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Abstract The process of water quality testing is money/-

time-consuming, quite important and difficult stage for

routine measurements. Therefore, use of models has

become commonplace in simulating water quality. In this

study, the coactive neuro-fuzzy inference system (CAN-

FIS) was used to simulate groundwater quality. Further,

geographic information system (GIS) was used as the pre-

processor and post-processor tool to demonstrate spatial

variation of groundwater quality. All important factors

were quantified and groundwater quality index (GWQI)

was developed. The proposed model was trained and val-

idated by taking a case study of Mazandaran Plain located

in northern part of Iran. The factors affecting groundwater

quality were the input variables for the simulation, whereas

GWQI index was the output. The developed model was

validated to simulate groundwater quality. Network vali-

dation was performed via comparison between the esti-

mated and actual GWQI values. In GIS, the study area was

separated to raster format in the pixel dimensions of 1 km

and also by incorporation of input data layers of the Fuzzy

Network-CANFIS model; the geo-referenced layers of the

effective factors in groundwater quality were earned.

Therefore, numeric values of each pixel with geographical

coordinates were entered to the Fuzzy Network-CANFIS

model and thus simulation of groundwater quality was

accessed in the study area. Finally, the simulated GWQI

indices using the Fuzzy Network-CANFIS model were

entered into GIS, and hence groundwater quality map

(raster layer) based on the results of the network simulation

was earned. The study’s results confirm the high efficiency

of incorporation of neuro-fuzzy techniques and GIS. It is

also worth noting that the general quality of the ground-

water in the most studied plain is fairly low.

Keywords GWQI � Model validation � Groundwater
quality map � Mazandaran Plain

Introduction

In the developing countries such as Iran, there is a need of

efficient water supply especially in view of scarce water

resources and water pollution problems. These water

resources should be utilized optimally by appropriate

planning, development management sufficient decision-

making information (Mohsen-Bandpei and Yousefi 2013).

It is clear that the problem of water resources pollution is

one of the most important challenges to be encountered in

the close future, particularly in arid and semiarid areas,

such as Iran (Celik et al. 1996; Kolpin et al. 1998; Dixon

2005; Ouyang et al. 2013). According to Kördel et al.

(2013) since the soundness of policy decisions in ground-

water management almost directly depends on the relia-

bility of the water resource management monitoring

programs, therefore an accurate and routine assessment of

the groundwater quality (as an essential component of

groundwater environment evaluation), and also accurate

prediction of the groundwater level and, is necessary to

establishing optimal strategies for regional water resource

management (Zhang et al. 2009; Li et al. 2012; Singh et al.

2014). Therefore, to access this important purpose, namely

to make the best and optimal use of the available water, it
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is necessary to extent a comprehensive index that is rep-

resentative of the overall water quality (Chang and Chang

2006). First time, the water quality index (WQI) was

developed by the national sanitation foundation (NSF) as a

standard index for assessment of the water quality and also

as a technique of rating water quality (Ott 1978; Al-hadithi

2012; Gharibi et al. 2012). WQI has sufficient efficiency to

assess any changes in groundwater quality. The develop-

ment of WQI for groundwater quality assessment is

described in the several studies (Nasiri et al. 2007; Gharibi

et al. 2012). Moreover, groundwater quality index (GWQI)

was used for evaluating groundwater quality in different

studies (Gholami et al. 2015). GWQI was first introduced

by Ribeiro et al. (2002), since the needed quantitative

parameters are available. In order to eliminate the problem

of the number of parameters and related limitations in

water quality assessment, Ocampo-Duque et al. (2007)

developed the fuzzy water quality index (FWQ). In recent

years, artificial intelligence (AI) computational methods,

such as the neuro-fuzzy systems have been increasingly

applied to environmental issues (Chau 2006; Gharibi et al.

2012). The neuro-fuzzy systems are the result of the

combination of neural networks and fuzzy logic (Zadeh

1965; Pramanik and Panda 2009). Adaptive neuro-fuzzy

inference system (ANFIS) as a multilayer feed-forward

network is capable of combining the benefits of both these

fields and also uses Gaussian functions for fuzzy sets,

linear functions for the rule outputs and Surgeon’s infer-

ence mechanism and mainly has been used for mapping

input–output relationship based on available data sets

(Chang and Chang 2006; Nourani et al. 2011; Subbaraj and

Kannapiran 2010; Ullah and Choudhury 2013).

One of the most intelligent and soft computing tools

based on fuzzy logic is CANFIS model that is based on

fuzzy logic and hence as in many other analytical fields,

application of this model for data processing has signifi-

cantly been increased during the recent years in different

fields with superior performances, so that examples of the

use and application of this technique to almost every aspect

of water analysis can be found in the literature. For

instance, neuro-fuzzy has been used successfully for pre-

diction of flow through rock-fill dams (Heydari and Talaee

2011), river flow (Nayak et al. 2004, 2005; Pramanik and

Panda 2009; Kisi 2010), suspended sediment estimation

(Kisi et al. 2008; Cobaner et al. 2009; Mirbagheri et al.

2010, groundwater vulnerability (Dixon 2005), ground-

water quality problems (Lu and Lo 2002; Zhou et al. 2007;

Hass et al. 2012; Rapantova et al. 2012; Jang and Chen

2015), daily evaporation (Dogan et al. 2010; Karimi-

Googhari 2012) and rainfall–runoff modeling (Chang and

Chen 2001; Gautam and Holz 2001; Xiong et al. 2001;

Jacquin and Shamseldin 2006). However, little research has

been undertaken to study the problem of groundwater

quality using ANN and GIS. Today, Takagi–Sugeno fuzzy

inference (TS) system is widely used for hydrological

parameters simulation. Takagi–Sugeno fuzzy inference

(TS) system was introduced for the first time by Takagi and

Sugeno in 1985 and up to now, particularly in recent years,

this method has been used widely in hydrological processes

and has achieved to satisfactory performances and results

(Vernieuwe et al. 2005; Hong and White 2009; Zhang et al.

2009). Jacquin and Shamseldin (2006) investigated the use

of TS for rainfall–runoff modeling and their results showed

that the superior performance of this method (TS) to the

traditional methods (Ullah and Choudhury 2013). During

the recent years, artificial neural network (ANN) as a

dynamic estimator, has been used increasingly as well

(Koike and Matsuda 2003; Samanta et al. 2004; Mah-

moudabadi et al. 2009; Tahmasebi and Hezarkhani 2012;

Gholami et al. 2016). Khatibi et al. (2011) compared per-

formance of three artificial intelligence techniques for

discharge routing; artificial neural network (ANN), adap-

tive nero-fuzzy inference system (ANFIS) and genetic

programming (GP) and concluded that the performance of

GP is better than the other two modeling approaches in

most of the respects. Khadangi et al. (2009) compared

ANFIS with radial basis function (RBF) models in daily

stream flow forecasting and demonstrated that ANFIS give

better results than RBF. Moreover, geographic information

system (GIS) is a powerful tool for use in environmental

problem solving and in conducting groundwater modeling

such as mapping the groundwater quality parameters,

interpretation of groundwater quality data, evaluation of

the groundwater quality feasibility zones for irrigational

purposes, creating groundwater contamination vulnerabil-

ity maps as the most common application of this technique

and so on (Saraf et al. 1994; Durbude and Vararrajan 2007;

Karunanidhi et al. 2013; Bouzourra et al. 2014). Therefore,

in order to develop a model using neuro-fuzzy techniques

in a GIS to simulate water quality, it is very useful to

combine the GIS technique with a neuro-fuzzy model that

is very applicable and also has the potential for creating a

successful modeling tool (Dixon 2004). Chang and Chang

(2006) used ANFIS to build a prediction model for water

level forecasting and reservoir management. Their results

showed that the ANFIS can be applied successfully and

provide high accuracy and reliability for reservoir water

level forecasting. Zhang et al. (2009) implemented the

Takagi–Sugeno fuzzy system (TS) and the simple average

method (SAM) to combine forecasts of three individual

models and the performance of modeling results was

compared in five catchments of semiarid areas. They

concluded that the TS combination model gives good

predictions. In this study, we present a novel neuro-fuzzy

approach, which combines two approaches, ANN and FL

(Ross 2006; Tahmasebi and Hezarkhani 2012), namely
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coactive neuro-fuzzy inference system (CANFIS), to have

a rapid and more accurate predictor in forecasting

groundwater quality. To verify its applicability, the

Mazandaran Plain, was chosen as the study area. The

specific objective of this research was to develop a mod-

eling approach that loosely couples neuro-fuzzy techniques

and GIS to predict groundwater quality in Mazandaran

Plain. The overall objective of this research is to examine

the sensitivity of neuro-fuzzy models used for assessing

groundwater quality in a spatial context by integrating GIS

and neuro-fuzzy techniques. The result can be as a tool for

planning in order to manage and reduce the risk of the

groundwater pollution.

Materials and methods

Study area

The study plain is located at 508300 to 538500E longitude

and 358550 to 368450N latitude in northern Iran (Fig. 1),

which is located in the southern Caspian coasts (Mazan-

daran Province). Study area has an area about 10,000 km2.

The Mazandaran coasts include plains made of alluvial

sediments. Moreover, the changes in elevation and slope

are inconsiderable on the Caspian coasts. Mazandaran

Province is the second province in terms of rice production

and is one of the main agricultural regions in Iran (Gholami

Fig. 1 Location of the study area (a) and location of the study drinking wells (b) in the Mazandaran Plain
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and Khaleigh 2013). The mean annual precipitation for the

west of study area is 1300 mm and decrease gradually

toward of east to 600 mm. Most of the precipitation falls in

the cloudy sea-sons. Based on the modified Demartan’s

method, the area’s climate is humid and moderate. In water

quality studies, we need an index for water quality

assessment.

Determination of groundwater quality index

We selected eight parameters of water quality such as

cation and anion (K?, Na?, Ca2?, Cl-, Mg2?, SO4
2-), pH,

total dissolved solids (TDS). Unfortunately, due to the lack

of microbial pollution measurements in the study plain, we

faced with a limitation in selecting the type of the

groundwater quality index. In this study, at first about 200

drinking water wells identified in the Mazandaran Plain

and then by examining the number of qualitative mea-

surements, 85 drinking water wells related to Mazandaran

Rural Water and Wastewater Company were selected. The

selected wells have a high number of samples and regularly

quality testing during the years 2008–2013. Figure 1 shows

the location of understudy wells. In order to provide water

quality index and also to check the status of groundwater

quality drinking water wells, to determine the minimums, it

must provide a standard index. National standards related

to the quality parameters in drinking water are presented in

Table 1.

