
DATA ANALYSIS TOOLS FOR

MASS SPECTROMETRY

PROTEOMICS

Tomi Suomi

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS
SARJA – SER. F OSA – TOM. 3 — TECHNICA – INFORMATICA — TURKU 2021



University of Turku

Faculty of Technology
Department of Computing
Computer Science
Doctoral Programme in Mathematics and Computer Sciences

Supervised by

Prof. em. Olli Nevalainen
Faculty of Science and Engineering,
University of Turku, Finland

Prof. Jukka Heikkonen
Faculty of Science and Engineering,
University of Turku, Finland

Reviewed by

Prof. Sampsa Hautaniemi
Faculty of Medicine, University of
Helsinki, Finland

Prof. Lukas Käll
KTH Royal Institute of Technology, Swe-
den

Opponent

Associate Prof. Fredrik Levander
Faculty of Engineering, Lund University, Sweden

The originality of this publication has been checked in accordance with the University
of Turku quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-8541-8 (PRINT)
ISBN 978-951-29-8542-5 (PDF)
ISSN 2736-9390 (PRINT)
ISSN 2736-9684 (ONLINE)
Grano, Helsinki, Finland, 2021



UNIVERSITY OF TURKU
Faculty of Technology
Department of Computing
Computer Science
SUOMI, TOMI: Data analysis tools for mass spectrometry proteomics
Doctoral dissertation, 113 pp.
Doctoral Programme in Mathematics and Computer Sciences
February 2021

ABSTRACT

Proteins are large biomolecules which consist of amino acid chains. They differ
from one another in their amino acid sequences, which are mainly dictated by the
nucleotide sequence of their corresponding genes. Proteins fold into specific three-
dimensional structures that determine their activity. Because many of the proteins act
as catalytes in biochemical reactions, they are considered as the executive molecules
in the cells and therefore their research is fundamental in biotechnology and medicine.

Currently the most common method to investigate the activity, interactions, and
functions of proteins on a large scale, is high-throughput mass spectrometry (MS).
The mass spectrometers are used for measuring the molecule masses, or more specif-
ically, their mass-to-charge ratios. Typically the proteins are digested into peptides
and their masses are measured by mass spectrometry. The masses are matched
against known sequences to acquire peptide identifications, and subsequently, the
proteins from which the peptides were originated are quantified. The data that are
gathered from these experiments contain a lot of noise, leading to loss of relevant
information and even to wrong conclusions. The noise can be related, for exam-
ple, to differences in the sample preparation or to technical limitations of the anal-
ysis equipment. In addition, assumptions regarding the data might be wrong or the
chosen statistical methods might not be suitable. Taken together, these can lead to
irreproducible results. Developing algorithms and computational tools to overcome
the underlying issues is of most importance. Thus, this work aims to develop new
computational tools to address these problems.

In this PhD Thesis, the performance of existing label-free proteomics methods
are evaluated and new statistical data analysis methods are proposed. The tested
methods include several widely used normalization methods, which are thoroughly
evaluated using multiple gold standard datasets. Various statistical methods for dif-
ferential expression analysis are also evaluated. Furthermore, new methods to cal-
culate differential expression statistic are developed and their superior performance
compared to the existing methods is shown using a wide set of metrics. The tools are
published as open source software packages.

3



TURUN YLIOPISTO
Teknillinen tiedekunta
Tietotekniikan laitos
Tietojenkäsittelytiede
SUOMI, TOMI: Data analysis tools for mass spectrometry proteomics
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TIIVISTELMÄ

Proteiinit ovat aminohappoketjuista muodostuvia isoja biomolekyylejä. Ne eroa-
vat toisistaan aminohappojen järjestyksen osalta, mikä pääosin määräytyy proteii-
neja koodaavien geenien perusteella. Lisäksi proteiinit laskostuvat kolmiulotteisiksi
rakenteiksi, jotka osaltaan määrittelevät niiden toimintaa. Koska proteiinit toimivat
katalyytteinä biokemiallisissa reaktioissa, niillä katsotaan olevan keskeinen rooli so-
luissa ja siksi myös niiden tutkimusta pidetään tärkeänä.

