44,133 research outputs found

    Optimization Based Hybrid Congestion Alleviation for 6LoWPAN Networks

    Get PDF
    The IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) protocol stack is a key part of the Internet of Things (IoT) where the 6LoWPAN motes will account for the majority of the IoT ‘things’. In 6LoWPAN networks, heavy network traffic causes congestion which significantly effects the network performance and the quality of service (QoS) metrics. Generally, two main strategies are used to control and alleviate congestion in 6LoWPAN networks: resource control and traffic control. All the existing work of congestion control in 6LoWPAN networks use one of these. In this paper, we propose a novel congestion control algorithm called optimization based hybrid congestion alleviation (OHCA) which combines both strategies into a hybrid solution. OHCA utilizes the positive aspects of each strategy and efficiently uses the network resources. The proposed algorithm uses a multi-attribute optimization methodology called grey relational analysis for resource control by combining three routing metrics (buffer occupancy, expected transmission count and queuing delay) and forwarding packets through non-congested parents. Also, OHCA uses optimization theory and Network Utility Maximization (NUM) framework to achieve traffic control when the non-congested parent is not available where the optimal nodes’ sending rate are computed by using Lagrange multipliers and KKT conditions. The proposed algorithm is aware of node priorities and application priorities to support the IoT application requirements where the applications’ sending rate allocation is modelled as a constrained optimization problem. OHCA has been tested and evaluated through simulation by using Contiki OS and compared with comparative algorithms. Simulation results show that OHCA improves performance in the presence of congestion by an overall average of 28.36%, 28.02%, 48.07%, 31.97% and 90.35% in terms of throughput, weighted fairness index, end-to-end delay, energy consumption and buffer dropped packets as compared to DCCC6 and QU-RPL

    Hybrid Petri net model of a traffic intersection in an urban network

    Get PDF
    Control in urban traffic networks constitutes an important and challenging research topic nowadays. In the literature, a lot of work can be found devoted to improving the performance of the traffic flow in such systems, by means of controlling the red-to-green switching times of traffic signals. Different techniques have been proposed and commercially implemented, ranging from heuristic methods to model-based optimization. However, given the complexity of the dynamics and the scale of urban traffic networks, there is still a lot of scope for improvement. In this work, a new hybrid model for the traffic behavior at an intersection is introduced. It captures important aspects of the flow dynamics in urban networks. It is shown how this model can be used in order to obtain control strategies that improve the flow of traffic at intersections, leading to the future possibility of controlling several connected intersections in a distributed way

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore