parameter-based, feature-based, and relational. In this 
study, we focus on the latter two types. 

Feature-based TL methods consist of finding the statistical charac-
teristics of data distributions and projecting data features in DS and DT 
into a particular data space by making a feature transformation such that 
the difference between the statistical characteristics expressed in DS and 
DT is reduced [2]. The key to the methods in this category is to choose a 
suitable statistical characteristic of the data distribution. For example, 
the classic feature-based TL, Transfer Component Analysis (TCA), 
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proposed by Pan et al. [3] transforms data features into a Hilbert space 
where the distance of the data features’ marginal probability distribu-
tion can be minimized. Sun et al. [4] developed CORelation Alignment 
(CORAL), which transforms data features from DS to DT by minimizing 
the difference between the covariances in each domain. Similar to [3,4], 
a variety of criteria have been explored for feature-based TL [5,6,7]. 
However, these methods share certain shortcomings. First, whether it is 
transforming data features of DS and DT to the same space or trans-
forming data from one domain to another, DS and DT’s data features can 
be similar but not identical. That is, the transformation process more or 
less loses the original feature attributes, which may result in the trained 
target-domain model having poor accuracy. Compared with feature 
transformation, it would be better to select data features in the target 
domain according to the source domain’s information and the rela-
tionship between DS and DT. 

Additionally, the methods mentioned above only consider the re-
lations of data features between the source and target domains; they 
ignore relations among the same domain’s data features. There is usu-
ally little difference in the statistical distributions of data features be-
tween the source and target domain in practical applications. When 
large numbers of data features exist in both the source and target do-
mains, the above methods often transfer all data features in DS to DT and 
fail to reduce XT’s dimensionality because of the difficulty in telling the 
difference between the data distributions of DS and DT. However, in 
machine learning, a simple prediction model with fewer data features is 
always preferred to a complex one with many features. Although 
methods such as TCA allow users to define the number of features to be 
transferred manually, this is hard to do without prior knowledge. Be-
sides relations across domains, knowledge of the dependences among 
data features in the same domain is also essential. An effective machine 
learning model requires the data features used for prediction to be 
closely correlated with each other and the target of prediction. Data 
features that do not meet this requirement are unnecessary for the target 
domain model, even though they may have a similar distribution with 
the source domain’s corresponding data features. It is critical to clarify 
the relational structure of the source domain’s data features before 
transferring them to the target domain. When the relations in a model 
are the objects to be transferred, the methods are called relational TL. 

Relational TL accounts for the relationships among data features, and 
the transferred objects are the logic networks in DS. It assumes that the 
knowledge networks in DS and DT are the same or can be transferred 
from DS to DT. Two critical issues affect the development of relational 
TL: 1) how to extract knowledge networks from the data of the original 
domain and how to transfer knowledge networks from one domain to 
another. 

Knowledge graphs (KGs) are useful tools for dealing with the first 
issue. KGs are knowledge bases that use data and logic to structure in-
formation. They are often used to store interlinked descriptions of en-
tities with free-form semantics [8]. KGs express not only statistical 
relationships among data but emphasize the human reasoning involved 
in knowledge representation. According to [9,10], knowledge-based 
modeling manipulations are categorized into ontologies, cognitive 
knowledge bases, linguistic knowledge bases, and expert knowledge 
bases. Although expert-knowledge-based modeling methods have been 
criticized for their heavy reliance on expert experience, such experience 
and knowledge constitute an indispensable gold standard for validating 
models [11,12,13]. Peng and his team [14] proposed a hyper-network- 
based approach to retrieve data and reasoning with engineering design 
knowledge. Bayesian inference has been used for constructing the KGs. 
In [15], a Bayesian network with noisy OR gates was used to extract a 
health knowledge graph from Electronic Medical Records (EMRs). 
Bayesian-based technologies have been widely utilized for making KGs 
because of their intuitiveness and interpretability. However, Bayesian- 
based models depend on probabilistic inference, which cannot explain 
the correlations and causalities among data; this limits their application 
to KGs involving causal logic. 

Structural equation modeling (SEM) is a well-known data modeling 
method expressed by a series of regression functions. The original SEM 
cannot directly be used as an inference model. Our team proposed an 
explainable ML model based on SEM (SEM-EML) [16]. In the present 
study, we referred to the key procedures in SEM-EML and introduced 
SEM in TL technologies to extract KGs from data as a preparation for 
transfer learning. 

Another essential issue with relational TL is the ways of transferring. 
Unlike instance-based, parameter-based, and feature-based TL, the dif-
ference between DS and DT is easily expressed mathematically, such as 
the distance between data features across domains. However, the dif-
ference in the relational structure between DS and DT is hard to describe 
statistically. That is, the transference of relation needs support from a 
human expert. To the best of our knowledge, there are few algorithms 
for transferring “relations” [17,18,19]. Kumaraswamy et al. [19] 
developed an interactive TL algorithm in relational domains, called 
language-bias transfer learning (LTL), that uses tree-type inductive logic 
programming. The transference procedure of LTL entirely depends on a 
human expert’s experience assisting the algorithm in selecting appro-
priate relations to transfer, which is time-consuming and laborious. 
Instead of interacting with expert experience, a more efficient way is to 
teach algorithms to imitate human cognition. A number of cognitive 
factors have been identified as being involved in the support of trans-
ferring empirical engineering knowledge [20]. In particular, causality, 
as a human inference logic, has attracted attention from researchers as 
ways for assisting and directing machine learning. Analogical reasoning, 
the well-known feature-mapping method proposed by Gentner and his 
team [21], is a helpful tool for inferring relational structures from one 
domain to another. Gentner discussed that attention to the differences in 
objects between domains leads to the inference on the relationships 
among the objects. Through the procedure of analogy, features in one 
domain can be mapped to another one. Gentner’s method stresses the 
similarities of relational structures in different domains. However, dis-
tinctions between domains were ignored. The mapping or transference 
should not be a static contrast but rather a dynamic process. In the 
presented study, we take advantage from another aspect of causality, 
counterfactual inference, which is able to guide the dynamic process of 
feature transference across domains. 

A causal relationship is recognized as ground truth, and a change in 
the reason will cause a corresponding change in the result. In machine 
learning, the reason is a stimulus given to a model. The result is a change 
in the model produced by the stimulus. Furthermore, in causality theory, 
a prediction that if the same stimulus is experienced in the future, the 
model will change is called a counterfactual inference. The task of 
relational TL algorithms is to predict the unlabeled target in a domain by 
transferring a relational structure from another domain. If the relational 
structure changing rules from the source domain to the target domain 
can be inferred from a piece of particular causal knowledge, it will be 
feasible to predict a model in the target domain. Using causality as a 
guide for the learning procedure in ML is efficient because the only in-
formation supplied by a domain expert is a piece of causal knowledge. 
The causal TL algorithm proposed by Rojas-Carulla et al. [22] uses SEM 
for finding the invariant domain between DS and DT. Roughly speaking, 
the algorithm uses the invariance of the reasons in a causal relationship 
to find conjunct causal features in the two domains. However, it focuses 
on how to extract causalities, not how to transfer knowledge. 

This paper proposes to use counterfactual inference to predict causal 
knowledge graphs from the source domain to the target domain for 
relational transfer learning. We name the algorithm we use for inference 
Relational Feature Transfer Learning (RF-TL). The counterfactual 
inference is made according to the causal knowledge provided by a 
domain expert, which predicts the relations among XT from the relations 
in XS. Moreover, other ML methods are used to label the data in DT using 
the extracted features. 

