
Hybrid Petri net model of a traffic intersection in a urban network

C. Renato Vázquez, Herman Y. Sutarto, René Boel, Manuel Silva

Abstract— Control in urban traffic networks constitutes an
important and challenging research topic nowadays. In the
literature, a lot of work can be found devoted to improving
the performance of the traffic flow in such systems, by means
of controlling the red-to-green switching times of traffic signals.
Different techniques have been proposed and commercially
implemented, ranging from heuristic methods to model-based
optimization. However, given the complexity of the dynamics
and the scale of urban traffic networks, there is still a lot of
scope for improvement. In this work, a new hybrid model for
the traffic behavior at an intersection is introduced. It captures
important aspects of the flow dynamics in urban networks. It
is shown how this model can be used in order to obtain control
strategies that improve the flow of traffic at intersections,
leading to the future possibility of controlling several connected
intersections in a distributed way.

I. INTRODUCTION

Coordinated control of traffic lights in an urban area offers
good prospects for reducing travel time and pollution due
to traffic. The control action that can be used in order to
improve the behavior of the system consists in selecting
the red-to-green switching times of traffic signals. Various
approaches to the design of control laws for switching these
traffic lights have been proposed, and in many cases also
implemented, from the 1950s onwards. Nevertheless, given
the combinatorial nature of the coordination problem for a
network, and given the complicated dynamics of the system
due to the large number of vehicles that inhabit a network,
there is still a lot of scope for improving the control agents
in such a network. A lot of work is currently going on in
the field (see e.g. [1] for a recent contribution).

The issue is to find a good compromise between locally
minimizing the delays of vehicle streams at each intersection,
while maintaining global stability of the network. These two
goals may be contradictory since a local optimization may
actually starve the inflow of traffic in some downstream inter-
sections during some intervals of time [2]. Good coordination
thus requires a model that allows the efficient representation
of both the delays at intersections, and the flows of traffic
between intersections. In this sense, this paper discusses a
new methodology for representing the dynamic behavior at
intersections in a urban traffic network, allowing to capture

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 224498.

This work was partially supported by projects CICYT and FEDER
DPI2006-15390.

Vázquez and Silva are with Dep. de Informática e Ingenierı́a de Sis-
temas, Centro Politécnico Superior, Universidad de Zaragoza, E-50018
Zaragoza, Spain {cvazquez,silva}@unizar.es. Sutarto and
Boel are with SYSTeMS, Universiteit Gent B-9052 Zwijnaarde, Belgium,
{Herman.Sutarto,Rene.Boel}@UGent.be

the key information about incoming flow from neighboring
intersections (in an abstracted way).

A lot of heuristic optimization algorithms have been used
in order to generate efficient control strategies for traffic
light control. Neural networks, box optimization methods,
ant colony optimization, and others have been used. Some
model based optimization tools were actually implemented
commercially, such as the CRONOS tool [3] from INRETS.
Over the last few years a number of authors have considered
various formal model based optimization approaches to this
problem. Interesting works are those of Porche and Lafortune
[4]. The main difficulty is the size of the optimization
problem, which forces the use of macroscopic models and
of distributed control and optimization techniques [5], such
as distributed model predictive control [6].

The basic modeling tool reported in this paper is a hybrid
Petri net, containing both discrete and fluidified transitions
and places. Regarding traffic intersections, different Petri
net models can be found in the literature. Among them,
the model introduced in [7] is the closest to ours. In that
paper, the heavily populated discrete timed Petri net is
aggregated into sets of piecewise linear equations. This paper
is different in that we try to relax the heavily populated
discrete event model, while keeping the Petri net structure
intact as much as possible. In this way, we use a fluidification
of some of the transitions in this timed Petri net model.
For this example, this means that we do not look at each
individual vehicle movement at an intersection, nor do we
model the detailed trajectory of each vehicle along the links
connecting intersections. The model only describes the flows
of vehicles through the intersections and links. The overall
model proposed here is hybrid, including both fluidified
transitions and discrete transitions, since behavior of the
traffic lights themselves, and some queueing networks at
traffic sensors, are represented by timed, discrete Petri nets.
Fast simulations of this model have been implemented. This
simulation tool has been used to search for optimal red-green
switching policies at an intersection of 2 one-way streets.
Simulation has shown that implementation of this policy
significantly reduces the overall average delay of vehicles at
the controlled intersections, compared to a well tuned open
loop strategy.

It is important to mention that, the abstracted 1-
intersection model introduced here and the results obtained
in this paper can be extended in order to obtain distributed
strategies for networks with more complicated signalized
intersections. Nevertheless, this is beyond the scope of this
paper, and it will be dealt with in a forthcoming one.

This paper is organized as follows. Section 2 provides an

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overview on the currently implemented approaches to control
of traffic lights, and explains how the model developed in
this paper can help in improving the performance of a traffic
signal coordinator. Section 3 introduces continuous Petri nets
and a simple intersection model. Section 4 introduces an
improved 1-intersection model, while section 5 uses this to
develop an optimal control law. Section 6 shows via simula-
tions how the proposed control law leads to improvements.
Section 7 provides some conclusions, and suggests some
future work.

II. RELATION TO CLASSICAL TRAFFIC ENGINEERING
MODELS

Switching strategies for traffic lights [8] can be classified
according to how fast they respond to on-line traffic mea-
surements. Pre-timed controllers select a fixed period, called
the cycle time, for all traffic lights in a given area, and select
the fraction of green for each direction in each intersection.
Moreover the relative time offsets - the phase shifts between
the switching times at consecutive intersections - is selected
so as to guarantee as much as possible a green wave of
vehicles that do not have to stop. These pre-timed controllers
may be adjusted during the day to adapt to different traffic
patterns, but they only use the average traffic flow data, not
the on-line measurements of queue sizes or of current traffic
flows.

Actuated traffic signals react to local measurements of
queues of waiting vehicles (or detected oncoming traffic)
by switching to green, if at all possible. This may reduce
the local average delays significantly, but it is clear that
this strategy can destroy any advantage of a green wave.
Traffic responsive systems therefore must try to adapt to
instantaneous information on the local traffic intensity by
a coordinated action for the different traffic lights in a given
area. Examples of such strategies have been developed since
the 1980s (for example the SCATS [9] and the SCOOT
systems [10]). These systems adjust from time to time the
green fraction at each intersection, and/or the phase shifts,
according to some heuristically developed rules.

Recently, the availability of on-line measured traffic data
and the capabilities of road side control agents, have im-
proved so much that it makes sense to develop model
based on-line optimization algorithms for coordinated traffic
responsive control systems. This paper provides a model that
can serve this purpose. A hybrid Petri net can represent the
queueing behavior of vehicles at intersections. It allows to
optimize the green-red periods of the corresponding traffic
lights. By adding models that represent the traffic flow along
the links connecting intersections, the behavior of a complete
urban traffic network can be described. This idea is advanced
in the last section of this paper but the details are left for a
forthcoming paper. The next section presents a hybrid Petri
net model for a traffic intersection in an urban area.

III. CONTINUOUS PETRI NETS

We assume that the reader is familiar with PN’s (see, for
instance, [11]). A (discrete) Petri net PN is a tuple N =

〈P, T,Pre,Post〉, where P is a finite set of places, T is
a finite set of transitions with P ∩ T = ∅, Pre and Post
are |P | × |T | sized, natural valued, pre- and post- incidence
matrices. We assume that N is connected and that every
place has a successor, i.e., |p•| ≥ 1 (the set of the input
(output) nodes of v ∈ P ∪ T is denoted as •v (v•)). A
PN system is defined as 〈N ,M0〉 with M0 ∈ N|P |. The
evolution of the PN system is determined by the firing of its
transitions. A transition tj is said enabled at M iff for every
pi ∈• tj , M(pi) ≥ Pre(pi, tj), and its enabling degree is
defined as Enab(tj ,M) = minpi∈•tj

bM(pi)/Pre(pi, tj)c.
The firing of t in a certain positive integer amount α ≤
Enab(t,M) leads to a new marking M′ = M + α · C(t),
where C = Post−Pre is the token-flow matrix.