Horton (1965) developed a compound index of ten water

quality variables and suggested that water quality param-

eters can be completed through the use of other parameters,

and hence, has firstly used the concept of WQI then

developed by Brown et al. (1970) and improved by Scottish

Development Department (1975). In this study, to check

groundwater quality, ground water quality index (GWQI)

was intended. One of the main reasons for the use of the

mentioned index is the ease of access to available quali-

tative data. Suitable indicators need to have bacterial tests

and we do not have access to such a data. The overall

groundwater quality index (GWQI) is calculated as (Eq. 1):

GWQI ¼
X8

i¼1

wi:
Ci

Csi

; ð1Þ

where Ci is parameter concentration in mg/L, Csi is the

national standard concentration of parameter for

potable water, and Wi is the relative weight of each

chemical parameter. Each of these parameters has a

different weight in terms of its contribution to groundwater

quality.

The corresponding weight rates of the factors are then

aggregated using some types of sum or mean (e.g., arith-

metic, geometric), frequently including individual weigh-

ing factors (Horton 1965). Final GWQI index is calculated

by aggregating all the normalized parameters. The extent

of the parameters participation in the water quality deter-

mination defines the relative importance or the weights of

parameters in the final GWQI. Table 2 shows the weights

of participation of the parameters in the final GWQI. In this

study, finally 85 GWQI indices were estimated for the

studied drinking water wells in the Mazandaran Plain. Each

of these indices represents a qualitative status of ground-

water in the area and total indices indicate general states of

groundwater quality in the area.

Groundwater quality simulation using fuzzy

network-CANFIS

In this research, neuro-fuzzy hybrid model was used for

groundwater quality modeling. Neural-fuzzy network is a

feed-forward network that uses a neural network learning

algorithm through back propagation during network train-

ing. Here we used from various input vectors and an output

vector. In the designing of neuro-fuzzy hybrid model, the

structure of optimized inputs was determined by a trial-

and-error process. The difference between the rate of

changes in the observed and simulated water quality indi-

ces is as the objective function and in case of equality of

both quantity, the rate of instantaneous error (the total

error) will be equal to zero according to Eq. (2):

Table 1 Potable water quality standards of Iran (mg/l) (Saeedi et al. 2010)

Kþ Naþ Ca2þ Mg2þ SO4
2- Cl� pH TDS

12 200 200 150 400 600 6.5–8.5 2000

Table 2 The relative weight of participation of each parameter

involved in the creation in the ground water quality index (GWQI)

(Saeedi et al. 2010)

Parameter The relative weight

of each parameter

K? 0.07

Na? 0.08

Mg2? 0.15

Ca2? 0.2

SO4
2- 0.1

CL- 0.1

pH 0.2

TDS 0.1
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Ji nð Þ ¼ ti nð Þ � ai nð Þ ð2Þ

where Ji(n) is the network moment error and represents the

total error for the neuron i in output layer, ti(n) represents

the desired target output of ith network in nth iteration and

ai(n) represents the predicted from the system and is the

actual output at each iteration. By estimation of the output

error and application of the back-propagation process (to

the system), the selected weight in model was modified.

Weights correction was done using gradient descent

method and according to Eq. (3):

Wij nþ 1ð Þ ¼ wij nð Þ þ gdi nð Þxi nð Þ ð3Þ

where Wij(n ? 1) is the synaptic weight to ith neuron in the

output layer from the jth neuron in the previous layer,

wij(n) is the rate of mentioned weight in nth iteration, n

denotes the steps of the iteration, g is the extent of step size

or the learning rate coefficient because controls the speed at

which we do the error correction or decides for the rate at

which the network learns (Loganathan and Girija 2013), di
(n) is standard deviation of the modeling error (local error)

and has been estimated from ji (n) in nth iteration, xi (n) is

the regressor vector and di(n)xi(n) is the gradient vector of

the performance surface at iteration (n) for the ith input

node.

Coactive neuro-fuzzy inference system

Neuro-fuzzy inference systems were implemented to inte-

grate the fuzzy inputs and CANFIS technique due to its

applicability in solving very complex and poorly defined

problems quickly (Singh et al. 2007). Neuro-fuzzy infer-

ence systems consist of four main components comprising:

fuzzifier input, fuzzy knowledge base, inference engine and

defuzzyfier output. At the beginning of processing, fuzzi-

fier, as one of main components of the fuzzy inference

system convert observed data to acceptable form of fuzzy

membership functions (MFs) and then fuzzifier outputs are

used as fuzzy inference productive inputs (Tay and Zhang

2000; Gharibi et al. 2012). The major components of

CANFIS are (a) a fuzzy axon, which applies membership

functions to the inputs and (b) a modular network that

applies functional rules to the inputs (Heydari and Talaee

2011). The most common type of fuzzy inference system

that has the ability to placement in an adaptive network is

Sugeno fuzzy inference system and its output is based on a

linear regression equation. In this study, we used the

Gaussian, bell-shaped membership functions (due to

smoothness and concise notation) and Sugeno fuzzy

inference system. Membership function (MF), presents the

fuzzy value of a fuzzy set. At first, it was determined the

number of membership functions assigned to each input

network in a process of trial-and-error and then in the

output layer it was used from the momentum, the back

propagation gradient descent (GD) method (as the most

common neural network training algorithm) and the step

function learning rate algorithms to achieve the best

structure and to improve the performance of system (Pra-

manik and Panda 2009; Tahmasebi and Hezarkhani 2012).

It is notable that in all cases, the transfer function in the

output layer is linear. In the neuro-fuzzy networks, coactive

neuro-fuzzy inference system (CANFIS) is used as a feed

forward network structure. Fuzzy system is a system based

on reasonable fuzzy if-then rules and logical fuzzy set

operators (Fig. 2).

We used NeuroSolutions software for modeling of

groundwater quality using neuro-fuzzy network. For

training and then testing the performance of a network, it is

very important to choose the number and type of input

parameters to the model. For this reason, eight input pat-

terns are given below (Eqs. 4–11):

Fig. 2 CANFIS architecture
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GWQI ¼ f ðT ;GwTableÞ ð4Þ
GWQI ¼ f ðT ;GwTable; LCÞ ð5Þ
GWQI ¼ f ðT ;GwTable; LC;EÞ ð6Þ
GWQI ¼ f ðT ;GwTable; LC;E;PÞ ð7Þ
GWQI ¼ f ðT ;GwTable; LC;E;P;HÞ ð8Þ
GWQI ¼ f ðGwTable; LC;E;P;HÞ ð9Þ
GWQI ¼ f ðT ; LC;E;P;HÞ ð10Þ
GWQI ¼ f ðT ;GwTable;E;P;HÞ ð11Þ

where GWQI is groundwater quality index, T is the

transmissivity of aquifer formations (m2/day), GwTable is

the mean water table depth (m), LC is the distance from

the pollutant centers (m), E is the site elevation (m), H is

the number of households in the area of a square

kilometer and P is the population in a square kilometer.

These eight input patterns with fixed network architecture

were implemented to simulate groundwater quality and

the results show that optimized structure of network

inputs consists of three inputs included the mean water

table depth, the transmissivity of aquifer formations and

distance from the pollutant centers. Finally, we

determined the optimized network structure by

determining the optimal inputs, transfer function and

learning technique and re-training of network. In this

study, in the training phase, different transfer functions

were used in order to identify the one which gives the best

results (Heydari and Talaee 2011). Moreover, we used

Quick-prop and Momentum of the network to determine

the optimal structure of Step systems. Finally, the network

efficiency was evaluated using the mean squared error

(MSE) and the coefficient of determination (R2). These

performance evaluation criteria (the MSE and R2) are

given below (Eqs. 12, 13):

MSE ¼
P

ðQi � Qi

^
Þ

n
ð12Þ

Rsqr ¼

Pn

i¼1

ðQi � QiÞ:ðÔi � ~OiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðQi � QiÞ2:
Pn

i¼1

ðÔi � ~OiÞ2
s

2

66664

3

77775

2

ð13Þ

where Qi is the actual value, Qi

^
is the simulated value, Qi is

the mean of the observed data, ~Qi is the mean of the actual

data, and ni is the number of data points. Above-mentioned

standard performance indices were used to compare the

performance of the CANFIS model, as well as the training

techniques.

Integration of fuzzy network-CANFIS

and geographic information system (GIS)

Neuro-fuzzy technique has a high potential in simulating

quantitative values of hydrological parameters, but it can-

not preset its results in the forms of map and geo-refer-

enced data. In this study, we applied integration of neuro-

fuzzy and GIS techniques for assessment of groundwater

quality. We used neuro-fuzzy technique as a system to

simulate groundwater quality and GIS used as pre-pro-

cessor and post-processor system of data. At first, quanti-

tative values of the network input parameters included the

mean water table depth, the transmissivity of aquifer for-

mations, distance from the pollutant centers, site elevation

and the numbers of households were estimated using the

secondary data of water resources, maps and digital layers

in the GIS environment for the 85 studied drinking water

wells. After the quantifying of the parameters, modeling

process was performed to simulate the groundwater quality

index. In this stage, network training, optimizing and then

network test or validation were conducted. Finally, the

validated neuro-fuzzy network was presented. Here, GIS

will be used as a per-processor. The purpose of this study is

use of fuzzy neural network to simulate groundwater

quality for the areas where no data (as graphical geo-ref-

erenced). In training stage, we found that the optimized

structure of fuzzy neural network for simulating ground-

water quality needs to three inputs included the average

depth of the water table, the transmissivity of the aquifer

formations and the distance from the pollutant centers.

Therefore, raster layers of the three input parameters were

prepared and those were combined using overlay analysis

with a pixel size 1 9 1 km (similar pixel size). Therefore,

Mazandaran Plain was separated to over than 10,000 geo-

referenced pixels in GIS. These pixels had values of net-

work inputs or the groundwater quality parameters (water

table depth, transmissivity of aquifer formation and the

distance from contaminant centers). It is clear that the size

of the cellular network can be considered smaller which

leads to more accurate results on the inputs such as the

distance from the pollutant centers, but a high number of

input pixels accompany a limitation in simulation process.