The contributions of this paper are as follows: 1) Different from the 
traditional feature-based TL algorithms that are limited to differences in 
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data features across the domains, RF-TL takes into account dependency 
relationships among data features in each domain, thereby facilitating 
the extraction of functional features and eliminating useless ones. 2) RF- 
TL does not require feature transformation. Instead, it selects appro-
priate features in the target domain to train a model. This preserves the 
feature attributes as much as possible. The experimental results show 
that RF-TL can use fewer data features to train a model that is more 
accurate than other models made with the traditional feature-based TL 
methods, TCA and CORAL. 3) The introduction of human expert 
knowledge makes the transference explainable and reasonable. Our 
pioneering utilization of counterfactual inference in TL makes the 
learning process accurate and efficient. 

The remainder of this paper is organized as follows. Section 2 gives 
technical background, including an overview of relations between KGs 
and SEM, and explains how SEM can contribute to constructing KGs for 
domain knowledge. It also gives a brief introduction to TCA and CORAL, 
which we selected as methods for comparison in the experiments. Sec-
tion 3 describes the procedure of RF-TL. Section 4 describes an experi-
ment we conducted to evaluate the effectiveness of applying RF-TL to 
healthcare cases, and Section 5 discusses the results. We give concluding 
remarks in Section 6. 

2. Technical background 

2.1. Structural equation modeling for constructing knowledge graphs 

The domain knowledge that is used for solving problems is expressed 
as rules in KGs. The rules are made up of IF and THEN parts. The IF part 
can include first-order logic expressions, e.g., the conjunction AND or 
disjunction OR. Nodes in KGs consist of linguistic objects and their 
values. Rules represent relations among nodes and can be classified as 
logical or fuzzy [23]. At present, domain knowledge is mostly acquired 
from domain experts, while automatic or semi-automatic methods have 
been proposed for saving labor and time [24,25]. 

In our previous study, we proposed an SEM-based machine learning 
method named SEM-EML for inferring engineering problems [16]. The 
procedure of SEM-EML is described in the Appendix. In the present 
study, we use SEM-EML to obtain the structure of KGs from empirical 
data. As a way of measuring correlations among data points, the utili-
zation of SEM for constructing KGs makes it possible to add properties to 
“edges”, i.e., IF A is a AND B is b, THEN A strongly (weakly) results in B, 
which extends the usable range of KG expressions on domain knowl-
edge. Also, SEM’s strong point over other information integration 
methods, e.g., Bayesian networks, is its ability to measure causalities 
between factors (corresponding to nodes in KGs). The notion of causality 
lets a static binary relationship between nodes, e.g., IF A is True, THEN B 

is true, acquire dynamic properties, e.g., IF A changes, THEN B will 
change. Dynamic properties are essential to KGs, without which KGs can 
only store and express “data from the past” but never predict the future. 
As the application in this study, we describe transference as a dynamic 
procedure that requires KGs to cope with change. 

2.2. Feature-based transfer learning methods 

Besides knowledge network extraction, another critical problem of 
transfer learning is how to transfer the relationships from the source 
domain to the target domain. As mentioned in Section 1, several 
methods can be chosen depending on the transfer objects. In this study, 
we focus on feature-based transference. TCA and CORAL are represen-
tative feature-based TL methods and are briefly introduced here. Section 
4 describes experiments that compared their performance with that of 
the proposed algorithm. 

TCA maps data features in DS and DT into a high-dimensional 
reproducing kernel Hilbert space, where the distance between the data 
features in the marginal probability distributions over DS and DT is 
minimized while preserving their respective internal properties to the 
greatest extent. TCA extends the principal component analysis to TL, and 
TCA and PCA’s core ideas are similar. In the transformed feature space, 
only the principal components are needed to be preserved. We call this 
idea dimensionality reduction. As mentioned in Section 1, although the 
user can decide the number of dimensionalities that remains after TCA, 
it is hard to choose an appropriate number without prior knowledge. 
Also, the number of dimensions influences the accuracy of learning to a 
great extent. Our experiment in Section 4 shows how the decision on the 
dimensionality number affects learning accuracy. Moreover, we show 
that RF-TL does not have this selection problem. 

Different from TCA that transforms data features in both DS and DT 
into another space, CORAL transforms only XS to DT and uses the 
transformed XS to train a model in DT. The basis of CORAL is to extract 
correlations among data features and then transform the covariance 
matrix from the source domain to the target domain. On the one hand, 
while the distributions of data features are not so different from one 
domain to the other and they correlate strongly in each domain, CORAL 
fails to reduce the dimensionalities. On the other, two data features with 
strong correlations do show they have a particular relationship with 
each other while no causal relationships are interpreted. Correlations 
cannot tell us how one data feature changes in correspondence to a 
change in another data feature’s change. While it is not a problem to use 
data features with solid correlations to train a machine learning model, 
in TL, the transference is an automatic procedure. It is necessary in TL to 
predict the change in a model when data features in the source domain 
are changed to the target domain. 

Fig. 1. Overall design of RF-TL.  

J. Li et al.                                                                                                                                                                                                                                         

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Advanced Engineering Informatics 51 (2022) 101516

4

Thus, the learning structures expressing causal knowledge must be 
known in the source domain so that the correct transference of the 
model to the target domain can be conducted. Here, SEM is an excellent 
tool for extracting causal knowledge from data, and it is used in RF-TL. 

3. Relational feature transfer learning algorithm (RF-TL) 

The overall design of RF-TL is shown in Fig. 1. The core idea of RF-TL 
is to use causality to direct the counterfactual inference from DS to DT. 
An explainable model structure is necessary regardless of whether one is 
conducting the causal analysis or counterfactual inference. For training 
the source model, expert knowledge should be used as a measuring item 
(s) of the model so that in the next step, an intervention can be per-
formed on the model. Furthermore, after extracting the knowledge 
network from the intervened sub-models, RF-TL uses counterfactual 
inference to predict the KG(s) carrying the information on features 
useful for DT. The next sections illustrate the specific procedures of each 
step, including the role of the causal relationships among them. 

3.1. Interventionism-causality knowledge of domain experts 

Causality is a philosophical concept. When two events occur in 
certain time order, one event has an impact on the other. The event 
occurring earlier is the reason and the event occurring later is the result. 
An “Order” is very important for actual causality [26]. Introducing 
causality theory to ML usually involves adopting the interpretation of 
interventionism. In interventionist-causality theory, an intervention is 
regarded as a cause, and the corresponding changes in the system are the 
results [27]. Fig. 2(a) shows the concept of interventionism-causality. 

Causality is regarded as a factual truth in the real world. In a causal 
model, the direction of the arrow is non-reversible, which also clarifies 
the essential difference between causality and correlation. When we talk 
about two events being statistically correlated, we can only show that 
the two events have a particular relationship. However, there is no 
illustration about the “order” or which one impacts the other. In other 
words, causality is a ground truth or customary rule and is higher in 
some sense than the level of a statistical relation. In the interventionism- 
causality system, the intervening factor (the reason) is objectively var-
iable and will lead to a corresponding change in the predicting system. 

There are many cases in real life where this theory applies. For example, 
the risk of getting a disease such as hypertension and diabetes becomes 
higher with increasing age. A change in a population will influence the 
economy. In a production line safety assessment system, the tempera-
ture of the environment is an essential factor affecting the safety risk. 