Tällä hetkellä yleisin menetelmä laajamittaiseen proteiinien aktiivisuuden, inte-
raktioiden sekä funktioiden tutkimiseen on suurikapasiteettinen massaspektrometria
(MS). Massaspektrometreja käytetään mittaamaan molekyylien massoja – tai tar-
kemmin massan ja varauksen suhdetta. Tyypillisesti proteiinit hajotetaan peptideiksi
massojen mittausta varten. Massaspektrometrillä havaittuja massoja verrataan tunne-
tuista proteiinisekvensseistä koottua tietokantaa vasten, jotta peptidit voidaan tunnis-
taa. Peptidien myötä myös proteiinit on mahdollista päätellä ja kvantitoida. Kokeissa
kerätty data sisältää normaalisti runsaasti kohinaa, joka saattaa johtaa olennaisen tie-
don hukkumiseen ja jopa pahimmillaan johtaa vääriin johtopäätöksiin. Tämä kohina
voi johtua esimerkiksi näytteen käsittelystä johtuvista eroista tai mittalaitteiden tek-
nisistä rajoitteista. Lisäksi olettamukset datan luonteesta saattavat olla virheellisiä
tai käytetään datalle soveltumattomia tilastollisia malleja. Pahimmillaan tämä johtaa
tilanteisiin, joissa tutkimuksen tuloksia ei pystytä toistamaan. Erilaisten laskennal-
listen työkalujen sekä algoritmien kehittäminen näiden ongelmien ehkäisemiseksi
onkin ensiarvoisen tärkeää tutkimusten luotettavuuden kannalta. Tässä työssä keski-
tytäänkin sovelluksiin, joilla pyritään ratkaisemaan tällä osa-alueella ilmeneviä on-
gelmia.

Tutkimuksessa vertaillaan yleisesti käytössä olevia kvantitatiivisen proteomiikan
ohjelmistoja ja yleisimpiä datan normalisointimenetelmiä, sekä kehitetään uusia da-
tan analysointityökaluja. Menetelmien keskinäiset vertailut suoritetaan useiden sel-
laisten standardiaineistojen kanssa, joiden todellinen sisältö tiedetään. Tutkimukses-
sa vertaillaan lisäksi joukko tilastollisia menetelmiä näytteiden välisten erojen ha-
vaitsemiseen sekä kehitetään kokonaan uusia tehokkaita menetelmiä ja osoitetaan
niiden parempi suorituskyky suhteessa aikaisempiin menetelmiin. Kaikki tutkimuk-
sessa kehitetyt työkalut on julkaistu avoimen lähdekoodin sovelluksina.
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1 Introduction

Proteins are large molecules made of amino acid residue chains. They are generally
considered as the executive molecules in the cells because many of them act as cat-
alytes in biochemical reactions [1]. For example, proteins can act as carriers which
move molecules around or they can be structural proteins for cellular components.
The large-scale study of proteins is called proteomics [2]. Compared to genomics,
proteomics is quite often considered as a more challenging field of research [3]. This
is because the genome of an organism is commonly considered as being somewhat
constant while the proteome (i.e. the set of expressed proteins) rapidly changes be-
tween individual cells and over time [3].

In principle, proteomics aims to understand the function of all proteins that are
found from an organism [4]. It is an intriguing possibility to systematically identify
and analyse all the proteins that are expressed by a cell or tissue. For example, the
human proteome project (HPP) aims at mapping the entire human proteome [5]. It
has been estimated that there are around 20 000 protein-coding genes in human and
with currently available techniques, 90 % of these proteins are now mapped with
credible evidence [6].

Proteomics can be done in multiple ways, but conventionally it is divided into
two main paradigms: top-down and bottom-up proteomics [4]. In the top-down
proteomics, the analysis is performed using intact proteins, and in the bottom-up
paradigm, the proteins are first cleaved into smaller parts before they are analysed.
These smaller sections of proteins are called peptides and they can be used for iden-
tification and quantification of the proteins [3].