Moreover, we have not accessed the exact secondary data

for two main inputs, namely, water table depth and trans-

missivity of aquifer formations. Pixels coordinate was

inserted automatically in GIS environment. Afterwards,

pixels data (networks inputs and coordinate) were exported

from GIS and then these data were imported to NeuroSo-

lutions software. Finally, we estimated the GWQI values of

the all pixels using the validated fuzzy network and the

optimal inputs. Here, the estimated GWQI values along
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with their coordinates were entered from the network

environment into the GIS environment. In order words,

GIS plays the role of the post-processor. Finally, the

ground water quality (GWQI) map was generated using

GWQI values (throughout geographic coordinate as an

agent for distinguishing geographic coordinate) and GIS

capabilities in the study area. The groundwater quality

index (GWQI) values of 85 studied drinking water wells

were overlapped on the simulated raster layer of the

groundwater quality to evaluate and approve the accuracy

of the results. In fact, we evaluated the results accuracy

through comparison between the simulated GWQI and the

actual GWQI in GIS. Finally, the layer of groundwater

quality was presented as groundwater quality map after

classification. In this study, we simulated groundwater

quality using neuro-fuzzy network and GIS capabilities and

the simulation was performed with precision and speeds up

in large-scale and results were presented as the geo-refer-

enced graphical (map).

Results

We estimated GWQI values of the studied drinking water

wells based on the sampling of a 5-year period. GWQI

values change from 0.05 to 0.35 in the studied plain.

Quantitative amounts of the factors affecting groundwater

quality included the average depth of water table, the

transmissivity of aquifer formations, distance from the

pollutant centers, site elevation and the number of house-

holds were estimated based on the secondary data, digital

maps and field studies. Some examples of the estimated

values are given in Table 3. After the quantitative esti-

mation of groundwater quality indices and the factors

affecting water quality for 85 studied wells, the process of

entering data and using them in the neural fuzzy network

was carried out. In the training phase, by changing the

pattern of data entry and analysis the neuro-fuzzy network

sensitivity to input data, it was concluded those three

parameters: the mean water table, the aquifer formations

transmissivity, and distance from the pollutant centers are

the main factors affecting groundwater quality inputs

(Gholami et al. 2015). Digital maps of these three factors

were prepared in the GIS environment and are presented in

Figs. 4, 5 and 6. According to the results, the mean water

table depth changes from 1 to 30 m and the mean trans-

missivity of the aquifer formations changes from 75 to

3250 (m2/day) in the studied plain. The results of the

performance evaluation of the neuro-fuzzy network in the

simulation of groundwater quality in the training stage are

presented in Table 4. In fact, Table 4 reflects the error in

the training phase and according to that, good results were

obtained in the training phase. The LinearTanhAxon opti-

mal transfer function and the Levenberg–Marquardt (LM)

Table 3 Parameters affecting groundwater quality and GWQI indices in the some drinking water wells

No. GWQI Transmissivity

(m2/day)

Water table

depth (m)

Elevation

(m)

Distance from

contaminant centers (m)

No. of

households

Population

(person)

1 0.2715 1500 12.90 50 6.4 52 460

2 0.2401 750 3.00 -11 153.8 239 1077

3 0.2267 175 5.00 -13 99.4 32 144

4 0.2165 750 4.00 -10 1121.2 21 98

5 0.2125 1500 5.00 11 0 22 93

6 0.2070 500 4.17 6 20 246 1105

7 0.1971 1000 5.00 11 0 22 93

8 0.1969 750 6.50 20 20 161 666

9 0.1553 500 31.00 1062 830 30 95

10 0.1483 300 23.00 453 1100 13 62

11 0.1252 300 25.00 69 709 53 287

12 0.0568 100 38.00 1670 1023 53 342

13 0.2578 500 4.70 6 44 109 495

14 0.2042 750 3.50 -8 451 92 434

15 0.3413 3000 5.00 20 15.42 574 2770

16 0.3252 2000 3.00 2 66.37 118 820

17 0.3243 1000 1.00 3 28.07 239 1187

18 0.3146 1000 1.00 1 21.27 136 800

19 0.2597 750 5.00 12 9.21 607 2931

20 0.2571 1500 8.00 33 194.20 144 693
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optimal learning techniques (as the best algorithms for

training the network and also as the modern second-order

back-propagation algorithm) were used to train the network

(Bishop 1995). Correlation between the observed and

simulated values (R) in the training stage is equal to 0.9.

Moreover, Table 5 shows the results of the evaluation of

Fig. 3 The flowchart of the methodology stages used for groundwater quality assessment based on Fuzzy Network-CANFIS and GIS

Fig. 4 The map of the mean transmissivity of aquifer formations in the study plain (m2/day)
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Fig. 5 The map of the mean water table depth in the study plain (m)

Fig. 6 The map of distance from contaminant centers (villages, cities and industries) in the Mazandaran Plain (m)

Appl Water Sci (2017) 7:3633–3647 3641
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the neuro-fuzzy network efficiency in the simulation of

groundwater quality in the test or validation stage. In the

test stage, the simulated and actual GWQI values were

compared and this comparison is presented in Fig. 8. The

results show that the neuro-fuzzy network has accept-

able accuracy in simulating of the groundwater quality

index (R = 0.89). Such results are consistent with the

results of other researchers (Samani et al. 2007). The aim

of this study is to simulate groundwater quality in the

places with no secondary data. Therefore, neuro-fuzzy

network can be applied to evaluate groundwater quality

with an acceptable accuracy. For this purpose, the raster

layers of the groundwater quality factors or the neuro-fuzzy

network inputs were prepared in GIS with the similar pixel

sizes (1 9 1 m) and then were combined with each other.