However, a commonality of the above-mentioned cases is the bias in 
data collection caused by objective facts. Sometimes, the collection of 
global data is impossible or inhumane. For example, data on diseases 
that occur more frequently in older age groups are scarce from young 
people. It is impossible to artificially make the young age quickly to get 
an age-wide predictive system. Similarly, it is unrealistic to change the 
population structure of a society in a short time. However, using existing 
data and by taking advantage of interventionism, we can observe a 
change in a system caused by an intervention factor. Furthermore, we 
can transfer the model constructed using existing data to the domain in 
which we want to predict. The details of the interventionism-causality 
mechanism are shown in Fig. 2(b). 

For the sake of illustration, suppose that we are to design an atten-
dance forecasting system for baseball games. Baseball is usually not 
played in winter conditions, but the client wants to predict the atten-
dance rate in winter. In this case, we define weather temperature as the 
intervening factor. Thus, the source domain DS including data features in 
summer, and DT represents the winter event. 

Generally, in interventionism-causality, an intervention (T) is a 
stimulus applied to a system (U). The state (Y) of U changes in accor-
dance with the stimulus. The intervention procedure is expressed as 
δ(u) = Yt(u) − Yc(u), where Yc(u) is the original state of U and Yt(u) is 
the state after the intervention. Using the baseball game prediction case 
mentioned above, we consider that temperature is the reason for the 
attendance rate. Then, if there is a system that can infer the attendance 
rate, the state of this system will respond accordingly to temperature 
intervention. 

In practical applications, we would like to know the effect of an 
intervention on multiple systems, e.g., the effect of temperature on the 
decision to attend by a group of people. The following equation can be 
used to determine this effect 

E[δ(u)] = E[Yt(u)] − E[Yc(u)]

Fig. 2. Intervention-causality theory.  
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where E[∙] represents the average state of a group of individuals. 
However, in practice, it is difficult to obtain accurate information on 

the state Y of a group of people, which is called the fundamental problem 
of causal inference (FPCI) [27]. In this case, it is impossible to ask every 
person in the world whether they would attend a game in winter. FPCI 
embodies the difficulty of determining Yt(u) and Yc(u) at the same time. 
In particular, three assumptions constrain the interventionism-causality 
[28]: A) the stable unit treatment value assumption (SUTVA) regards 
every individual change as an independent event; B) the assumption of 
constant effect (CEA) supposes that the effects of an intervention are the 
same for every individual. That is, δ(ui) = δ

(
uj
)

if i and j are different 
individuals in the same group; C) the assumption of homogeneity (HA) is 
such that Yt(ui) = Yt

(
uj
)

for two individuals. Under these three as-
sumptions, it is easy to estimate the effect of an intervention on a group 
of objects. Our RF-TL follows these three assumptions. 

The next step after constructing a causal model is to carry out 
counterfactual inference. “Counterfactual” means the fact has not 
occurred but can be predicted according to certain evidence. The most 
important message conveyed from the causal model is that a change in 
reason will cause a change in the result, but the reverse is not true. 
Therefore, counterfactual inference can be made as if the “reason” will 
change in the future, changing the “result” correspondingly. Coming 
back to intervention-causation, we could say that “if a certain inter-
vention is carried out on a model, the system will obtain δ(u)”. Note that 
δ(u) only represents the change in the state, so it can be quantitative or 
qualitative. In the case of RF-TL, δ(u) is used as the transfer rule, which 
means it is qualitative. In the baseball game example, δ(u) can be ob-
tained by intervening on temperature. Furthermore, counterfactual 
inference can be performed as “if there is an intervention on tempera-
ture, then the predicted attendance will change according to the rule 
(s).” Similar to the baseball game example, the main idea of RF-TL is to 
extract the “rule(s)” from the intervention conducted on the DS model 
and make a counterfactual inference to transfer the knowledge network 
to DT in accordance with the “rules”. 

In the following sections, we will describe the approach for KGs 
extractions using an SEM-based method. Then we will show the specific 
steps of RF-TL from training the source domain model to the trans-
ference of KGs from DS to DT. 

3.2. Translating structural equation model into knowledge graph 

As mentioned in Section 1, SEM is a valuable tool for digging into 
statistical causal relations in data. SEM is usually framed as a two-step 
procedure. The first step is exploratory factor analysis (EFA). The 
other is confirmatory factor analysis (CFA). EFA is a reliable tool for 

classifying data items into corresponding factors without a specific hy-
pothesis, which aims to identify latent factors based on the observed 
variables. The measurement model and structural model make up the 
hypothesis for CFA to test. EFA yields extracted factors and their in-
clusive manifest variables that constitute the measurement model. The 
structural model specifies the logic paths among factors. Once the model 
is constructed, the factor loadings between manifest items and latent 
factors and between every two factors are estimated in accordance with 
the covariance matrix of the manifest items. Fig. 3 shows a conceptual 
graph of an SEM model. 

In this study, we use SEM to construct KGs. Because the original SEM 
is a data analysis model, in order to use it to extract KGs, it has to be 
modified with several further operations. 

First, we need to transfer SEM into a predictive system. The main 
steps are shown in the Appendix on SEM-EML. Roughly speaking, they 
include data collection, data management, structure management, and 
parameter learning. A common problem of SEM is that the validation of 
the model relies on a convincing hypothesis given by a domain expert, 
which is sometimes impossible or involves labor and time to obtain. In 
our approach, the strategy is adopted to optimize the structure of SEM. 
In the structure management procedure, to guarantee the model’s val-
idity, we use a genetic algorithm (GA) to identify the fittest model by 
setting goodness of fit (GoF) indexes. In the final step, the target of the 
prediction item is separated from other items by using a linear regres-
sion procedure. 

Next, the obtained SEM-like predictive system is translated into KGs. 
The origin of using KGs can be traced back to the semantic network 
developed in the 1970s [29]. In particular, GOOGLE used a KG to 
enhance the performance of its search engine in 2012 [30]. There is no 
gold-standard definition for KGs, but they consist of a set of inter-
connected entities and their attributes [31]. In other words, a KG is 
made up of pieces of knowledge, and each piece can be represented as a 
subject-predicate-object relationship. The subjects and objects are the 
nodes in the graph, and a predicate is an edge describing the relationship 
between two nodes. The elements of the KG are defined as follows. 

Definition 1. Nodes: a) Body nodes are latent factors. b) An end node is 
the target item of the prediction, which also consists of a text description and 
label value. 

Definition 2. Edges: a) Body edges are arrows connecting the body nodes 
and they represent the causal dependence between the nodes. An adjective 
word “Weak” or “Strong” is added to the edge as an attribute of the rela-
tionship. b) An end edge is an arrow pointing to an end node and it represents 
the predicate “predict”, and it is not necessary to add the adjective pair. 

