4 research outputs found

    Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory

    Get PDF
     Indonesia is blessed with the largest and most diverse tropical forests in the world. Millions of Indonesians depend on these forests for their lives. But lately forest fires have become an international concern as an environmental and economic issue. One of the causes of the decline in the number of forests is forest fires. Forest fires produce high particle emissions which can endanger human health. For this reason, necessary precautions. One prevention that can be done is to predict the emergence of hotspots, especially in areas where forest fires are frequent. One way to reduce forest fires is to predict the emergence of hot spots on peatlands with the Long Short Term Memory (LSTM) method. This study predicts the emergence of hotspots in Riau Province over the next 6 months, from August 2019 to January 2020. LSTM is able to predict time series with RMSE 363.38

    A hybrid of multiobjective evolutionary algorithm and HMM-Fuzzy model for time series prediction

    No full text
    In this paper, we introduce a new hybrid of Hidden Markov Model (HMM), Fuzzy Logic and multiobjective Evolutionary Algorithm (EA) for building a fuzzy model to predict non-linear time series data. In this hybrid approach, the HMM's log-likelihood score for each data pattern is used to rank the data and fuzzy rules are generated using the ranked data. We use multiobjective EA to find a range of trade-off solutions between the number of fuzzy rules and the prediction accuracy. The model is tested on a number of benchmark and more recent financial time series data. The experimental results clearly demonstrate that our model is able to generate a reduced number of fuzzy rules with similar (and in some cases better) performance compared with typical data driven fuzzy models reported in the literature

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme
    corecore