After combining these layers, a geo-referenced raster layer

was generated that contains three input parameters asso-

ciated with network. Data of the pixels with coordinates

was entered from GIS to the neuro-fuzzy network. Then, it

was used from the validated optimal neuro-fuzzy network

to estimate GWQI index for all of the pixels. The neuro-

fuzzy network estimated the GWQI value for each pixel

and then the estimated values with coordinates (X, Y) were

imported to ArcGIS environment. In this stage, GIS will be

as the post-processor. Here, GIS capabilities were used for

monitoring the results of the neuro-fuzzy network as the

raster layer of groundwater quality and finally the results

are presented in Fig. 9. As can be seen in this figure, in

order to evaluate the results accuracy, the location of the 85

drinking water wells and their GWQI values were inserted

on the layer or the groundwater quality map. Comparison

between the observed and estimated GWQI values

(groundwater quality classes in Fig. 10) shows the perfor-

mance of the neuro-fuzzy network and also high perfor-

mance of the approach of integrating the neuro-fuzzy

network and GIS in groundwater quality modeling (Gan-

gopadhyay et al. 1999; Krishna et al. 2008). The ground-

water quality based on GWQI index is classified into three

categories included very good quality (GWQI[ 0.15),

good quality (0.04\GWQI\ 0.15) and poor quality

(GWQI\ 0.04) (Saeedi et al. 2010). As can be seen in the

resulting map, the presented methodology in this study

could provide an acceptable simulation for the classifica-

tion of groundwater quality and the current error in simu-

lation, not enter any prejudice to the water quality

classification accuracy of a plain or a watershed (Figs. 3,

7).

Discussion

Based on the various studies conducted on the superior

performance of neuro-fuzzy network in modeling and

prediction of time-series hydrologic problems and vari-

ables (Ullah and Choudhury 2013), it is clear that the

capabilities of a CANFIS model depends on its structure

and the nature of the problem that we have to solve, is

Table 4 The results of neuro-fuzzy network training and optimization (training stage)

All runs Training minimum Training standard deviation Cross-validation minimum Cross-validation standard deviation

Average of minimum MSEs 0.006 0.001 0.008 0.001

Average of final MSEs 0.006 0.001 0.024 0.014

Table 5 The results of neuro-fuzzy testing for validating network

Performance GWQIA

MSE 0.0004

NMSE 0.24

MAE 0.018

Min Abs error 0.001

Max Abs error 0.052

R 0.9

Fig. 7 Evaluation of CANFIS

efficiency for groundwater

quality simulation during

training stage throughout

comparison between the

estimated and actual GWQI

values (R2 = 0.9)
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Fig. 8 Evaluation of CANFIS efficiency for groundwater quality simulation during test stage (validation) throughout comparison between the

estimated and actual GWQI values

Fig. 9 Evaluation of CANFIS efficiency for groundwater quality simulation during test (validation) stage throughout comparison between the

estimated and actual GWQI values (R2 = 0.8)

Fig. 10 The map of groundwater quality (GWQI index) is resulted from integration of neuro-fuzzy inference system and GIS capabilities. In this

map, we evaluated the results accuracy using a comparison between the simulated GWQI values with the actual GWQI values

Appl Water Sci (2017) 7:3633–3647 3643

123



different. By selecting the appropriate type and the number

of MFs for each input and the use of appropriate and

adaptive fuzzy neural network and its proper calibration,

we can say that this technique is very effective and useful

and can therefore be used as a comprehensive tool for

groundwater quality assessment.

The results of this study show a high capability of the

neuro-fuzzy network in simulation of groundwater quality.

According to the results of the neuro-fuzzy network per-

formance for different makeup and compared the results

with observed data, it can be said that three factors inclu-

ded the mean water table, the aquifer formations trans-

missivity and distance from the pollutant centers are the

most important factors affecting groundwater quality in the

study plain. Neuro-fuzzy network modeling is an efficient

tool, but an important point in this regard, is the application

of its results. We used neuro-fuzzy network to simulate

groundwater quality and also GIS was used to increase the

accuracy and rapidness of modeling and monitoring of the

results of the neuro-fuzzy network in large-scale. Previous

researches results show the high performance of the neuro-

fuzzy network with the structure of the Takagi–Sugeno–

Kang (TSK) model in hydrologic simulations as well (Jang

et al. 1997; Jacquin and Shamseldin 2006; Lohani et al.

2006; Talei et al. 2010; Heydari and Talaee 2011). In ter-

rain and optimization stages, we found that TSK model is

the best structure for neuro-fuzzy network in the ground-

water quality simulation. The main focus of this study is

the automatic connection of the neuro-fuzzy network with

GIS in order to use the results for all users. Moreover, we

selected the Levenberg–Marquardt learning technique as

the best algorithms for training the network. In training

stage, that the mean square error (MSE) and coefficient of

determination (R2) were estimated 0.01 and 0.9, respec-

tively. After network training and optimization, the optimal

neuro-fuzzy network structure was defined. In the testing

stage, mean square error (MSE) and coefficient of deter-

mination (R2) measures were 0.0004 and 0.8, respectively.