Fig. 3. Conceptual model of SEM.  
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In Definition 2, the adjective word “Weak” or “Strong” is added to 
edges. The choice between “Weak” or “Strong” depends on the path 
loading (standardized path coefficient) between the nodes. “Weak” is 
given to edges that have path loadings (absolute value) < 0.3 between 
two nodes, while “Strong” is given to those with path loadings (absolute 
value) ≥ 0.3 (all the relationships should show statistical significance). 
In SEM, the path loadings evaluate the effect of one factor on the other. 
The factors that have a strong effect on each other are necessary for 
constructing the model. The path loadings are the standard regression 
coefficients between two nodes connected by an arrow, which relates to 
the (partial) correlation value. A model with a high goodness of fit 
means it can express the correlations among the factors comparably with 
the true relationships among the data, requiring the nodes connected by 
the arrows to have competing strong causal effects on each other. 
Although different researchers have different opinions on the reference 
point of the path loading [32,33], 0.3 is a safe choice. The effect of 
choosing different thresholds for the path loading is not a key point here. 
Users can choose a suitable number according to their application. The 
practical examples shown in this paper are medical cases, for which we 
chose 0.3 as a threshold for RF-TL to judge the “Weak” or “Strong” tags. 
If any factor has a low factor loading compared with all the other factors, 
it would be weak one in a prediction model. Fig. 4 shows the concept of a 
translated SEM-like KG. 

As shown in Fig. 4, each ellipse represents a latent factor, and the 
items for measuring the factor are represented as rectangles. Note that, 
except for the target item of prediction, the other measuring items are 
not shown in the figure. The SEM-like KGs are made up of pieces of 
knowledge. For instance, in Fig. 4, Factor 3 is weakly related to Factor 4, 
and Factor 1 is strongly related to Factor 4. 

Three predicate functions are used for expressing the knowledge in 
KGs: 

Si
(
x, y, flx→y

)
(2)  

Wi(x, y, flx→y) (3)  

Ni(x, y, 0) (4) 

Functions (2)–(4) represent three propositions. The subscript i in the 
functions represents the ith sub-group, x and y are the nodes in the KG, 
Si(x, y, flx→y) means x results in y with a factor loading flx→y, and the 
relationship is strong, and Wi(x, y, flx→y)means x results in y with a factor 
loading flx→y, and the relationship is weak. The order of x and y cannot 
be changed in Functions (3) and (4). Function (5) means there is no 
relation between x and y, where there is no arrow between the two nodes 
in the graph (the standard regression coefficient approaches zero). 

3.3. Model training in the source domain 

The first step is to train the predictive model for DS. RF-TL only cares 
about strong/weak relationships between nodes of the intervened 
models. Thus, when training the source domain part, the knowledge 
expressing relationships on the edges does not have to be shown in the 
figure. In other words, only the procedures described in Section 3.2 that 
“transfer SEM to a predictive system” are conducted in the current step. 

In this research, we only consider the situation in which the reason 
and result have a linear dependence. In the causal relation used by RF- 
TL, the “reason” is the intervention item. The “result” is the prediction 
target, and its target can be statistically expressed, such as the atten-
dance rate of the baseball game. 

In the source domain model, the item used as the intervening factor 
should be one of the measuring items of one of the latent factors, 
ensuring that the model and intervention are relevant. Once more using 
the baseball example, the temperature is the intervening factor, e.g., the 
“reason”. A change in the intervening factor will cause a corresponding 
change in the prediction system P, i.e., the attendance prediction system. 
Then, the trained source model is constructed, as shown in Fig. 5. 

Fig. 4. SEM-like KGs. The model consists of 
latent factors, and measuring items belong to 
the factors (items except for the target of 
prediction are omitted in the figure). Each 
latent factor represents a node in the KG made 
up of an ontology expression and statistical 
values regressed from the items. Between the 
nodes, the arrows are the edges of KG with an 
ontology expression of Weak or Strong and a 
path loading value. The end node is the target 
of the prediction item, and an edge pointing to 
it expresses the action of prediction.   

Fig. 5. The prediction system in the source domain. The intervening factor is a measuring item of factor 2, which is used as the intervention item, e.g., the “reason”.  
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Many feature-based TL algorithms have the function of data- 
dimension simplification. RF-TL is no exception. As mentioned in Sec-
tion 3.2, in the data management step, items that do not have a strong 
ability to measure the model will be removed. Compared with other 
data-dimension reduction methods, the distinct advantage of using SEM 
is that the extracted dimensions are all meaningful in practice; e.g., Item 
1 represents temperature and Item 2 represents weather. The mean-
ingfulness of the item is a key point for the causal analysis. We use expert 
causal knowledge in the intervention step. “Knowledge” means some-
thing explainable; thus, it is impossible to do a further causal inter-
vention in the succeeding steps without revealing the explanations of the 
data features. 

3.4. Interventions on the source model 

Intervention stimulates a model by artificial means, and the stimu-
lation constrains the intervention item to be a constant state. Under the 
three assumptions of FPCI, when an analysis object is a group, causality 
can be represented by the expectation of the difference between the 
intervened state and original state, i.e., function (1). In addition, an 
intervention item, such as the intervening factor in the model in Fig. 5, is 
a measuring item that can be regarded as a characteristic for describing 
one of the factors of the model, e.g., factor 2 in Fig. 5. Here, we will give 
the following definitions: 

Definition 3. Intervention T: Classify objects into different sub-groups in 
accordance with the characteristic, i.e., the intervening factor. The inter-
vening factor of each group is labeled by a constant number, such as 1 for the 
first group, 2 for the second group, etc. 

Definition 4. The state E[Yi(u)] of the ith group: The new prediction model 
trained by the data from sub-group i. 

Definition 5. The original state E[Yc(u)]: Assuming there are n sub-groups, 
E[Yc(u)] is the (n− 1)th sub-group. 

There are a few caveats regarding these definitions. The first is about 
the division of the sub-groups. Data in DS should be divided into sub- 

groups in accordance with the scale of the intervening factor in DS. 
The division must have scale invariance. As in the baseball game 
example, if the temperature range of DT is 5 ◦C and DS is 15 ◦C, there will 
be three sub-groups, each having a scale of 5 ◦C. Second, RF-TL is based 
on the linear dependence between the reason and the result. Thus, the 
division of sub-groups is not random but in accordance with the increase 
or decrease in the intervention item. Furthermore, if the mean value of 
the intervention item of DT is on the lower side of DS, the intervention 
item of the sub-group is labeled in a descending way, i.e., winter is 
colder than summer, while if the mean value of the intervention item of 
DT is on the higher side of DS, they will be labeled in an ascending way. 
Here, if we suppose that DT ranges from 0 ◦C to 5 ◦C and DS ranges from 
25 ◦C to the 40 ◦C, the 40 ◦C–35 ◦C sub-group can be labeled 1, the 
35 ◦C–30 ◦C sub-group can be labeled 2, and the 30 ◦C–25 ◦C sub-group 
can be labeled 3. Third, the original state is needed for the causal 
analysis. The original state should be a group without any interventions. 
Nevertheless, it is difficult to find an ideal state without any interven-
tion; thus, in practice, one of the intervened states is often chosen as the 
original one. We define a group with label n − 1 as the original state for 
the convenience of evaluating its intervening scale relative to sub-group 
n, which is “nearest” DT. The upper portion of Fig. 6 illustrates the 
intervention procedure. 

After the intervention, the data in DS are divided into sub-groups. 
Because the intervention item has been labeled with a constant num-
ber, which means the objects in the sub-group with such a label have the 
same attributes as the intervention item, the intervention item will no 
longer be a measuring item of the sub-models. After the intervention, 
SEM-like KGs are extracted using the data of each sub-group. The 
training procedure begins by preparing the data. The data features that 
are used as input for creating the ith sub-prediction system Pi are those 
used by the prediction system before the intervention P. Unlike in the 
original DS model, the items belonging to the same factor with the 
intervention item may be classified into another common factor in the 
EFA procedure because the intervention item is not used in the sub- 
models. It is also possible for the number of items or factors to 
decrease if the item does not have enough power to evaluate the system. 

