9,911 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Data mining based cyber-attack detection

    Get PDF

    Comparing a Hybrid Multi-layered Machine Learning Intrusion Detection System to Single-layered and Deep Learning Models

    Get PDF
    Advancements in computing technology have created additional network attack surface, allowed the development of new attack types, and increased the impact caused by an attack. Researchers agree, current intrusion detection systems (IDSs) are not able to adapt to detect these new attack forms, so alternative IDS methods have been proposed. Among these methods are machine learning-based intrusion detection systems. This research explores the current relevant studies related to intrusion detection systems and machine learning models and proposes a new hybrid machine learning IDS model consisting of the Principal Component Analysis (PCA) and Support Vector Machine (SVM) learning algorithms. The NSL-KDD Dataset, benchmark dataset for IDSs, is used for comparing the models’ performance. The performance accuracy and false-positive rate of the hybrid model are compared to the results of the model’s individual algorithmic components to determine which components most impact attack prediction performance. The performance metrics of the hybrid model are also compared to two deep learning Autoencoder Neuro Network models and the results found that the complexity of the model does not add to the performance accuracy. The research showed that pre-processing and feature selection impact the predictive accuracy across models. Future research recommendations were to implement the proposed hybrid IDS model into a live network for testing and analysis, and to focus research into the pre-processing algorithms that improve performance accuracy, and lower false-positive rate. This research indicated that pre-processing and feature selection/feature extraction can increase model performance accuracy and decrease false-positive rate helping businesses to improve network security

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure
    corecore