288 research outputs found

    FLANN Based Model to Predict Stock Price Movements of Stock Indices

    Get PDF
    Financial Forecasting or specifically Stock Market prediction is one of the hottest fields of research lately due to its commercial applications owing to the high stakes and the kinds of attractive benefits that it has to offer. Forecasting the price movements in stock markets has been a major challenge for common investors, businesses, brokers and speculators. As more and more money is being invested the investors get anxious of the future trends of the stock prices in the market. The primary area of concern is to determine the appropriate time to buy, hold or sell. In their quest to forecast, the investors assume that the future trends in the stock market are based at least in part on present and past events and data [1]. However financial time-series is one of the most ‘noisiest’ and ‘non-stationary’ signals present and hence very difficult to forecas

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Comparison of Performance Analysis using Different Neural Network and Fuzzy Logic Models for Prediction of Stock Price

    Get PDF
    Analysis and prediction of stock market is very interesting as this helps the financial experts in decision making and in turn profit making. In this thesis simple feed forward neural network (FFNN) model is initially considered for stock market prediction and its result is compared with Radial basis function network (RBFN) model, fuzzy logic model and Elman network model. A FFNN model can fit into any finite input-output mapping problem where the FFNN consists of one hidden layer and enough neurons in the hidden layer. RBFN are the Artificial Neural Networks (ANN) in which Radial Basis Functions (RBF) are used as activation functions. In this thesis, Levenberg-Marquardt Backpropagation algorithm is used to train the data for both FFNN and Elman network. For Fuzzy Logic, Sugeno type Fuzzy Inference System (FIS) is used to model the prediction process. Different Clustering methods are used to nd the optimal parameters of RBF. These techniques were tested with published stock market data of National Stock Exchange of India Ltd. for validation

    Do artificial neural networks provide improved volatility forecasts:Evidence from Asian markets

    Get PDF
    This paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data for the time period from 12 September 1994 to 05 March 2018. The empirical results indicate that ML algorithms, across the range of countries, can better approximate dependencies compared to traditional benchmark models. Notably, the predictive performance of such deep learning models is superior perhaps due to its ability in capturing long-range dependencies. For example, the Neuro Fuzzy models of ANFIS and CANFIS, which outperform the EGARCH model, are more flexible in modelling both asymmetry and long memory properties. This offers new insights for Asian markets. In addition to standard statistics forecast metrics, we also consider risk management measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. The study concludes that ML algorithms provide improving volatility forecasts in the stock markets of Asia and suggest that this may be a fruitful approach for risk management.</p
    corecore