Fig. 6. Case of an intervention performed on the intervening factor and two trained sub-models. In the upper part of the figure, the red cross represents that the 
intervening factor is constrained to be constant label values, e.g., 0 and 1 in the example. After the intervention, the intervening factor is removed from the figure, 
and the data are divided into sub-groups, e.g., group 0 and group 1. Then, sub-models are trained using the respective sub-group data. Finally, after training the 
predictive system for each sub-group, edge descriptions of strong/weak relationships with path loadings are added to the figure. 
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Removal of items will affect the transfer process. The specific operations 
for handling this situation are discussed in the section about the transfer 
rules. However, the abstract concepts of the common factors should not 
be changed. Also, the meaning and number of latent factors should be 
the same in each sub-model; this is necessary for the following transfer 
procedure. If necessary, the common factors can be forced to be a certain 
number in accordance with the reference points. The procedure of 
creating sub-models is shown in the lower portion of Fig. 6. After 
creating the sub-predictive systems, the edge labels, i.e., weak/strong 
relationships with path loadings, are translated and added to the KGs. 

3.5. Transferring knowledge graphs to the target domain 

The purpose of RF-TL is to find suitable features for predicting the 
target in DT through the transfer of the relationships of the DS model. As 
mentioned in Section 2, a path loading (absolute value) ≥ 0.3 is the 
reference point for the predictive power of a factor. As a result, the 
transfer rules are defined for predicting the predictive power of the 
factors in the model of DT. First-order logic programming (FOLP) [34] is 
used to create RF-TL, and the following pseudo-code shows the pro-
cedure. For a clear illustration, we have numbered the edges in the sub- 

models. As mentioned above, the number of latent factors remains the 
same in each sub-model. Assuming there are m factors in the model, if all 
the factors are connected to each other and the direction of the arrow is 
taken into account, there will be m × (m − 1) edges. Also, as mentioned, 
if the path loading between nodes is extremely small, then no edge will 
be added to the KGs, i.e., Ni(x,y,0). If Ni(x, y,0) is true in all sub-models, 
this edge is considered to be useless for constructing the model. Thus, it 
is not necessary to input it to the transferring algorithm. In practice, 
most of the unnecessary data features are removed in the EFA step, and 
the remaining ones are classified into a few latent factors. As a result, the 
time cost of RF-TL is usually acceptable. Assuming there are k such 
edges, they will be ignored when labeling the edges. As a result, the 
labels from 1 to m × (m − 1) − k are given to the (potential) edges of each 
model. The order does not matter, but it should be the same in each sub- 
model. The pseudo-code of RF-TL algorithm is shown in Table 1. 

The inputs of the algorithm are Qs1, Qs2, MT, m and w. Qs1 is the set of 
edges of the sub-model labeled n − 1, and Qs2 is the set of edges of the 
sub-model labeled n. The edges are expressed using Functions (2)–(4). 
MT is the transferred edges in DT. m is the number of factors, and w is the 
transfer weight. The principal part of the transferring algorithm is per-
formed according to FOLP. Specifically, whether an edge should be 
added to the KG of DT is decided by comparing the “strengths” of the 
edges in the neighboring sub-models, model n − 1 and model n. If the 
edge in model n − 1 is weak or none and in model n is strong, then the 
edge is added to the target KG. In contrast, if the edge in model n − 1 is 
strong or weak and in model n is none, then the edge is not added to the 
target KG. Similarly, if the edge in model n − 1 is strong and in model n is 
weak, then the edge is not added to the target KG. Moreover, the other 
situations need the path loadings to be calculated using the path loading 
calculation algorithm. 

In Section 3.2, the “reason” and “result” in the causal relationship 
used with RF-TL are defined as an intervening factor, such as “temper-
ature” and a statistically expressible model’s target, such as “attendance 
rate”. The reason and result are assumed to have a linear relationship, so 
the causal relation can be expressed as 

Result = βr × Reason (5) 

where βr is the standard regression coefficient. 
Furthermore, the transfer weight w is defined as 

w = multiple × βr (6) 

Here, multiple depends on the “distance” between the highest 
(lowest) value of the intervention item x(S)

I in DS and the lowest (highest) 
value of the intervention item x(T)

I in DT. Although the sub-groups are 

Table 1 
Pseudo-code of RF-TL algorithm.  

RF-TL: Transfer 

1: Function EXECUTE TRANSFER (Qs1, Qs2, MT , m, k, w)  
2: MT = ∅  
3: for i in the range (1,m× (m − 1) − k) do:  
4: Ns1(edgei, 0) ∨ Ws1

(
edgei, fli s1

)
∧ Ss2

(
edgei, fli s2

)
⇒MT(edgei)

5: Ws1
(
edgei, fli s1

)
∨ Ss1

(
edgei, fli s1

)
∧ Ns2(edgei,0)⇒MT(¬edgei)

6: Ss1
(
edgei, fli s1

)
∧ Ws2

(
edgei, fli s2

)
⇒MT(¬edgei)

7: Ns1(edgei, 0) ∧ Ws2
(
edgei, fli s2

)
⇒LOADINGTRANSFER(0, fli s2,MT,w)

8: Ws1
(
edgei, fli s1

)
∧ Ws2

(
edgei, fli s2

)
⇒LOADINGTRANSFER(fli s1, fli s2,MT ,

w)

9: Ss1
(
edgei, fli s1

)
∧ Ss2

(
edgei, fli s2

)
⇒LOADINGTRANSFER(fli s1, fli s2,MT ,w)

10: end 
11: return MT  

RF-TL: Path-loading calculation 

1: function LOADING TRANSFER (fli s1 , fli s2,MT,w)  
2: flT =

⃒
⃒fli s2

⃒
⃒ +

( ⃒
⃒fli s2

⃒
⃒ −

⃒
⃒fli s1

⃒
⃒
)
× |w|

3: |flT| ≥ 0.3⇒MT(edgei)

4: |flT|. < 0.3⇒MT(¬edgei)

5: return MT   

Fig. 7. The predictive system in DT. After the transference, in the KG of DT, only edges between Factors 1 and 2 and between Factor 1 and 4 are added. Factors 2, 3, 
and 4 are separated from each other. As Factor 4 directly points to the target of prediction and Factor 3 does not directly or indirectly connect to Factor 4, the data 
features that belong to Factor 3 will not be considered when the predicting system in DT is constructed. 
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divided up following the rules of the same scale of the intervention item 
in DT, there may be a difference between the highest (lowest) value of it 
in DS and the lowest (highest) value of it in DT. As in the baseball game 
example, data in DS range from 25 ◦C to 40 ◦C, but the data in DT range 
from 0 ◦C to 5 ◦C There is a gap of 20 ◦C between the two domains. Here, 
multiple is used for filling the gap as shown in function (7). As mentioned 
in Section 3.4, we labeled the sub-groups according to the mean value of 
the intervention item of DT and DS. Similarly, when the mean value of 
the intervention item of DT is higher than DS, the distance is calculated 
by the lowest value of x(T)

I and the highest value of x(S)
I , vice versa. The 

scale mentioned here corresponds to the range of x(T)
I , which is also the 

basis for dividing sub-groups. 

multiple =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +

⃒
⃒
⃒minx(T)I − maxx(S)I

⃒
⃒
⃒

scale
, if mean

(
x(T)I

)
> mean

(
x(S)I

)

1 +

⃒
⃒
⃒maxx(T)I − minx(S)I

⃒
⃒
⃒

scale
, if mean

(
x(T)I

)
< mean

(
x(S)I

)

(7) 

The transfer weight w calculates the changing scale between the 
source domain and the target domain but does not consider the increase 
or decrease dependence that is decided by the label order of the sub- 
models mentioned in Section 3.4. Thus, in the transfer algorithm, the 
absolute value of w was used. 