Therefore, the results show that the neuro-fuzzy network

can be used in the groundwater quality simulation with an

acceptable accuracy. The base of this study is automatic

relation between neuro-fuzzy network and GIS for simu-

lating groundwater quality and mapping of the results.

However, the results should have capability of overlay with

other digital geo-referenced data. We can provide a high

volume of input data in a short time using GIS and neuro-

fuzzy network can simulate hydrologic parameters in a

short time for the sites without the groundwater quality

data. Finally, the integration of neuro-fuzzy network and

GIS can present the simulated results in a manner of digital

maps. Moreover, the groundwater quality map shows that

the quality of groundwater is improper in terms of

potable water quality standards of Iran in the most of the

studied area. Therefore, it is necessary to plan to conserve

and optimize usage of water resources. In modeling pro-

cess, the main thing is the accuracy of input and output.

Thus, integration of neuro-fuzzy network and geographic

information system can be used for water quality simula-

tion and the efficiency of this methodology is dependent on

the accuracy of the input data and to select the appropriate

input parameters for the network correctly.

Conclusion

This paper introduces an integrated CANFIS model for

assessing groundwater quality. Input data of CANFIS

network for groundwater modeling include the mean water

table, the aquifer formations transmissivity and distance

from the pollutant centers. The output of the CANFIS

network was groundwater quality index. We evaluated the

CANFIS performance by the statistical evolution criteria;

which shows that this method significantly outperforms the

assessing process and has a very good and acceptable per-

formance for assessing groundwater quality. To sum up,

the findings of this study indicated that groundwater quality

assessed using the CANFIS model were in good agreement

with experimental data, indicating CANFIS model gives

the best results and hence, can be employed successfully in

assessing groundwater quality. Thus, the results of this

study confirm the general enhancement achieved by using

neuro-fuzzy network in many other hydrological fields

(Heydari and Talaee 2011; Wu et al. 2014). It is clear that

we could select a smaller size of the pixels that causes the

more exact input about distance from contaminant centers,

but a high number of the input pixels impose a limitation

for simulating in CANFIS model (ANN software). Also,

we have not accessed the exact data for two main inputs,

namely, water table depth and transmissivity of aquifer

formation. According to the results, groundwater quality in

the most of the study plain has a fairly low quality in terms

of potable water standards. Hence, the move towards

conservation and optimal utilization is necessary and the

aquifers of the study area needs respective degree of

quality improvement (Yousefi and Naeej 2008; Sharma and

Patel 2010). It is important to note that according to the

results obtained from this study, to access optimal condi-

tions, study area needs frequent monitoring as well as

appropriate management practices. As a consequence, the

findings of this study clearly indicate the possibility for

using CANFIS and GIS for highly successful assessment of

groundwater quality. Also, artificial intelligence computa-

tional methods, such as CANFIS model can be applied

successfully as a very useful and accurate tool for assessing

groundwater quality, therefore suggested for assessing

groundwater quality in similar problems.
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Proceedings III Congreso Ibérico sobre Gestión e lanificación

del Agua. Universidad de Sevilla, Spain, pp 508–513

Ross TJ (2006) Fuzzy logic with engineering applications. McGraw

Hill Inc., New York, p 628

Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of

groundwater quality index. J Environ Monit Assess

163:327–335. doi:10.1007/s10661-009-0837-5

Samani N, Gohari-Moghadam M, Safavi AA (2007) A simple neural

network model for the determination of aquifer parameters.

J Hydrol 340(1):1–11. doi:10.1016/j.jhydrol.2007.03.017

Samanta B, Bandopadhyay S, Ganguli R (2004) Data segmentation

and genetic algorithms for sparse data division in Nome placer

gold grade estimation using neural network and geostatistics.

Min Explor Geol 11(1–4):69–76. doi:10.2113/11.1-4.69

Saraf AK, Gupta RP, Jain RK, Srivastava NK (1994) GIS based

processing and interpretation of ground water quality data. In:

Proceedings of regional workshop on environmental aspects of

ground water development, Oct. 17–19, Kurukshetra, India

Scottish Development Department (1975) Towards cleaner water.

HMSO, Report of a River Pollution Survey of Scotland,

Edinburgh

Sharma ND, Patel JN (2010) Evaluation of groundwater quality index

of the urban segments of Surat City, India. Int J Geol 1(4):1–4

Singh TN, Verma AK, Sharma PK (2007) A neuro-genetic approach

for prediction of time dependent deformational characteristic of

rock and its sensitivity analysis. Geotechnol Geol Eng

25(4):395–407. doi:10.1007/s10706-006-9117-0

Singh KP, Gupta S, Rai P (2014) Investigating hydrochemistry of

groundwater in Indo-Gangetic alluvial plain using multivariate

chemometric approaches. Environ Sci Pollut Res. doi:10.1007/

s11356-014-2517-4

Subbaraj P, Kannapiran B (2010) Artificial neural network

approach for fault detection in pneumatic valve in cooler

water spray system. Int J Comput App 9(7):43–52. doi:10.