Time delays can be associated to the firing of transitions,
obtaining thus a T-timed Petri net. In this paper, only two
different kinds of delays are used: deterministic time delays
and exponentially distributed random time delays. In the first
case, a transition fire after a fixed delay of being enabled,
i.e., if a server of a deterministic transition ti is enabled at
time τ0, then it must fire at time τ0+θi (if it remains enabled
during (τ0, τ0 +θi)), where θi is a constant value. In the sec-
ond case, the delay is no longer fixed, but it is characterized
as a random variable (r.v.) with exponential p.d.f., i.e., if a
server of an exponentially distributed transition ti is enabled
at time τ0, then it must fire at time τ0 + θi (if it remains
enabled during (τ0, τ0 + θi)), where θi is a r.v. having an
exponential p.d.f. with constant parameter λi (the average
service rate of each server of ti).

In order to overcome the state explosion problem and to
simplify the analysis, PN models can be relaxed by means
of fluidification ([12], [13]). This transforms the PN system
into a new model, keeping the same structure and initial
marking, but defining a new firing rule for some transitions,
which are now called fluid or continuous transitions. At
these fluid transitions, the firing is no longer restricted to
be integer valued but can occur in nonnegative real amounts,
leading to a real valued marking m ∈ R|P |≥0 . In detail, the
enabling of a fluid transition tj is defined as enab(tj ,m) =
minpi∈•tj m(pi)/Pre(pi, tj) (without rounding to the near-
est lower integer value). A fluid transition tj can be fired in
any nonnegative real amount α ∈ [0, enab(tj ,m)] leading
to m′ = m + α ·C(tj).

There are different ways for introducing time in contin-
uous PNs, the two most important being infinite server
semantics or variable speed, and finite server semantics or
constant speed. Here infinite server semantics (ISS) will be
considered for relaxing discrete transitions with exponential
random delays, since for high populated systems (places
containing large amount of tokens), the flow of a continuous
transition under ISS approximates well the throughput of an
exponentially timed discrete transition [14]. Under ISS the
flow (the instantaneous firing speed) through a timed contin-
uous transition ti is the product of the rate λi (equivalent to
the parameter of the exponential p.d.f. of transition ti in the
original discrete PN) and enab(ti,m). For the flow to be well
defined, every fluid transition must have at least one input

Fig. 1. PN model of an intersection of two one-way streets.

place. If all the transitions in a PN model are fluidified, then
the resulting model is called continuous PN . On the other
hand, if only some transitions are fluidified then the model
obtained is called a hybrid PN . The evolution of a hybrid
PN can be described, in discrete time with a sampling time
δτ , by the following difference equation:

mk+1 = mk + C ·∆σk + C ·Λ · enab(mk) · δτ (1)

where ∆σk is the firing count vector of the discrete tran-
sitions that fire during the time interval [τ0 + k · δτ, τ0 +
(k + 1) · δτ) (its entries related to continuous transitions are
null), enab(mk) is a vector whose elements are the enabling
degrees of the continuous transitions (its entries related to
discrete transitions are null) and Λ is a diagonal matrix
whose elements are the corresponding firing rates (i.e., the
parameters of the exponential p.d.f.’s in the original discrete
PN).

A. Fluidification of an intersection model

Consider for instance the discrete timed PN system of
fig. 1. This model represents the intersection of two one-way
streets controlled by a traffic light, under free-flow condition
(i.e., without congestion, the traffic flux is proportional to the
traffic density). The subnet {p1, p2, p3, p4} corresponds to
the physical intersection: tokens in places p1 and p2 represent
the cars at the queues waiting to enter the intersection while
tokens at p3 and p4 are the servers at the input transitions
(lanes upstream of the queues in p1 and p2, respectively). The
subnet {p5, p6, p7, p8} represents the traffic light. According
to this model, the first queue (p1) is served (t2 is enabled)
only if in the model of the traffic light there is a token at
p5. In a similar way, the second queue (p2) is served only
if in the model of the traffic light there is a token at p7.
A token at either place p6 or p8 represents a yellow period
(yellow for one queue but red for the other), so, no queue is
being served when there is a token in p6 or p8. Transitions
{t5, t6, t7, t8}, representing the switching of the traffic light,
are defined as having deterministic time delays. On the other
hand, transitions {t1, t2, t3, t4}, corresponding to car arrivals
and departures (services) at the intersection, are defined as
having exponentially distributed random time delays.

