16,077 research outputs found

    An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics

    Get PDF
    The use of protein tagging to facilitate detailed characterization of target proteins has not only revolutionized cell biology, but also enabled biochemical analysis through efficient recovery of the protein complexes wherein the tagged proteins reside. The endogenous use of these tags for detailed protein characterization is widespread in lower organisms that allow for efficient homologous recombination. With the recent advances in genome engineering, tagging of endogenous proteins is now within reach for most experimental systems, including mammalian cell lines cultures. In this work, we describe the selection of peptides with ideal mass spectrometry characteristics for use in quantification of tagged proteins using targeted proteomics. We mined the proteome of the hyperthermophile Pyrococcus furiosus to obtain two peptides that are unique in the proteomes of all known model organisms (proteotypic) and allow sensitive quantification of target proteins in a complex background. By combining these 'Proteotypic peptides for Quantification by SRM' (PQS peptides) with epitope tags, we demonstrate their use in co-immunoprecipitation experiments upon transfection of protein pairs, or after introduction of these tags in the endogenous proteins through genome engineering. Endogenous protein tagging for absolute quantification provides a powerful extra dimension to protein analysis, allowing the detailed characterization of endogenous proteins

    Addressing the needs of traumatic brain injury with clinical proteomics.

    Get PDF
    BackgroundNeurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.ContentWe discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.SummaryMany studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such 'long lists' is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits

    Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.

    Get PDF
    Small ubiquitin-like modifier (SUMO) modification regulates numerous cellular processes. Unlike ubiquitin, detection of endogenous SUMOylated proteins is limited by the lack of naturally occurring protease sites in the C-terminal tail of SUMO proteins. Proteome-wide detection of SUMOylation sites on target proteins typically requires ectopic expression of mutant SUMOs with introduced tryptic sites. Here, we report a method for proteome-wide, site-level detection of endogenous SUMOylation that uses α-lytic protease, WaLP. WaLP digestion of SUMOylated proteins generates peptides containing SUMO-remnant diglycyl-lysine (KGG) at the site of SUMO modification. Using previously developed immuno-affinity isolation of KGG-containing peptides followed by mass spectrometry, we identified 1209 unique endogenous SUMO modification sites. We also demonstrate the impact of proteasome inhibition on ubiquitin and SUMO-modified proteomes using parallel quantitation of ubiquitylated and SUMOylated peptides. This methodological advancement enables determination of endogenous SUMOylated proteins under completely native conditions

    Data analysis tools for mass spectrometry proteomics

    Get PDF
    ABSTRACT Proteins are large biomolecules which consist of amino acid chains. They differ from one another in their amino acid sequences, which are mainly dictated by the nucleotide sequence of their corresponding genes. Proteins fold into specific threedimensional structures that determine their activity. Because many of the proteins act as catalytes in biochemical reactions, they are considered as the executive molecules in the cells and therefore their research is fundamental in biotechnology and medicine. Currently the most common method to investigate the activity, interactions, and functions of proteins on a large scale, is high-throughput mass spectrometry (MS). The mass spectrometers are used for measuring the molecule masses, or more specifically, their mass-to-charge ratios. Typically the proteins are digested into peptides and their masses are measured by mass spectrometry. The masses are matched against known sequences to acquire peptide identifications, and subsequently, the proteins from which the peptides were originated are quantified. The data that are gathered from these experiments contain a lot of noise, leading to loss of relevant information and even to wrong conclusions. The noise can be related, for example, to differences in the sample preparation or to technical limitations of the analysis equipment. In addition, assumptions regarding the data might be wrong or the chosen statistical methods might not be suitable. Taken together, these can lead to irreproducible results. Developing algorithms and computational tools to overcome the underlying issues is of most importance. Thus, this work aims to develop new computational tools to address these problems. In this PhD Thesis, the performance of existing label-free proteomics methods are evaluated and new statistical data analysis methods are proposed. The tested methods include several widely used normalization methods, which are thoroughly evaluated using multiple gold standard datasets. Various statistical methods for differential expression analysis are also evaluated. Furthermore, new methods to calculate differential expression statistic are developed and their superior performance compared to the existing methods is shown using a wide set of metrics. The tools are published as open source software packages.TIIVISTELMÄ Proteiinit ovat aminohappoketjuista muodostuvia isoja biomolekyylejä. Ne eroavat toisistaan aminohappojen järjestyksen osalta, mikä pääosin määräytyy proteiineja koodaavien geenien perusteella. Lisäksi proteiinit laskostuvat kolmiulotteisiksi rakenteiksi, jotka osaltaan määrittelevät niiden toimintaa. Koska proteiinit toimivat katalyytteinä biokemiallisissa reaktioissa, niillä katsotaan olevan keskeinen rooli soluissa ja siksi myös niiden tutkimusta pidetään tärkeänä. Tällä hetkellä yleisin menetelmä laajamittaiseen proteiinien aktiivisuuden, interaktioiden sekä funktioiden tutkimiseen on suurikapasiteettinen massaspektrometria (MS). Massaspektrometreja käytetään mittaamaan molekyylien massoja – tai tarkemmin massan ja varauksen suhdetta. Tyypillisesti proteiinit hajotetaan peptideiksi massojen mittausta varten. Massaspektrometrillä havaittuja massoja verrataan tunnetuista proteiinisekvensseistä koottua tietokantaa vasten, jotta peptidit voidaan tunnistaa. Peptidien myötä myös proteiinit on mahdollista päätellä ja kvantitoida. Kokeissa kerätty data sisältää normaalisti runsaasti kohinaa, joka saattaa johtaa olennaisen tiedon hukkumiseen ja jopa pahimmillaan johtaa vääriin johtopäätöksiin. Tämä kohina voi johtua esimerkiksi näytteen käsittelystä johtuvista eroista tai mittalaitteiden teknisistä rajoitteista. Lisäksi olettamukset datan luonteesta saattavat olla virheellisiä tai käytetään datalle soveltumattomia tilastollisia malleja. Pahimmillaan tämä johtaa tilanteisiin, joissa tutkimuksen tuloksia ei pystytä toistamaan. Erilaisten laskennallisten työkalujen sekä algoritmien kehittäminen näiden ongelmien ehkäisemiseksi onkin ensiarvoisen tärkeää tutkimusten luotettavuuden kannalta. Tässä työssä keskitytäänkin sovelluksiin, joilla pyritään ratkaisemaan tällä osa-alueella ilmeneviä ongelmia. Tutkimuksessa vertaillaan yleisesti käytössä olevia kvantitatiivisen proteomiikan ohjelmistoja ja yleisimpiä datan normalisointimenetelmiä, sekä kehitetään uusia datan analysointityökaluja. Menetelmien keskinäiset vertailut suoritetaan useiden sellaisten standardiaineistojen kanssa, joiden todellinen sisältö tiedetään. Tutkimuksessa vertaillaan lisäksi joukko tilastollisia menetelmiä näytteiden välisten erojen havaitsemiseen sekä kehitetään kokonaan uusia tehokkaita menetelmiä ja osoitetaan niiden parempi suorituskyky suhteessa aikaisempiin menetelmiin. Kaikki tutkimuksessa kehitetyt työkalut on julkaistu avoimen lähdekoodin sovelluksina

    Target identification strategies in plant chemical biology

    Get PDF
    The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starting blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, whereas studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology
    corecore