2,989 research outputs found

    Evolutionary approaches for scheduling a flexible manufacturing system with automated guided vehicles and robots

    Get PDF
    This paper addresses the scheduling of machines, an Automated Guided Vehicle (AGV) and two robots in a Flexible Manufacturing System (FMS) formed in three loop layouts, with objectives to minimize the makespan, mean flow time and mean tardiness. The scheduling optimization is carried out using Sheep Flock Heredity Algorithm (SFHA) and Artificial Immune System (AIS) algorithm. AGV is used for carrying jobs between the Load/Unload station and the machines. The robots are used for loading and unloading the jobs in the machines, and also used for transferring jobs between the machines. The algorithms are applied for test problems taken from the literature and the results obtained using the two algorithms are compared. The results indicate that SFHA performs better than AIS for this problem

    Decomposition-Based Multiobjective Optimization for Constrained Evolutionary Optimization

    Get PDF
    Pareto dominance-based multiobjective optimization has been successfully applied to constrained evolutionary optimization during the last two decades. However, as another famous multiobjective optimization framework, decomposition-based multiobjective optimization has not received sufficient attention from constrained evolutionary optimization. In this paper, we make use of decomposition-based multiobjective optimization to solve constrained optimization problems (COPs). In our method, first of all, a COP is transformed into a biobjective optimization problem (BOP). Afterward, the transformed BOP is decomposed into a number of scalar optimization subproblems. After generating an offspring for each subproblem by differential evolution, the weighted sum method is utilized for selection. In addition, to make decomposition-based multiobjective optimization suit the characteristics of constrained evolutionary optimization, weight vectors are elaborately adjusted. Moreover, for some extremely complicated COPs, a restart strategy is introduced to help the population jump out of a local optimum in the infeasible region. Extensive experiments on three sets of benchmark test functions, namely, 24 test functions from IEEE CEC2006, 36 test functions from IEEE CEC2010, and 56 test functions from IEEE CEC2017, have demonstrated that the proposed method shows better or at least competitive performance against other state-of-the-art methods

    Research on the methods of ship\u27s autonomous collision avoidance in complex environment

    Get PDF

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Paths forward for sustainable maritime transport : A techno-economic optimization framework for next generation vessels

    Get PDF
    Climate change is omnipresent in our society. It is known that climate change is occurring, and that additional warming is unavoidable. Therefore, the decarbonization of industrial sectors has gained increased importance in the last years. The maritime transport sector is one of the most targeted industries as it contributes to approximately 3% of global GHG emissions. Nevertheless, maritime transport accounts for up to 80% of the global trade volume, underlying its importance for the world economy. A technical feasible and reliable solution is, thus, essential for the shipping industry to reach the ambitious climate goals established by the Paris Agreement. In the past, the maritim sector has been highly reliant on fossil fuels, using heavy fuel oil as the major energy input. Heavy fuel oil has been the most dominant fuel in the industry due to its cost advantage and high energy density. Recent developments in the maritime industry promote the emergence of dual fuel engines (e.g. LNG and HFO). Even though increased efficiencies and low carbon fuels can reduce maritime pollution, they cannot achieve carbon neutrality. In the long-term, it will be necessary to implement zero emission fuels including green hydrogen, ammonia, methanol, and LNG. The implementation of new sustainable technologies and fuels in the maritime sector will however depend on their economic competitiveness compared to alternative solutions. Therefore, the following research question arises: When can sustainable maritime transport achieve cost parity compared to conventional technologies? The master thesis investigates the break-even point of sustainable shipping technologies in order to achieve climate targets. Thereby, the focus is set on the life cycle costs of different maritime technologies. A techno-economic framework is necessary to decide on the most suitable options for the industry in prospective years. The framework should be able to analyze current as well as prospective technologies, and guide during the technological decision-making process. Therefore, the definition of key performance indicators (KPI) is essential to set a standard for further assessments. The KPIs will be the main value to compare technologies from an economic perspective. In order to answer the research question a case study is developed. The case study is formed by an extensive literature review on current and next-generation sustainable energy systems for vessels. A priority lies on potential carbon neutral technologies and engines such as fuel cells and battery systems based on a predetermined shipping route and shipping class. In a first step, a simulation model for the developed case is established. The output of the simulation model will then be used in the techno-economic framework, connecting components of the system through thermodynamic and physical properties. In a last step, cost functions translate the systems behavior into economic behavior. Once the case study is analyzed, a statistical model is applied on the results in order to evaluate the system under varying boundary conditions. This sensitivity approach is further necessary to underline the impact of the aforementioned KPIs. By that, the robustness of the framework is tested and secured. Finally, the results of the analysis are explained and interpreted with regard to the research question. A conclusion is drawn regarding the potential economic benefits of sustainable maritime transport technologies within the light of potential market access.The results of the thesis are to be documented in a scientifically appropriate manner and discussed within the context of existing literature and regulatory targets for the industry
    • …
    corecore