5120/1395-1881

Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy

logic-genetic algorithm for grade estimation. Comput Geosci

42:18–27. doi:10.1016/j.cageo.2012.02.004

Talei A, Chua LHC, Quek C (2010) A novel application of a neuro-

fuzzy computational technique in event-based rainfall–runoff

modeling. Expert Syst Appl 37(12):7456–7468. doi:10.1016/j.

eswa.2010.04.015

Tay JH, Zhang X (2000) A fast predicting neural fuzzy model for high

rate anaerobic waste water treatment systems. Water Res

34(11):2849–2860

Ullah N, Choudhury P (2013) Flood flow modeling in a river system

using adaptive neuro-fuzzy inference system. Environ Manag

Sustain Develop 2(2):54–68. doi:10.5296/emsd.v2i2.3738

Vernieuwe H, Georgieva O, Baets BD, Pauwels VRN, Verhoest NEC,

Troch DFP (2005) Comparison of data-driven Takagi–Sugeno

models of rainfall-discharge dynamics. J Hydrol 302:173–186.

doi:10.1016/j.jhydrol.2004.07.001

Wu W, Dandy GC, Maier HR (2014) Protocol for developing ANN

models and its application to the assessment of the quality of the

ANN model development process in drinking water quality

modelling. Environ Modell Softw 54:108–127

Xiong LH, Shamseldin AY, O’Connor KM (2001) A nonlinear

combination of the forecasts of rainfall–runoff models by the

first order Takagi–Sugeno fuzzy system. J Hydrol

245(1–4):196–217. doi:10.1016/S0022-1694(01)00349-3

Yousefi Z, Naeej O (2008) Study on nitrate value in rural area in

Amol city. J Mazand Univ Med Sci 17(61):161–165

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

3646 Appl Water Sci (2017) 7:3633–3647

123

http://dx.doi.org/10.1023/a:1025180005454
http://dx.doi.org/10.1023/a:1025180005454
http://dx.doi.org/10.1007/s002449900392
http://dx.doi.org/10.1007/s11356-013-1531-2
http://dx.doi.org/10.1002/hyp.6686
http://dx.doi.org/10.1007/s10661-011-2306-1
http://dx.doi.org/10.1007/s10661-011-2306-1
http://dx.doi.org/10.1016/j.jhydrol.2006.05.007
http://dx.doi.org/10.1016/S0043-1354(01)00449-3
http://dx.doi.org/10.1007/s10596-008-9107-9
http://dx.doi.org/10.1080/02626667.2010.508871
http://dx.doi.org/10.1061/(ASCE)0733-9496
http://dx.doi.org/10.1061/(ASCE)0733-9496
http://dx.doi.org/10.1016/j.jhydrol.2003.12.010
http://dx.doi.org/10.1016/j.jhydrol.2003.12.010
http://dx.doi.org/10.1029/2004WR003562
http://dx.doi.org/10.1016/j.jhydrol.2011.03.002
http://dx.doi.org/10.1016/j.envpol.2006.11.027
http://dx.doi.org/10.1007/s11356-013-1864-x
http://dx.doi.org/10.1007/s11356-013-1864-x
http://dx.doi.org/10.1623/hysj.54.2.247
http://dx.doi.org/10.1007/s11356-012-1340-z
http://dx.doi.org/10.1007/s11356-012-1340-z
http://dx.doi.org/10.1007/s10661-009-0837-5
http://dx.doi.org/10.1016/j.jhydrol.2007.03.017
http://dx.doi.org/10.2113/11.1-4.69
http://dx.doi.org/10.1007/s10706-006-9117-0
http://dx.doi.org/10.1007/s11356-014-2517-4
http://dx.doi.org/10.1007/s11356-014-2517-4
http://dx.doi.org/10.5120/1395-1881
http://dx.doi.org/10.5120/1395-1881
http://dx.doi.org/10.1016/j.cageo.2012.02.004
http://dx.doi.org/10.1016/j.eswa.2010.04.015
http://dx.doi.org/10.1016/j.eswa.2010.04.015
http://dx.doi.org/10.5296/emsd.v2i2.3738
http://dx.doi.org/10.1016/j.jhydrol.2004.07.001
http://dx.doi.org/10.1016/S0022-1694(01)00349-3


Zhang L, Zhao W, He Z, Liu H (2009) Application of the Takagi–

Sugeno fuzzy system for combination forecasting of river flow in

semiarid mountain regions. Hydrol Process. doi:10.1002/hyp.

7265 (John Wiley Sons Ltd.)

Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical

methods to water quality assessment of the watercourses in

Northwestern New Territories, Hong Kong. Environ Monit

Assess 132(1):1–13. doi:10.1007/s10661-006-9497-x

Appl Water Sci (2017) 7:3633–3647 3647

123

http://dx.doi.org/10.1002/hyp.7265
http://dx.doi.org/10.1002/hyp.7265
http://dx.doi.org/10.1007/s10661-006-9497-x

	A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)
	Abstract
	Introduction
	Materials and methods
	Study area
	Determination of groundwater quality index
	Groundwater quality simulation using fuzzy network-CANFIS
	Coactive neuro-fuzzy inference system
	Integration of fuzzy network-CANFIS and geographic information system (GIS)

	Results
	Discussion
	Conclusion
	Acknowledgements
	References




