1,361 research outputs found

    Biologically inspired evolutionary temporal neural circuits

    Get PDF
    Biological neural networks have always motivated creation of new artificial neural networks, and in this case a new autonomous temporal neural network system. Among the more challenging problems of temporal neural networks are the design and incorporation of short and long-term memories as well as the choice of network topology and training mechanism. In general, delayed copies of network signals can form short-term memory (STM), providing a limited temporal history of events similar to FIR filters, whereas the synaptic connection strengths as well as delayed feedback loops (ER circuits) can constitute longer-term memories (LTM). This dissertation introduces a new general evolutionary temporal neural network framework (GETnet) through automatic design of arbitrary neural networks with STM and LTM. GETnet is a step towards realization of general intelligent systems that need minimum or no human intervention and can be applied to a broad range of problems. GETnet utilizes nonlinear moving average/autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in terms of architecture, synaptic delay, and synaptic weight spaces. The mixture of Lamarckian and Darwinian evolutionary mechanisms facilitates the Baldwin effect and speeds up the hybrid training. The ability to evolve arbitrary adaptive time-delay connections enables GETnet to find novel answers to many classification and system identification tasks expressed in the general form of desired multidimensional input and output signals. Simulations using Mackey-Glass chaotic time series and fingerprint perspiration-induced temporal variations are given to demonstrate the above stated capabilities of GETnet

    STABLE ADAPTIVE STRATEGY of HOMO SAPIENS and EVOLUTIONARY RISK of HIGH TECH. Transdisciplinary essay

    Get PDF
    The co-evolutionary concept of Three-modal stable evolutionary strategy of Homo sapiens is developed. The concept based on the principle of evolutionary complementarity of anthropogenesis: value of evolutionary risk and evolutionary path of human evolution are defined by descriptive (evolutionary efficiency) and creative-teleological (evolutionary correctly) parameters simultaneously, that cannot be instrumental reduced to others ones. Resulting volume of both parameters define the trends of biological, social, cultural and techno-rationalistic human evolution by two gear mechanism ˗ gene-cultural co-evolution and techno- humanitarian balance. The resultant each of them can estimated by the ratio of socio-psychological predispositions of humanization/dehumanization in mentality. Explanatory model and methodology of evaluation of creatively teleological evolutionary risk component of NBIC technological complex is proposed. Integral part of the model is evolutionary semantics (time-varying semantic code, the compliance of the biological, socio-cultural and techno-rationalist adaptive modules of human stable evolutionary strategy)

    DNAgents: Genetically Engineered Intelligent Mobile Agents

    Get PDF
    Mobile agents are a useful paradigm for network coding providing many advantages and disadvantages. Unfortunately, widespread adoption of mobile agents has been hampered by the disadvantages, which could be said to outweigh the advantages. There is a variety of ongoing work to address these issues, and this is discussed. Ultimately, genetic algorithms are selected as the most interesting potential avenue. Genetic algorithms have many potential benefits for mobile agents. The primary benefit is the potential for agents to become even more adaptive to situational changes in the environment and/or emergent security risks. There are secondary benefits such as the natural obfuscation of functions inherent to genetic algorithms. Pitfalls also exist, namely the difficulty of defining a satisfactory fitness function and the variable execution time of mobile agents arising from the fact that it exists on a network. DNAgents 1.0, an original application of genetic algorithms to mobile agents is implemented and discussed, and serves to highlight these difficulties. Modifications of traditional genetic algorithms are also discussed. Ultimately, a combination of genetic algorithms and artificial life is considered to be the most appropriate approach to mobile agents. This allows the consideration of agents to be organisms, and the network to be their environment. Towards this end, a novel framework called DNAgents 2.0 is designed and implemented. This framework allows the continual evolution of agents in a network without having a seperate training and deployment phase. Parameters for this new framework were defined and explored. Lastly, an experiment similar to DNAgents 1.0 is performed for comparative purposes against DNAgents 1.0 and to prove the viability of this new framework

    An evolutionary metaphysics of human enhancement technologies

    Get PDF
    The monograph is an English, expanded and revised version of the book Cheshko, V. T., Ivanitskaya, L.V., & Glazko, V.I. (2018). Anthropocene. Philosophy of Biotechnology. Moscow, Course. The manuscript was completed by me on November 15, 2019. It is a study devoted to the development of the concept of a stable evolutionary human strategy as a unique phenomenon of global evolution. The name “An Evolutionary Metaphysics (Cheshko, 2012; Glazko et al., 2016). With equal rights, this study could be entitled “Biotechnology as a result and factor of the evolutionary processËź. The choice in favor of used “The Evolutionary Metaphysics of Human Enhancement TechnologiesËź was made in accordance with the basic principle of modern post-academician and human-sized science, a classic example of which is biotechnology. The “Metaphysics of Evolution” and “Evolutionary Metaphysics” concepts are used in several ways in modern philosophical discourse. In any case, the values contain a logical or associative reference to the teleological nature of the evolutionary process (Hull, 1967, 1989; Apel, 1995; Faye, 2016; Dupre, 2017; Rose, 2018, etc). In our study, the “evolutionary metaphysics” serves to denote the thesis of the rationalization and technologization of global evolution and anthropogenesis, in particular. At the same time, the postulate of an open future remains relevant in relation to the results of the evolutionary process. The theory of evolution of complex, including the humans system and algorithm for its constructing are Đ° synthesis of evolutionary epistemology, philosophical anthropology and concrete scientific empirical basis in modern science. ln other words, natural philosophy is regaining the status bar element theoretical science in the era of technology-driven evolution. The co-evolutionary concept of 3-modal stable evolutionary strategy of Homo sapiens is developed. The concept based ĐŸn the principle of evolutionary complementarity of anthropogenesis: value of evolutionary risk and evolutionary path of human evolution are defined bу descriptive (evolutionary efficiency) and creative-teleological (evolutionary correctness) parameters simultaneously, that cannot bĐ” instrumental reduced to others ones. Resulting volume of both parameters define the vectors of blological, social, cultural and techno-rationalistic human evolution Џу two gear mechanism genetic and cultural co-evolution and techno-humanitarian balance. The resultant each of them сап estimated Џу the ratio of socio-psychological predispositions of humanization / dehumanization in mentality. Explanatory model and methodology of evaluation of creatively teleological evolutionary risk component of NBIC technological complex is proposed. Integral part of the model is evolutionary semantics (time-varying semantic code, the compliance of the blological, socio-cultural and techno-rationalist adaptive modules of human stable evolutionary strategy). It is seem necessary to make three clarifications. First, logical construct, “evolutionary metaphysics” contains an internal contradiction, because it unites two alternative explanatory models. “Metaphysics”, as a subject, implies deducibility of the process from the initial general abstract principle, and, consequently, the outcome of the development of the object is uniquely determined by the initial conditions. Predicate, “evolutionary”, means stochastic mechanism of realizing the same principle by memorizing and replicating random choices in all variants of the post-Darwin paradigm. In philosophy, random choice corresponds to the category of “free will” of a reasonable agent. In evolutionary theory, the same phenomenon is reflected in the concept of “covariant replication”. Authors will attempt to synthesize both of these models in a single transdisciplinary theoretical framework. Secondly, the interpretation of the term “evolutionary (adaptive) strategyËź is different from the classical definition. The difference is that the adaptive strategy in this context is equivalent to the survival, i.e. it includes the adaptation to the environment and the transformation (construction) of the medium in accordance with the objectives of survival. To emphasize this difference authors used verbal construction “adaptiveËź (rather than “evolutionaryËź) strategy as more adequate. In all other cases, the two terms may be regarded as synonymous. Thirdly, the initial two essays of this series were published in one book in 2012. Their main goal was the development of the logically consistent methodological concept of stable adaptive (evolutionary) strategy of hominines and the argumentation of its heuristic possibilities as a transdisciplinary scientific paradigm of modern anthropology. The task was to demonstrate the possibilities of the SESH concept in describing and explaining the evolutionary prospects for the interaction of social organization and technology (techno-humanitarian balance) and the associated biological and cultural mechanisms of the genesis of religion (gene-cultural co-evolution). In other words, it was related to the sphere of cultural and philosophical anthropology, i.e. to the axiological component of any theoretical constructions describing the behavior of self-organizing systems with human participation. In contrast, the present work is an attempt to introduce this concept into the sphere of biological anthropology and, consequently, its main goal is to demonstrate the possibility of verification of its main provisions by means of procedures developed by natural science, i.e. refers to the descriptive component of the same theoretical constructions. The result of this in the future should be methods for assessing, calculating and predicting the risk of loss of biological and cultural identity of a person, associated with a permanent and continuously deepening process of development of science and technology

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    A Tale of Two Morphs: Genetic and Genotypic Structure Between Macrocystis Pyrifera and Macrocystis Integrifolia

    Get PDF
    Organisms living along environmental gradients often utilize phenotypic plasticity to maximize their survival across a range of conditions. Wherever gradients occur, there is potential for divergence through isolation-by-adaptation (IBA) to build-up between genotypes experiencing different selective pressures. Plasticity in traits pertaining to mating systems in particular are likely to constitute an interesting and revealing model for the study of the underlying mechanisms behind parapatric speciation. Giant kelp, Macrocystis spp., shows striking plasticity in holdfast morphology and reproductive strategy when colonizing intertidal (M. integrifolia morph) versus subtidal (M. pyrifera morph) areas along temperate rocky coastlines of the eastern Pacific Ocean. In the intertidal, high photosynthetically-active radiation (PAR) and UV radiation limit development of spores, recruitment of microscopic gametophytes, and growth and survival of embryonic sporophytes of M. pyrifera. Although depth of parent sporophytes influences spore survival in irradiance-stressed environments, few studies have examined the effects of irradiance stress on M. integrifolia’s developmental stages. This study focuses on understanding the roles of IBA and plasticity in maintaining Macrocystis morphs along the California coastline. To test for genetic isolation caused by ecological divergence in the intertidal, we performed fine scale spatial sampling and molecular analysis of parapatric intertidal and subtidal populations off of the Central Californian coast. Using seven microsatellite markers, we compared genetic differentiation between morphs within sites and among morphs across different sites. Furthermore, we identified the presence of clonal replicates in intertidal populations. Results show higher differentiation between adjacent subtidal and intertidal morphs than between the same morph at larger spatial scales, suggesting isolation-by-adaptation. Several potential mechanisms could explain this result: assortative or other non-random mating, longer generation times promoted by asexual growth (intertidal morph), and differential mortality due to early adaptive divergence. Spatial analyses of clonal structure do not indicate asexual reproduction as the dominant strategy in the intertidal. To explore the hypothesis of differential mortality due to adaptive divergence, we will experimentally test assortative mating at different early development stages using controlled crosses of the two morphs under different treatments of irradiance (PAR and UV) stress. Surviving embryonic sporophytes will be genotyped and a paternity analysis will be conducted. Specifically, we hypothesize offspring from M. pyrifera parents will experience higher than expected mortality under irradiance stress, such that paternity analyses will reveal lower than expected numbers of M. pyrifera offspring among surviving embryonic sporophytes. The overarching goal of this research program is to determine if phenotypic plasticity in mating system traits observed in giant kelp may be facilitating incipient parapatric speciation in the intertidal zone. This thesis will consist of three chapters. The first will concentrate on understanding the impact of alternative methods M. pyrifera utilizes for dispersal at both ecological and evolutionary scales. The second will focus on characterizing genetic differentiation and structure patterns between adjacent populations of each morph. The third will develop additional hypotheses focused on understanding differential mortality between morphs under stress

    Air Force Institute of Technology Research Report 2004

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Evolution from the ground up with Amee – From basic concepts to explorative modeling

    Get PDF
    Evolutionary theory has been the foundation of biological research for about a century now, yet over the past few decades, new discoveries and theoretical advances have rapidly transformed our understanding of the evolutionary process. Foremost among them are evolutionary developmental biology, epigenetic inheritance, and various forms of evolu- tionarily relevant phenotypic plasticity, as well as cultural evolution, which ultimately led to the conceptualization of an extended evolutionary synthesis. Starting from abstract principles rooted in complexity theory, this thesis aims to provide a unified conceptual understanding of any kind of evolution, biological or otherwise. This is used in the second part to develop Amee, an agent-based model that unifies development, niche construction, and phenotypic plasticity with natural selection based on a simulated ecology. Amee is implemented in Utopia, which allows performant, integrated implementation and simulation of arbitrary agent-based models. A phenomenological overview over Amee’s capabilities is provided, ranging from the evolution of ecospecies down to the evolution of metabolic networks and up to beyond-species-level biological organization, all of which emerges autonomously from the basic dynamics. The interaction of development, plasticity, and niche construction has been investigated, and it has been shown that while expected natural phenomena can, in principle, arise, the accessible simulation time and system size are too small to produce natural evo-devo phenomena and –structures. Amee thus can be used to simulate the evolution of a wide variety of processes
    • 

    corecore