The PN system of fig. 1 is relaxed into a hybrid
PN model, in which transitions {t1, t2, t3, t4}, correspond-

(a)

(b)

Fig. 2. Marking trajectories of the PN system of fig. 1. Dashed curves
correspond to the average trajectory of the stochastic PN , while the
continuous ones correspond to the hybrid PN . a) Curves of p1, b) curves
of p2.

ing to car arrivals and departures (services), are defined
as fluid, while other transitions remain discrete (traf-
fic light). Average delays of transitions are defined as
(1, 1/3, 1, 1/3, 20, 5, 20, 5). Notice that the hybrid model
thus obtained is deterministic, since all the stochastic transi-
tions have been fluidified. The marking trajectories of places
p1 and p2 are shown in fig. 2 (continuous curves). On the
other hand, after 20 simulations of the original stochastic
discrete model, the average trajectories for the same places
were computed, and are also shown in fig. 2 (dashed curves).
Notice that the trajectories of both the hybrid PN and the
average of the discrete PN models coincide almost perfectly.
Hence, the hybrid PN can be used for a quantitative analysis
of the original discrete system, with the advantage that this
model is deterministic and that the state explosion problem
does not appear in this.

IV. THE 1-INTERSECTION MODEL

In this section it will be introduced a hybrid Petri net
model for one intersection of two one-way streets in an urban
network. This intersection is controlled by a traffic light and
it is assumed a free-flow traffic condition (so the traffic flux
is proportional to the traffic density).

Lefeber & Rooda [15] studied a mathematical model
similar to the hybrid version of fig. 1. They analyzed a system
consisting of two queues served by a single server. The
arrival and services rates are constant but different for each
queue. Setup delays are considered, i.e., switching the server
from serving one queue to serving the other queue takes some
fixed time delay, during which no queue is being served. In
this way, queues correspond to markings at {p1, p2} in fig.
1, while the server plays the role of the traffic light.

Fig. 3. PN model of an intersection of two one-way streets, the arrivals
to the first queue occur in bursts.

The results of [15] characterize the optimal steady state
periodic orbit that minimizes the cost

J =
1
Tss

∫ Tss

0

[x1(τ) + x2(τ)] · dτ (2)

where x1 and x2 denote the queues (markings at {p1, p2} in
fig. 1) and Tss denotes the period of the orbit. Furthermore,
they also provide a feedback control law that guarantees
the convergence of the system to that orbit. That work was
the inspiration for considering, in a first step, the model
of fig. 1 for optimization in traffic intersections. However,
an important assumption of [15] is that the arrival rates are
constant. In an urban traffic network, the cars departing one
intersection are the arrivals to the neighboring ones. Since
each intersection is being controlled by a traffic light, the
departures do not have constant flow rate, and so the arrivals
to downstream intersections do not occur with a constant
flow rate but in bursts (the intensity of the traffic flow is
higher during short periods, like batches of cars moving
closely together). In order to consider those burst arrivals,
the PN of fig. 1 is modified, obtaining thus the system of
fig. 3.

In this new model, the arrivals to the first queue occur in
bursts. A token in place pe enables t1, meaning cars arriving
with a rate λ1. After some given delay θ9, transition t9 fires
(which is discrete and deterministically timed) removing the
token at pe and putting it in pne, in this way, t1 is no longer
enabled meaning that no cars can arrive. After a given delay
θ10, transition t10 fires and the token returns to pe, enabling
again t1. In this way, the time during which a burst is arriving
at queue 1 is θ9, the number of cars that arrive during that
time is θ9·λ1, the time between the arrival of two consecutive
bursts (between the car leading a burst and the car leading
the next burst) is θ9 + θ10. Therefore, transitions t9, t10 and
places pe and pne characterize the bursts that arrive to the
first queue. In this model, the arrivals to the second queue
still occur with a constant rate. Those arrivals can also be
generalized in order to consider bursts. However, for the
sake of simplicity, they will be maintained as constant in
this paper.

The results obtained in [15] do not provide the optimal

behavior for the system of fig. 3, since the arrivals to the
first queue do not occur with a constant rate. Furthermore,
in the case studied in this paper, the discrete subnet (the
subnet described by transitions {t5, t6, t7, t8, t9, t10}) does
not describe a sequential process but a concurrent one,
i.e., there are many possible trajectories in the untimed
subnet. For instance, in the PN model of fig. 1, the discrete
subnet always evolves with the sequence t5, t6, t7, t8, t5, ...;
but in the model of fig. 3 the discrete subnet can evolve
as t5, t9, t6, t7, t8, t10, .. or t5, t9, t6, t10, t7, t8, .. etc.; the
trajectory or sequence that occurs in the timed model depends
on the delays of t5 and t7, i.e., the parameters to optimize.
For this reason, the optimal periodic orbit for this new model
is difficult to characterize, because it is not possible to obtain
an analytical expression (as a function of the delays t5 and
t7) of the cost J (2).