After calculating the path loadings, it is determined whether to add 
an edge to the target KG by comparing it with the threshold of 0.3. 

3.6. Identifying data features for training models in the target domain 

RF-TL returns a set of edges MT, and all the edges are marked 
“strong”. If there are nodes that do not connect to any other nodes, the 
items belonging to the nodes are unnecessary for the DT model and will 
be removed. For example, for problem A, the final model in DT is shown 
in Fig. 7. 

As shown in Fig. 7, Factor 3 does not connect to any other factors in 
the prediction model after the transference. Thus, the items belonging to 
Factor 3 are removed and the items belonging to Factors 1, 2, and 4 are 
extracted for the prediction system in DT. 

Finally, the unlabeled target of prediction in DT can be labeled by 
using a missing-data estimation method, such as the expect-
ation–maximum (EM) algorithm. 

4. Experiments 

To evaluate the effectiveness of RF-TL, we conducted two experi-
ments related to healthcare problems. One was on predicting obstructive 

sleep apnea (OSA). The other was on the prediction of ICU utilization in 
the COVID-19 pandemic. There is a common characteristic between 
these experimental cases, which is the higher the age of the patient is, 
the higher the risk will be [35,36,37]. Thus, expert causal knowledge in 
each case is the effect of age on the risk of disease. The causal model is 
shown in Fig. 8. 

The hardware and software configurations of the experimental 
environment are shown in Table 2. 

The primary development environment for the experiments is based 
on R. The essential package for SEM analysis is Lavaan, and the GA 
learns the structure of the graph. Finally, KGs are drawn using the 
semPlot package. Before building the structural model for SEM, we run 
the EFA in SPSS statistics software and the EM for predicting missing 
labels. Although the EFA and EM procedures can also be done in R, we 
took advantage of the user-friendly interaction of SPSS. The realization 
of the proposed algorithm is not limited to the configurations shown in 
Table 2. To the best of our knowledge, the mentioned packages can be 
used in other development environments, i.e., Python. The data sizes of 
the experiments were relatively small. When RF-TL is applied to big 
data, GPU-based packages can be used to speed up the calculation. 

There are three parameters that need to be pre-set before running the 
RF-TL algorithm, m: number of nodes; k: number of “no branch in sub- 
models;” and w: transfer weight. The procedure for obtaining these pa-
rameters is shown in Section 3. In the respective experiments, these 
parameters were set as shown in Table 3. 

4.1. Questionnaire diagnosis of obstructive sleep Apnea 

OSA is a common sleep disorder. The most effective method of 
diagnosing OSA is using polysomnography with a peripheral capillary 
oxygen saturation test. However, it is expensive and difficult for people 
to use at home. Here, questionnaires are better than methods that 
require professional supervision as a means of diagnosing OSA in pri-
mary care and are self-diagnostic. There are many types of question-
naires containing numerous questions, such as the Quality of Life 
questionnaire, Epworth sleepiness scale, and Stop-Bang questionnaire 
[38,39]. We collected 60 items for predicting the risk of getting OSA 
from the self-rated questionnaires of the Sleep Heart Health Research 
dataset, which includes anthropometrics (6 items), health interviews 
(11 items), sleep habits, and quality (35 items), and 36-Item Short Form 
Survey (SF_36) questionnaires (8 calculated items). Additionally, an 
Apnea-Hypopnea Index (AHI) ≥ 5 is treated as undiagnosed OSA. 

In the experimental dataset, there were a total of 3821 patients aged 
from 40 to 80. The patients in their 50 s and 60 s had labeled AHI data, 
and those in their 40 s and 70 s did not have any label. The tasks began 
with constructing an OSA-prediction model for patients in their 50 s and 
60 s. Features for the young group (40 s) and old group (70 s) were 
transferred from the 50 s ~ 60 s model. DSO was the source domain that 
included the features XSO (in their 50 s and 60 s with the label of AHI), 

Fig. 8. Causal model of age increasing the risk of a particular disease, i.e., OSA and COVID-19.  

Table 2 
Hardware and software configurations of the experimental environment.  

Hardware 

CPU Core (TM) i7-7700HQ CPU @ 2.80 GHz 2.80 GHz 
Memory 16 GB 
Operation system, software and programing language 

OS Windows 10 x64 
Software IBM SPSS Statistics v26 
Programming Language R-3.6.2 
Key package in R Lavaan-0.6–9, semPlot-1.1.2, GA-3.2.1,  

Table 3 
Parameter settings of RF-TL in the two experiments.   

OSA COVID-19 

m 5 2 
k 16 1 
w 0.975 0.994  
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DTO1 was the target domain that included the features XTO1 (in their 40 s 
without the label of AHI), and DTO2 was the target domain that included 
the features XTO2 (in their 70 s without the label of AHI). There were two 
tasks. TTO1 was to extract the data feature for predicting OSA in DTO1, 
and TTO2 was to extract the data feature for predicting OSA in DTO2. 

Fig. 9 shows the constructed model for predicting AHI in DSO, which 
consists of 16 questionnaire item variables that are classified into six 
factors. Age was one of the measuring items for the factor “underlying 
disease.” The age intervention produced two groups. One was a sub- 
group of patients in their 50 s labeled Younger, and the other was a 
sub-group of patients in their 60 s labeled Older. Two sub-models were 
trained using the 16 items with the corresponding data in each sub- 
group. The trained sub-models are shown in Fig. 10. 

As shown in Fig. 10, the age intervention removed the factor “un-
derlying disease” from the model, and classified the Hypertension item 
into the factor “undiagnosed OSA.” This re-classification is reasonable 
and will not influence the result of the transfer. The factor loadings are 
marked on the path and have been translated into “weak” or “strong” 
labels. 

Next, RF-TL was used to transfer the knowledge network from DSO to 
DTO. As mentioned above, there were two transfer tasks. One was to 
transfer from DSO to DTO1, (Young). Here, the Younger sub-model was 
labeled 1 and Older sub-model was labeled 2. The other task was to 
transfer from DSO to DTO2, (Old). Here, the Younger sub-model was 
labeled 2 and Older sub-model was labeled 1. Next, the counterfactual 
inference was performed on the basis of causal knowledge. For example, 
as shown in Fig. 10(a), the relationship between factor “health” and 
factor “snore” is strong with a factor loading of − 0.46. In Fig. 10(b), the 
relationship is still strong but with a factor loading of − 0.31. Addi-
tionally, the “reason” we used in this example is “age”. Thus, from 
Fig. 10, we can obtain the following information: 

“In the prediction system of AHI, as age increases (decreases), the 
relationship between Health and Snore becomes weaker (stronger).” 

Furthermore, the counterfactual inference yielded, 

“If age is older (younger), then the relationship between health and 
snore is weaker (stronger).” 

The counterfactual inference of the RF-TL algorithm is quantified 
depending on which the relationship between factors in the target 
domain is predicted (such as the weak relationship between “health” 
and “snore” in TTO2 as shown in Fig. 10(b)). The transferred models for 
TTO1 and TTO2 are shown in Fig. 11. 

For the transferred model of TTO1 (Young), all the relations in the 
model were marked as strong and connected. As well as the items shown 
in the model, we used age as the expert knowledge. As a result, age was 
found to be the ground truth that changes OSA and that should be used 
as one of the data features for predicting AHI. Thus, there were 15 items, 
plus the item age, which was used for predicting AHI for the objects aged 
in their 40 s. 

Different from the model for TTO1, the relationship starting from 
Health and pointing to Snoring and Sleep Complaints was “Weak” for 
DTO2. Thus, an edge was not added to the graph, and the model was 
divided into two parts: one part with the factors “Health”, “Sleep 
Complaints”, and “Difficult to Breathe at Night” and one part for pre-
dicting AHI. Only the six items contained in the factors “Snoring and 
Undiagnosed OSA” and the age item were used for predicting AHI of 
TTO2. 

To evaluate the effectiveness of the feature transfer, the EM algo-
rithm was used for predicting the label for the target domains. As 
mentioned above, we extracted 16 items for TTO1 and 7 items for TTO2 
from the 60 items originally collected. We used the EM algorithm for 
labelling AHI in DTO1 and DTO2 with 60 items, 16 items, and 7 items. We 
used accuracy and F1_score as evaluation indexes. Table 4 lists the 
results. 

The prediction results indicate that the use of 16 items in DTO1 
resulted in the highest accuracy and F1_score and that 7 was the most 
suitable number of extracted items for predicting the AHI of the old 
group. 

The CORAL algorithm and TCA algorithm are two commonly used TL 
algorithms for transferring features from the source to the target domain 

Fig. 9. Causal model for predicting OSA in the source domain.  
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with no labels. We compared these two algorithms with RF-TL. For TCA, 
it is necessary to determine the number of previously transferred fea-
tures; thus, 16 is given to TTO1 and 7 is given to the TTO2 to maintain 
consistency with RT-TL. On the other hand, CORAL does not need to 
define the number of previously transferred features and transferred 59 
items from the source domain to both target domains. The number of 
features it extracted was much greater than the number extracted by RF- 

TL, which highlights the advantage of RF-TL. The EM algorithm was 
used again for predicting AHI by using the items extracted with TCA and 
CORAL, and the results were compared with those of RF-TL. Table 5 lists 
the results. 

For TTO1, RF-TL had the highest accuracy and F1_score. For TTO2, 
although the accuracy of TCA was higher, the precision of negative (AHI 
is labeled as 0) was zero, so there was no F1_score and it failed to make a 

Fig. 10. Sub-models for predicting OSA in the divided source domains.  
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prediction. The accuracy of RF-TL was higher than that of CORAL. The 
F1_score was a little lower due to the unbalanced number of objects 
contained in the negative and positive groups. Also, there were 59 items 
used for CORAL and only 7 items used for RF-TL. These results show that 
RF-TL outperformed CORAL. 

4.2. ICU-candidate prediction for COVID-19 patients 

The novel coronavirus started spreading across the world in early 
2020. Millions of people have been infected, and the number is still 
increasing. Because of the large number of patients, medical collapse 
threatens many countries. Predicting severe cases requiring an intensive 
care unit (ICU) is an important task. The “COVID-19 - Clinical Data to 
assess diagnosis” dataset has been published online [40]; it contains 189 

Fig. 11. Transferred models for predicting OSA in the two different target domains.  
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items, including the ICU item (0 for No, 1 for Yes) collected from the 
patients diagnosed with COVID-19. There are 430 objects with no 
missing items of the patients ranging in age from their 20 s to 90 s. The 
distribution of the age groups and the ICU-positive rate are listed in 
Table 6. 

Note that the data were collected before the mutated virus started to 
spread. The example only considered age as the factor in the counter-
factual inference. Note as well that the current situation of viral spread is 
different due to mutations (such as widespread transmission of the 
mutated virus among young people), which may cause differences from 
the results of this example. RF-TL only considered single-factor causal-
ity. The limitations of this point will be explained in the discussion 
section. 

The ICU-positive rate has a positive correlation with age. Also, in 
accordance with current knowledge, age is one of the factors of infection 
and severe cases [41], which conforms to the age-disease causal model 
shown in Fig. 8. We assumed that only the data of the 40 s–70 s age 
groups were labeled with ICU tags (DSI) and that the two target domains 
DTI1 of the 20 s and 30 s groups and DTI2 of the 80 s and 90 s groups did 
not have ICU tags. RF-TL was used for transferring data features from DSI 
to DTI1 and DTI2. The two tasks, TTI1 and TTI2, aimed at extracting suit-
able data items for predicting ICU candidates in DTI1 and DTI2. 

A prediction model was first constructed for DSI, as shown in Fig. 12. 
The notation V_O2 denotes the partial pressure of venous oxygen 

(minimum); V_CO2 denotes the partial pressure of venous carbon di-
oxide (maximum); V_SATO2 denotes blood oxygen saturation (mean); 
BP denotes diastolic blood pressure (range); RRM denotes respiratory 
rate (mean); and RRD denotes respiratory rate (range/median). 

Although there were 189 items available, only 8 items were extrac-
ted for predicting whether a patient needs to be sent to the ICU. An 
intervention was conducted on the age factor. Different from the OSA 
case, age in the ICU model is a factor, not an item. Thus, the invention 
procedure removes the age factor from the model and divides the source 
domain into two sub-domains; one containing patients in their 40 s and 
50 s and the other containing patients in their 60 s and 70 s. The sub- 
models are shown in Fig. 13. 

The rules were used to transfer the models to the target domains. The 
KGs for TTI1 and TTI2 are shown in Fig. 14. 

From the information in Fig. 14, only the 3 items belonging to the 
Potential ICU factor and the age item were used for TTI1. Six items with 
age, a total of 7 data features were used for TTI2. The EM algorithm was 
used for labeling the ICU data. Table 7 compares the prediction results 
for TTI1 and TTI2 with 189, 7, and 4 items. 

As expected, the 4 items of TTI1 and 7 items of TTI2 yielded the 
highest prediction performance. 

Similarly, we compared the predictions with those of TCA and 
CORAL. For the COVID-19 ICU case, 186 items were transferred from the 
source domain to the two target domains with CORAL and items were 
fixed for the younger domain and 7 items for the older domain with TCA. 
The results are listed in Table 8. RF-TL performed the best in each target 
domain. 

Table 4 
Comparison of OSA prediction using different numbers of items.  

DTO Young (DTO1) Old (DTO2) 

No. Accuracy F1_score Accuracy F1_score 

60 items  72.88%  0.7319  75.16%  0.5669 
16 items  74.53%  0.7519  76.14%  0.5801 
7 items  73.71%  0.7441  76.41%  0.5804  

Table 5 
Comparison of results with TCA and CORAL for predicting OSA.  

DTO Young (DTO1) Old (DTO2) 

Methods Accuracy F1_score Accuracy F1_score 

TCA  55.28%  0.6098  77.49%  – 
CORAL  56.84%  0.6573  72.74%  0.5934 
RF-TL  74.53%  0.7519  76.41%  0.5804  

Table 6 
Information on patients infected by COVID-19.  

Age group No. of patients ICU-positive rate [%] 

20 s and 30 s 113  36.28 
40 s and 50 s 110  43.64 
60 s and 70 s 108  55.56 
80 s and 90 s 218  62.63  

Fig. 12. Causal model for ICU-candidate prediction in the source domain.  
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5. Discussion 

The transferred element of RF-TL is the relationship in the model, 
which is different from other TL algorithms. Apart from accuracy, re-
searchers of ML technologies are beginning to focus their attention on 
the inferring logic inside the model. Their goal is to build ML models 
with the ability to interpret human cognitive and reasoning processes. 
KGs are excellent tools for showing human knowledge networks in 
which domain experts’ inference logic can be demonstrated. Relational 
TL algorithms are applications of KGs. For relational TL, only by clari-
fying the learning structure of the source-domain model can the re-
lationships be transferred to target domains. 

A causal relationship is a higher level of statistical dependency be-
tween two data items and is ground truth based on expert knowledge or 
experience. The reason and the result in a causal model are correlated 
with each other. However, the causality between them cannot be 
determined only by clarifying the correlation between two items. Cau-
sality needs a “time order”. That is, the reason occurs before the result, 
and a change in the reason inevitably causes a corresponding change in 
the result. In contrast, correlation is only an expression of the data at a 
certain time point and it does not express the time order. Future pre-
diction needs to clarify the development of one thing along with the time 

stream. This is why counterfactual inference can be made only in 
accordance with the causal relationship. 

Transferring the information from a known domain to an unknown 
domain can be treated as a prediction; thus, the level of statistical de-
pendency is not sufficient. Traditional TL algorithms, such as TCA and 
CORAL, only take into account the statistical relationships among data 
features. The two algorithms do not perform well because of the non- 
significant difference in the data-feature distribution between the 
source domain and the target domain. Nevertheless, RF-TL uses cau-
sality to direct the transfer procedure by predicting how the relation-
ships between data feature changes in the source domain. The relations 
among the features are considered, and the inference is performed in 
accordance with explainable human causal knowledge. As a result, good 
performance can be obtained in practical applications. 

However, the two experiments had limited data sizes, so the calcu-
lating time was not long. Two parts of RF-TL take up most of the 
calculation time. One is the comparison of the edges between sub- 
models. The more edges are added, the higher the time cost becomes. 
To deal with this problem, RF-TL uses a pre-pruning step before trans-
ferring. As shown in the OSA experiment, 16 edges are removed from 20 
edges before the transference steps. The other time-consuming step is 
the GA procedure for identifying the structure of KGs. Referring to SEM- 

Fig. 13. Sub-models for ICU-candidate prediction in the divided source domains.  
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EML, the proposed SEM-like KGs conducts a two-step GA. In step 1, 
correlations are estimated between each pair of nodes. It can be easily 
performed in SEM by adding double-direction arrows to all nodes. Edges 

connecting nodes with a correlation coefficient higher than 0.1 are 
labeled. Then, the labeled edges that are suggested solutions to be input 
to the GA are constrained to be “1′′. The Goodness of Fit (GoF) indexes 
are used as fitting functions in the GA, and the suggested edges let GA 
iterations start from a relatively high GoF which helps to reduce the 
number of iterations and save calculation time. Although various factors 
that influence time costs are considered, RF-TL needs a further test to 
determine its effectiveness and feasibility. On the other hand, the causal 
model used in RF-TL is a single-factor causality. In other words, only 
parts of the causal structure are taken into account. For a practical case, 
one result is usually linked by multiple reasons. As in the COVID-19 
example, except for age, mutation of the virus would be another factor 
influencing the prediction of the severe-case rate. When considering 
multiple factors in a causal model, the degree of influence of each factor 
should be weighted accordingly. 

Additionally, except for the medical cases mentioned in this study, 
the intelligent data-driven knowledge networks are useful in industrial 
practice, such as the design and application of the Smart Product Service 
System (Smart PSS) [41,42,43]. In order to meet users’ diverse and 
variable expectations, the industrial applications need to identify 
important knowledge and relationships from a large amount of collected 
information and cope with the change in the collected data [44,45]. The 

Fig. 14. Transferred models for ICU-candidate prediction in the two different target domains.  

Table 7 
Comparison of ICU prediction using different numbers of items.  

DTO Young (DTI1) Old (DTI2) 

No. Accuracy [%] F1_score Accuracy [%] F1_score 

189 items  84.96  0.8353  79.80  0.8018 
7 items  84.07  0.7519  88.98  0.8898 
4 items  89.38  0.8895  77.78  0.7687  

Table 8 
Comparison of results of predicting OSA with TCA and CORAL.  

DTI Young (DTI1) Old (DTI2) 

Algorithms Accuracy F1_score Accuracy F1_score 

TCA  36.28%  –  62.63%  – 
CORAL  81.42%  0.8124  80.81%  0.8198 
RF-TL  89.38%  0.8895  88.89%  0.8898  
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proposed RF-TL is helpful to accurately identify the key knowledge from 
data as well as the causal relationships among the concepts of the 
extracted information. Also, as a transfer learning technique, the utili-
zation of RF-TL can be extended to other engineering practices for 
predicting the knowledge networks in an unknown domain even without 
sufficient data, e.g., designing the service system according to the 
anticipated users’ diversified expectations. We will do it in our future 
work. 

6. Conclusions 

In accordance with the directions of causal analysis and counter-
factual inference, RF-TL transfers relationships between data features 
from a source domain to the target domain. Feature extraction is then 
conducted in accordance with the information in the transferred KG. 
Because RF-TL takes into account links between different data items and 
the prediction function of causality, it performs better in practical cases 
compared with other TL algorithms. RF-TL is based on linear relations 
and single-factor causality. In the future, we will extend it to the non- 
linear domain and develop a multiple-factors causal model. 

Fig. A1. Overall structure of SEM-EML.  

Fig. A2. Prediction model obtained by SEM-EML.  
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Appendix 

Explainable Machine Learning Model based on Structural Equation Modeling (SEM-EML) 

SEM-EML is based on SEM. The procedure of the SEM-EML contains six steps: data preparation, data management, structure learning, parameter 
learning, model utilization, and model validation. The overall procedure is shown in Fig. A1. 

For a machine learning problem B, m data features are collected. After the data management and structure learning steps, n(n ≤ m) features are 
identified as necessary for constructing a prediction model, in which n features are classified into p factors. For the sake of illustration, we will assume 
that, for problem B, 15 data features are collected, from which 11 features remain for constructing the prediction model, and item 11 is the target of 
prediction. The model gotten by SEM-EML is shown in Fig. A2. 

SEM-EML can simplify the data features and classify the features it extracts into common factors. Linear regression is used for estimating the factor 
scores of the common factors. Equation (A1) is used to compute the estimated factor score of the ith factor, i.e.,NFSi, 

NFSi = Nβi +Nωi1 × item1 +⋯+Nωij × itemj +⋯+Nωin − 1 × itemm− 1 (A1) 

Here, we assume that m items, including the predicted target, are extracted and the mth item is the target.Nωij is the standard regression weight of 
itemj for the ith factor, and Nβi is a constant number. The model separates the target item from the other ones by using a regression method. The 
prediction procedure is conducted only on NFSt, where t is the index of the factor that directly connects to the target item, e.g., Estimated factor 4 in 
Fig. A2. Unsupervised clustering can be used to classify NFSt and label the target. Although the other factors are not directly used to predict the target, 
they are abstract descriptions of the items used for making predictions, and they make up the knowledge network for the prediction. 
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