V. OPTIMIZATION FOR 1-INTERSECTION

In this section, a parameter optimization problem is in-
troduced and solved for the 1-intersection model of fig. 3,
obtaining thus the optimal switching delays for the traffic
light. Notice that, since the yellow periods are fixed a priori
for safety reasons, by defining the switching delays for the
green signals (a green signal for one queue means red for the
other), the timing of the traffic light is completely defined.

Given minimum and maximum possible integer values for
the time delays of t5 and t7 (the green periods), denoted
as θmin

5 , θmin
7 , θmax

5 and θmax
7 respectively, a finite set of

possible control values is defined:

CS =
{(θ5, θ7) ∈ N× N|θmin

5 ≤ θ5 ≤ θmax
5 , θmin

7 ≤ θ7 ≤ θmax
7 }

(3)
Next, given the initial queue lengths (m0(p1) and m0(p2))

and a fixed time horizon T , for each pair (θ5, θ7) ∈ CS, the
following cost function is computed:

J(T , θ5, θ7) =
1
T

∫ T

0

w ·
[

m(p1)
m(p2)

]
· dτ (4)

where w is a positive row vector representing some opti-
mization weights. Finally, the cost values thus obtained are
compared, and so, the minimum of them determines the
optimal control policy (θopt

5 , θopt
7) to be applied.

Notice that (θopt
5 , θopt

7) may not be the optimal values at
the steady state. Nevertheless, given the current estimates of
the state (m0(p1) and m0(p2)), (θopt

5 , θopt
7) minimizes the

average vehicle delay over an interval of time starting at the
present time and looking T time units into the future (like
in model predictive controllers). Furthermore, notice that the
cycle time is not fixed a priori, since it depends on the values
obtained for (θopt

5 , θopt
7).

The main drawback of the previous approach is the high
computational cost. However, the computation of J (4) can
be achieved very efficiently by computing in parametric form
(but off-line) the incremental cost J(τ+∆τ)−J(τ), during a
time interval ∆τ that the system remains in the same discrete
state, for each possible discrete state.

For instance, consider the system as in fig. 3. Given
firing rates for {t1, t2, t3, t4} as {λ1, λ2, λ3, λ4}, time delays
for {t5, t6, t7, t8} as (θ5, θ6, θ7, θ8) = (20, 5, 40, 5) seconds
and time delays for {t9, t10} equal to (θ9, θ10) = (10, 30)
seconds, the system will remain at the same discrete state
during ∆τ = min(θ5, θ9) = 10 seconds (i.e., the minimum
time delay of those discrete transitions that are enabled at
the current discrete state). During such time ∆τ , the queues
will change, i.e., the marking at p1 and p2, but this evolution
is deterministic and can be computed in parametric form.

In particular, it is easy to prove that, given initial values
m0(p1) and m0(p2), after ∆τ time units during which the
discrete state remains at m(pe) = 1 and m(p5) = 1, the
variables are:

m∆τ (p1) =

{
(λ1 − λ2) ·∆τ + m0(p1) if ∆τ ≤ τc

λ1
λ2

+
[
1− λ1

λ2

]
e−λ2(τ−τc) if ∆τ > τc

m∆τ (p2) = λ3 ·∆τ + m0(p2)
(5)

where τc = (1 − m0(p1))/(λ1 − λ2) is the time needed
for the first queue to reach the value of 1 (according to the
ISS, if the first queue m(p1) is larger than 1 then transition
t2 is constrained by p5, so this queue decreases according
to a constant speed, but if the queue is lower than 1 then
t2 is constrained by p1 and so, in this case, it decreases
with a speed that depends on the queue’s current value).
Furthermore, the increment of the cost function defined as

∆J =
∫ ∆τ

0
w ·

[
m(p1)
m(p2)

]
· dτ =

w1

∫ ∆τ

0
m(p1)dτ + w2

∫ ∆τ

0
m(p2)dτ

(6)

can be easily computed by using, for this discrete state, the
following expressions:

∫ ∆τ

0

m(p1)dτ =
(λ1 − λ2)

2
∆τ2 + m0(p1)∆τ (7)

if ∆τ ≤ τc. For the case in which ∆τ > τc then
∫ ∆τ

0
m(p1)dτ = (λ1−λ2)

2 ∆τ2 + m0(p1)∆τ+
λ1
λ2

(∆τ − τc) +
[

λ1
λ2

2
− 1

λ2

] [
eλ2(τc−∆τ) − 1

] (8)

and in both cases
∫ ∆τ

0

m(p2)dτ =
λ3

2
∆τ2 + m0(p2)∆τ (9)

By following a similar reasoning, expressions for
m∆τ (p1), m∆τ (p2) and ∆J can be obtained for all the
different discrete states. Therefore, the computation of the
cost function for a given pair (θ5, θ7) can be quickly achieved
by following a discrete-event simulation algorithm:

———————————————————————-
Initialize τ = 0, Jac = 0
While τ ≤ T (time horizon) do

Compute the remaining time at the current
discrete state: ∆τ.

Fig. 4. Computation of optimal switching delays: (θopt
5 , θopt

7) = (4, 27)
sec. with J = 7.18.

Compute the queues at τ + ∆τ, i.e.,
m(τ+∆τ)(p1) and m(τ+∆τ)(p2)
by using the expressions obtained off-line (5).
Compute the incremental cost: ∆J, by using
the expressions obtained off-line (6).
Add the incremental cost: Jac = Jac + ∆J.
Update the time: τ = τ + ∆τ.
Fire the enabled discrete transition.

end
The total cost function is given by:

J(τ) = 1
τ · Jac———————————————————————-

In this way, denoting as #events the number of discrete
events (i.e., changes in the traffic light signal and in the
incoming flow condition) that occur during the horizon T ,
the complexity of this algorithm is linear on the product
#events · (θmax

5 − θmin
5) · (θmax

7 − θmin
7). Notice that the

complexity does not depend on the number of cars crossing
the intersection neither on the magnitude of the flow. Thus,
the optimization is achieved efficiently.

For instance, fig. 4 shows the results obtained for the
system of fig. 3 with rates [1, 3, 1, 3] for {t1, t2, t3, t4},
delays [10, 30] seconds for {t9, t10} and [5, 5] seconds for
{t6, t8}, weights w = [1, 1] and a time horizon T = 1200
seconds. Notice that the minimum value for this, i.e., the
optimal switching delays, is well defined (the dashed square:
(θopt

5 , θopt
7) = (4, 27) with J = 7.18). Notice also in fig.

4 that the cost function is not convex, then, a gradient-
based optimization may not compute the optimal value.
Nevertheless, the algorithm introduced before does compute
the optimal, since it evaluates the cost function for each
possible combination (θ5, θ7). For this experiment, a CPU
with a Intel Core 2 Duo at 2GHz has spent 84 seconds for
computing the optimal value, which is considerably lower
than the time horizon T = 1200 seconds.

VI. CONTROLLING 1-INTERSECTION IN A TRAFFIC
NETWORK

This section is devoted to advance some ideas leading to
a control strategy for urban traffic networks. The goal here
is to use the optimization algorithm previously introduced
in a MPC scheme. Then, the green periods of one inter-

Fig. 5. PN model of 2 intersections connected by a link.

section will be computed on-line, reducing thus its average
queue lengths. This strategy can be extended in order to
simultaneously control several interconnected intersection in
a distributed way, however, that is beyond the scope of this
work and it will be studied in a forthcoming paper.

The proposed example is shown in fig. 5. This system
consists of 2 intersections connected by a link (one-way
street). The first intersection is modeled as in fig. 1, i.e.,
the incoming flows occur with constant rates. The output
flow of one direction is connected to a second intersec-
tion by a link, which introduces a pure delay. The subnet
{p9, p10, p11, p12, p13, p14, t9, t10, t11, t12} defines such link,
in which transitions {t11, t12} are discrete and {t9, t10} are
continuous. This link model works as follows: when a burst
is departing from intersection 1, whose output transition is t12,
tokens flow to p9 and then through t9 into place p11, where
they are accumulated, enabling at the same time t11. After
θ11 time units, t11 is fired (θ11 is the time needed by the
leading vehicle of the burst leaving p1

1 before reaching the
downstream intersection), marking p12, and enabling t10, so
that the burst is free to follow its way towards the intersection
2 (i.e., from p11 to place p14 and then to p2

1, which is the
queue at the second intersection). When the last token is
gone from p11 (the last car has left the link), t12 is enabled
and then fired, resetting the initial condition of this part of
the model.

The dynamic behavior of the second intersection can
be represented by means of the model of fig. 3, since
the incoming flow through t21 occurs in bursts, while the
incoming flow through t23 occurs with a constant rate. In
this way, transitions {t21, t22, t23, t24} and places {p2

1, p
2
2, p

2
4}

of fig. 5 correspond to {t1, t2, t3, t4} and {p1, p2, p4} of fig.
3, respectively (in the same order). In a similar way, the
nodes modeling the traffic light of the second intersection
in fig. 5 {p2

5, t
2
5, p

2
6, t

2
6, p

2
7, t

2
7, p

2
8, t

2
8} correspond to nodes

{p5, t5, p6, t6, p7, t7, p8, t8} in fig. 3. The information about
arriving bursts (i.e., delays of {t9, t10} and marking of
{pe, pne} in fig. 3) is not directly available from the 2-
intersections model, thus it must be obtained by off-line
computation or on-line estimation.

It is assumed that the switching delays of the traffic light
for the first intersection are fixed. The goal in this example
is to compute on-line the switching delays of the second
traffic light, showing that the model for 1-intersection of fig.

Fig. 6. Marking of queues at the second intersection (fig. 5) under control,
and signals of the green period (dashed line) and arriving bursts (continuous
line).

3 can capture the interactions with neighbor intersections in
a urban network. An MPC controller is implemented for
this, by using the optimization algorithm introduced in the
previous section. Let us describe this:
1. The parameters of the arriving bursts from intersection
1 are estimated. These parameters are incorporated into the
1-intersection model of fig. 3. The other rates and markings
are given by the corresponding ones of intersection 2.
2. The optimization algorithm introduced in the previous
section is used for computing on-line the optimal switching
delays for the local traffic light, using a fixed finite horizon
T .
3. Those switching delays are applied to the system.
4. After a fixed time Tupd (updating time), lower than the
horizon T , return to the step 1, i.e., estimate again the
parameters of incoming bursts and compute and apply again
the corresponding optimal switching delays. While the time
horizon T can be large enough to consider a few traffic-light
cycles, the updating time Tupd must be small enough in order
to update the estimation of the incoming bursts, and thus, to
compute again the optimal switching delays with the most
accurate available information.

Since the rates of the transitions of intersection 1 are
assumed to be fixed and known, then the bursty arrival stream
to intersection 2 is periodic, meaning that its parameters are
constant and can be computed off-line. Nevertheless, in a
general urban traffic network where the switching delays of
several traffic lights are being adjusted, the bursts’ parameters
are variable and it is required to estimate them in real time.
The synthesis of such an estimator is left for a future work.
In order to consider the general case, step 4 in the previous
control procedure states that the estimation, optimization and
modification of the traffic light periods has to be iterated
periodically.

This control strategy was applied to the hybrid model of
fig. 5. Delays for the first traffic light {t15, t16, t17, t18} are
(20, 5, 20, 4) (in the same order). Delays for the intersec-
tion 1 {t11, t12, t13, t14} were (1, 1/3, 1/3, 1/5) seconds, for
the second intersection {t21, t22, t23, t24} were (1/3, 1/5, 1, 1/3)
seconds, while delays for the link {t9, t10, t11, t12} were
(1/10, 1/3, 30, 1/3) seconds (the link delay is θ11 = 30
seconds). The initial queues were given by (10, 20) for

{p1
1, p

1
2} and {p2

1, p
2
2}, respectively. During the experiment,

the control law was applied to intersection 2, while the
periods for the traffic light of intersection 1 are fixed.
The optimal control law was computed and applied each
5 seconds (the computation of the control law takes 3.62
seconds on a CPU with Intel Core 2 Duo at 2.00GHz
each time it is computed), with an horizon of 110 seconds.
The parameters of arriving bursts were obtained from an
estimation procedure (not described in this work, but these
can be easily computed off-line for this example). The results
are shown in fig. 6. The marking at p2

1 corresponds to the
queue with bursty incoming flow. The square signals in the
lower part of fig. 6 correspond to the green period (dashed
line) of the traffic light for that queue and the arriving bursts
(continuous line, cars are added to the queue when this signal
is 1). As it can be seen, the controller synchronized the green
period with the incoming bursts in order to induce a green
wave, reducing thus the queue at p2

1 as much as possible.
The value obtained for the cost function (defined as in (4)
with w = [1, 1] and T = 600 seconds) was 11.59, which is
considerably lower than the value for the system with fixed
switching times 16.59 (without control, those fixed switching
times were computed by minimizing (2) assuming constant
arrival rates).

VII. CONCLUSION AND FUTURE WORK

This paper introduces a hybrid PN model for intersections
in an urban traffic network. Large urban traffic systems can
be modeled by interconnecting several of these intersection
models with delay lines modeling the roads linking them.
This paper has also shown that, the simplicity of the inter-
section model leads to simulation runs that are so fast that
it is possible to compare the effect of different scenarios for
the switching times of the traffic light. It has been shown
that a model predictive feedback control law that selects the
best future scenario after each update of the (estimated) state
leads to a significant improvement in the performance (w.r.t.
an open-loop strategy) of a traffic intersection in an urban
network, since the model captures the information required
for creating green waves.

In the future, the ideas introduced in this paper will be
extended in order to simultaneously control, in a distributed
way, several traffic lights of interconnected intersections.
For this, it will be necessary to synthesize an estimator
for the parameters that characterize the flow going into the
intersections.

REFERENCES

[1] Lämmer S. & Helbing D. (2008). Self-control of traffic lights and
vehicle flows in urban road networks. Journal of Statistical mechanics:
Theory and Experiment, P04019.

[2] Kumar P.R. & Seidman T. I. (1990). Dynamic instabilities and stabi-
lization methods in distributed real-time scheduling of manufacturing
systems. IEEE Transactions on Automatic Control, vol. 35, 289–298.

[3] Boillot F., Blosseville J.M., Lesort J.B., Motyka V., Papageorgiou M.
& Sellam S. (1992). Optimal signal control of urban traffic networks.
6th International Conference on Road traffic Monitoring and Control,
vol. 335, 75–79.

[4] Porche I., Sampath M., Sengupta R., Chen Y.-L. & Lafortune S.
(1996). A decentralized scheme for real-time optimization of traffic
signals. In Proc. 1996 IEEE International Conference on Control
Applications, 582–589.

[5] Camponagara E. & Kraus W. (2003). Distributed learning agents in
urban traffic control. In: Progress in artificial intelligence (6th EPIA),
324–335.

[6] van den Berg M., De Schutter B., Hegyi A. & Hellendoorn J. (2004).
Model Predictive control of mixed urban and freeway networks. Proc.
of the 83rd annual meeting of Transportation Research Board, Paper
04-3327.

[7] Dotoli M., Fanti M.P. & Meloni C. (2006). A signal timing plan
formulation for urban traffic control. Control Engineering Practice,
vol. 14, 1297–1311.

[8] USDOT: Federal Highway Administration. Traffic Control Systems
Handbook.

[9] Lowrie P.R. (1982). SCATS principles, methodologies, algorithm. IEE
Conf. on Road traffic Signal, IEE Publication 207, 67–70.

[10] Hunt P.B., Robertson D. I., Bretherton R.D. & Royle M.C. (1982).
The SCOOT online traffic signal optimization technique. Traffic En-
gineering and Control, vol. 23, 190–192.

[11] Silva M. Introducing Petri Nets. In Practice of Petri Nets in manufac-
turing, Chapman & Hall, 1-62.

[12] Alla H. & David R. (1998). Continuous and hybrid Petri Nets. Journal
of Circuits, Systems and Computers, vol. 8(1), 159-188.

[13] Silva M. & Recalde L. (2004). On fluidification of Petri net models:
from discrete to hybrid and continuous models. Annual Reviews in
Control, vol. 28(2), 253–266.

[14] Vázquez C.R., Recalde L. & Silva M. (2008). Stochastic–Continuous
State Approximation of Markovian Petri Net Systems. Procceding of
the 47th IEEE Conference on Decision and Control.

[15] Lefeber E. & Rooda J.E. (2006). Controller design for switched linear
systems with setups. Physica A, vol. 363, 48–61, 2006.