Currently the most common method to investigate activity, interactions, and
functions of proteins on large scale is high-throughput mass spectrometry (MS)
[7; 8]. Quantitative MS methods are used to analyse protein expressions as a func-
tion of cellular state [7]. They have been used, for instance, to gain information
about the molecular composition, regulation, and pathways in various types of sam-
ples [9]. They are also often used in search of clinical biomarkers that are indicators
of biological or pathogenic processes or responses to therapeutic interventions [10].
In drug discovery, mass spectrometry can be used to help designing compounds that
interfere with protein functions [11]. Overall, accumulating knowledge of molecular
processes has a critical role on our understanding, diagnosis, and treatment of various
diseases.
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Although mass spectrometry can be used to detect and quantify thousands of pro-
teins in a sample, there remain multiple challenges in the analysis of MS data. One
major challenge is that the results from MS analyses are susceptible to biases [12].
These can originate for example from instrument calibration, sample preparation, or
temperature changes [13]. The exact reason is usually unknown so it cannot be com-
pensated by adjusting the experimental settings [12; 13]. Therefore, normalization
methods are used to make the acquired data comparable [12]. However, it is typically
not obvious which normalization method should be used. To this end, in Publication
I, a set of widely used normalization methods were benchmarked in the context of
mass spectrometry proteomics.

Another important aspect in MS data analysis is peptide quantification. It can
be done either at the precursor ion or at the fragment ion level [4]. At precursor
level, the intensities of the precursor ions correspond to the peptide abundance [14].
However, the peptides must still be simultaneously fragmented and identified. It
has been suggested that the number of identified peptides (i.e. spectral counting)
could be used directly as measure of peptide quantification, but it is known to have
poor signal-to-noise ratio [15; 16]. As this would allow a much simplified workflow,
the suitability of spectral counts for differential expression analysis was assessed in
Publication II.

Detection of differentially expressed proteins is one of the most common tasks in
many MS proteomics studies. To find statistical differences between sample groups,
differential expression analysis is performed on the quantified protein data [17]. For
this purpose, the standard method has been the Student’s t-test, although it might
not always be an optimal solution [18; 19]. Similarly as with normalization, the
selection of the most suitable method is not straightforward. To enable data-driven
selection of the statistic, a reproducibility-optimized test statistic was implemented
and published as an R package in Publication III. It adjusts a modified t-statistic
based on the underlying data and it has been successfully applied to various omics
studies, including proteomics [20].

A special feature of bottom-up proteomics is that the measurements are made at
the peptide-level, but in most cases they are summarized to protein-level for further
analysis [21]. While this commonly used approach was used also in Publication III,
it has its limitations, as peptides from the same protein can behave differently. To
take this into account, a differential expression analysis method leveraging all the
peptide-level data was introduced and published as an R package in Publication IV.
Finally, the emerging data-independent acquisition proteomics has made it feasible
to combine the reproducibility optimization procedure with the peptide-level data.
Such approach was developed and published in Publication V.

In conclusion, this work evaluates common steps of mass spectrometry pro-
teomics data analysis and provides suggestions for normalization and differential
expression analysis. Many of the insights that were gained throughout this work are
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Introduction

applicable also more generally to omics data beyond mass spectrometry proteomics.
For instance, the data-driven approach for differential expression analysis is widely
applicable to other omics data. The developed software tools that were published as
open source allow researchers to apply the new methods in their research.

1.1 Aims of the Thesis
The overall aim of this Thesis is to improve existing and develop new computa-
tional tools to address research problems in the field of biotechnology. The data
acquired from biological samples contain a lot of noise, which leads to loss of rele-
vant information. A part of this noise is related to differences in the sample prepa-
ration, whereas another part of it is related to technical limitations of the analysis
equipment. Because in many cases there are very limited chances to prevent the oc-
currence of noise, developing algorithms and computational tools to overcome the
underlying issues is of most importance. For example, the results that are based on
label-free mass-spectrometry proteomics are commonly used for further validation
studies, which can be expensive and time consuming. Therefore, it is important to
produce as accurate candidate lists as possible from this discovery phase using effec-
tive computational tools. The resulting findings have the potential to, for example,
increase understanding of complex biological systems including disease processes,
to be used as predictive or diagnostic biomarkers, or to aid in drug development.

To address these needs, the specific aims of this Thesis work are as follows:

1. Investigate and evaluate existing computational methods for processing label-
free mass-spectrometry based proteomics data.

2. Improve existing tools and develop new statistical approaches for differential
expression analysis of mass spectrometry proteomics.

3. Implement and publish the new methods as easy to use software packages.

Publications I, and II cover the investigation of existing methodologies and Publi-
cations III, IV and V describe new statistical approaches that are made available as
software packages written in R.

1.2 Structure of the Thesis
The basics of mass-spectrometry proteomics are shortly explained in Chapter 2. Soft-
ware tools to perform quantification, methods for data normalization, and various ap-
proaches for differential expression analysis are described in Chapter 3. The datasets
used in the present work are described in Chapter 4 and the main results of the related
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publications are given in Chapter 5. Reprints of these articles are given at the end of
the Thesis.
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2 Mass spectrometry in proteomics

Mass spectrometers are used to quantify in high-throughput complex protein mix-
tures that have been generated in biological studies (Figure 1). They measure the
masses of molecules, or more specifically, their mass to charge (m/z) ratios and
produce mass spectra of the samples. In principle, a mass spectrometer consists of
three main parts: an ion source, a magnetic field to accelerate the particles, and a
detector. Electromagnetic fields are used to move the molecules, which means that
the molecules must be first ionized [22].

A widely used method to obtain an overall protein profile of a sample, is the
so-called label-free shotgun proteomics [8]. While the present work focuses on the
label-free proteomics, there are labeled techniques, where the samples are labeled
for example using stable isotopes [23]. The following sections describe the typical
steps of a mass spectrometry experiment.

2.1 Protein digestion and peptide separation
An important part of the protein identification process is the protein digestion (i.e.
the cleaving of proteins into peptides). The enzymes that perform digestion are called
proteases. For mass spectrometry experiments, proteins are commonly cleaved en-
zymatically by trypsin [7].

For peptide separation, a commonly used technique is chromatography. It in-
cludes a family of techniques which separate mixtures into their individual com-
ponents. In mass spectrometry proteomics, integrated liquid-chromatography (LC-
MS) systems are often preferred for complex samples [7]. This is in comparison to

Sample
preparation

Protein
digestion

Peptide
separation

Sample
ionization

Mass
spectrometry

Data
analysis

Figure 1. Workflow of a typical mass spectrometry experiment. Proteins are first digested into
peptides, then separated using chromatography and further ionized for mass spectrometry. After
mass spectrometry, the peptides are identified computationally and the corresponding protein
abundances are estimated. Finally, the data can be analyzed using various computational tools.
This study focuses on the method development.
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Spray
needle
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Mass
spectrometer

(a)

Ion source

Accelerator

Ion
be
am

Magnet
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(b)

Figure 2. Principles of mass spectrometry. (a) Inionization of separated peptides by the
electrospray ionization. (b) Measurement of mass-to-charge ratios of the charged ions.

MALDI based systems, where a laser is used to ionize dry crystalline samples, while
liquid based separation techniques allow direct coupling to a mass spectrometer via
electrospray ionization (ESI) [7]. Because of the high-pressure pumps that are used,
the process is referred to as high-pressure liquid chromatography (HPLC).

2.2 Ionization and mass spectrometry
In mass spectrometry proteomics, the electrospray ionization [24] is primarily used.
In principle, a liquid flow carries the sample material to the ionization source (Figure 2a).
The liquid is sprayed from a needle with several kV of electrical potential between
the needle and mass spectrometer [8].

Peptide ions enter mass spectrometer and are guided and manipulated by elec-
tric fields in a vacuum system. In the simplest form, they are first accelerated and
then their flight path is altered [8], which can be measured by a particle detector
(Figure 2b). There are different variations of these instruments, but each of them
generate mass spectrums that report the signal intensities of the ions at mass-to-
charge (m/z) scale [22].

2.3 Data acquisition
In shotgun proteomics the MS instrument is commonly operated in the so-called
data-dependent acquisition (DDA) mode, where the machine selects and isolates in-
tense precursor ions and fragments them to produce a secondary spectra (i.e. tandem
mass spectra, MS/MS) [4]. To get peptide identifications, the acquired spectra are
matched to a database of peptide sequences. Shotgun proteomics suffers from low
reproducibility because of under-sampling and because MS/MS spectra are quite of-
ten taken outside the elution peak (i.e. when most of the peptide to be identified
would be passing out of the chromatography column). Therefore, only a proportion
of peptides that are detected are identified reliably in all samples [25]. The so-called
targeted mass spectrometry that includes for example selected reaction monitoring
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(SRM) [26], complements shotgun proteomics. In targeted SRM analysis only such
molecular ions that match the mass of the targeted peptide are selected and subse-
quently fragmented. By counting the precursor-fragment ion pairs (i.e. SRM transi-
tions), the targeted peptides are quantified [26; 27].

A more recent technology, the data-independent acquisition (DIA) essentially
combines the volume of protein identifications in shotgun proteomics and the repro-
ducibility of selected reaction monitoring. Multiple different DIA methods have been
published, such as MSE [28], XDIA [29], SWATH [30], MSX [31] or UDMSE [32],
each having their unique properties. Regardless, they all collect MS/MS scans in-
dependently without precursor information during the acquisition process. Because
of the dissociation between precursor and its fragments, processing of the acquired
data is more challenging compared to the more standard data-dependent acquisition.
While the research has been focused on preprocessing and protein quantification
[33; 34; 35; 36], much less attention has been paid on the statistical analysis of DIA
data. Only few tools claim to take into account the properties of DIA data, such as
MSstats [37] and mapDIA [38].

2.4 Peptide identification
When the peptides are fragmented and analyzed by mass spectrometry, their ex-
act masses are acquired. The masses are then compared against theoretical masses
produced computationally (in silico) from a reference database. The aim is to find
such sequences from a given database that explain the experimental data. Protein
sequences in a reference database are digested in silico by scanning the sequence for
possible cleavage sites and calculating the exact masses for the peptides [7; 39; 40].
In practice, an algorithm performs the comparison between the theoretical and ac-
quired peaks. One of the first such algorithms was SEQUEST [41], which calculates
cross-correlation similarity between mass-to-charge ratios of the observed tandem
mass spectrum fragment ions and the ratios predicted from the reference database.
There are several open source tools and commercial programs available that are de-
signed for this purpose, including for example Mascot [42], OMSSA [43], TANDEM
[44], Andromeda [45], Comet [46], and MS-GF+ [47].

An up-to-date reference of protein sequences for a selected organism needs to be
obtained before performing the search. One of the most commonly used database is
UniProt [48] which contains both manually curated protein entries of SwissProt [49]
and automatically added unreviewed protein entries of TrEMBL [50] for a number
of organisms. There are also other similar databases e.g. RefSeq [51] or Ensembl
[52]. For specific use cases, there is a collection of reference databases available, e.g.
UniPept [53] to find unique tryptic peptides in metaproteomics, IGC [54] for human
gut metaproteome, or HOMD [55] for human oral microbiome. Similarly, there are
databases like cRAP for common contaminants in proteomics experiments, but these
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can also come as parts of the search engines. Finally, instead of using a database,
proteogenomics can provide a very specific reference that is generated directly from
DNA- or RNA-sequencing data of the same set of samples [56]. In general, it is
critical to have the expected sequences in the search space and narrowing down the
possible candidates helps in achieving reliable identifications.

Peptide identification without relying on a database of protein sequences at all
is possible using de novo sequencing methods, e.g. PEAKS [57], pNovo [58], or
Novor [59]. These approaches allow the identification of peptides that are not in any
database or are otherwise unknown. However, deriving a sequence from a fragment
mass spectrum relies on the spectral quality, mass accuracy, and resolution of the
instrument [60].

One measurement for technical progress of mass spectrometers is the number
of proteins that can be identified in a study [7], although a dependence between the
experiment length (i.e. chromatography gradient length) and the number of identified
proteins has been observed [61]. There are often thousands of identified proteins in
an experiment and the numbers are slowly increasing as the technology progresses.
Despite the increasing numbers, around 75 % of the acquired spectra still remain
unidentified [62], which is mainly because of poor signal-to-noise ratio, incomplete
reference databases, and post-translational modifications that are not expected [63].

While mass spectrometry proteomics can be considered as a technology that can
probe the majority of the proteins in a sample [7], there is also a major gap be-
tween the concentrations of the most abundant molecules and those existing as trace
amounts. Current mass spectrometry can detect differences of around five orders of
magnitude while protein concentrations can span 12 orders of magnitude [63]. There
are ways to overcome this issue, for example by depleting most abundant proteins
with antibodies before analysis to help in the detection of low abundance proteins
[64]. However, analysis of complex mixtures remains uncomprehensive and if a par-
ticular peptide is not identified from a sample, it does not indicate that it was not
originally present [7].

2.5 Quantification
Quantitative analysis in mass spectrometry proteomics can be done by labeling sam-
ples chemically (ICAT, iTRAQ) [65; 66] or metabolically in a cell culture (SILAC)
[23]. These methods are commonly used for relative quantification, but absolute
quantification can be achieved by spiking the sample with synthetic peptides to which
the unlabelled peptides are compared (AQUA) [67].

Due to the cost and extra work of isotope labelling methods, various label-free
methods have emerged. The quantification can be done either at the precursor ion
(MS1) or fragment ion (MS2) level. On MS1-level the intensities for precursor ions
are measured over time (Figure 3a). The intensity at a particular time corresponds to
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Figure 3. Example visualizations from raw data of an MS experiment. (a) Total ion current over
time. (b) Tandem mass (MS/MS) spectrum from a peptide.

the peptide abundance [14], but the corresponding peptides must simultaneously be
identified on MS2-level (Figure 3b). Alternatively, the number of identified peptide
spectra can directly be used in the so-called spectral counting method. It is obviously
more straightforward to implement, but is known to have poor signal-to-noise ratio
[15; 16]. One of the suggested improvements to spectral counting has been using
cumulative fragment signal intensities per protein [68; 69].
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After acquiring the estimated protein expression levels from the quantification soft-
ware (commonly provided in a matrix format), the data analysis can be done. This
usually includes quality control of the samples, data normalization to make the sam-
ples comparable, sometimes complemented by imputation of missing values, and
finally differential expression analysis to estimate which proteins have different ex-
pression levels between the compared sample groups (Figure 4). These steps are
described in more detail in the next subsections.

3.1 Quality control
The first step of computational analysis involves quality control of the acquired data.
This includes checking the distribution of expressions, sample correlations, overall
clustering of the samples, and principal component analysis (PCA). These are done in
order to pinpoint any deviating samples, which might affect the outcome and should
possibly be removed from the analysis.

The expression value distributions from each sample are commonly visualized
by box plots (Figure 5a) or violin plots. Box plots visualize numerical data by their
quartiles and they have extending lines (whiskers) that indicate variability outside the
upper and lower quartiles of the data. Median value is shown as a band in the middle
of the diagram. Violin plots are similar but they also show the probability density of
the data.

Correlations between samples describe the similarity between the samples on a
general level, when all values are taken into consideration. Commonly used options
are the Pearson’s correlation coefficient for linear relationships between the values
and Spearman’s rank correlation to assesses ranking between the values. With mul-

Data matrix Quality control Normalization Imputation Differential expression

Figure 4. Workflow of data analysis in mass spectrometry proteomics experiments. This study
involves all steps through evaluating different methods and their combinations. New tools that are
published deal with the differential expression analysis.
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Figure 5. Examples of quality control visualizations for simulated high-throughput mass
spectrometry proteomics data with five replicates in two groups. (a) Box plot. (b) Correlation heat
map. (c) Similarity dendgrogram using Euclidean metrics. (d) Principal component analysis.
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tiple samples, the correlation is often visualized as a heat map (Figure 5b).
In hierarchical clustering the samples are grouped together according to their

similarity metric, which is often either the sample correlation or Euclidean distance.
The similarity is visualised as a dendrogram; a graph where the most similar samples
end up nearest to one another (Figure 5c). There are multiple options in agglomera-
tive clustering that can be used to select in which order the nodes become connected
together. Additionally, hierarchical clustering is often used together with heat maps
to re-order the image.

Principal component analysis (PCA) is also commonly employed to visualize
the data (Figure 5d). It is a procedure that uses transformation to convert a set of
values to principal components, which are linear combinations of the initial variables.
The principal components are supposed to account as much of the variability in the
data as possible, in descending order [70]. This means that often only the very first
components are needed to represent the data.

3.2 Normalization
Mass spectrometry based proteomics has gone through very rapid development in
recent years. Its current aims include identification and quantification of proteins as
accurately as possible [71]. Mass spectrometry workflows can detect thousands of
proteins and their modifications [72], but the results from the MS analyses are still
susceptible to biases [12]. These biases are caused, for example, by differences in
sample preparation, changes in sample temperature, instrument calibration, or de-
pend on the measured protein abundances [13]. The exact reason of a bias is usually
unknown which means that it cannot be compensated by adjusting the experimental
settings [12; 13].

Normalization aims to make the acquired data of the samples more comparable
[12]. Many of the normalization methods have originally been developed for the
microarray technology [13], but several of them can be used similarly for proteomics
data as well. Because in mass spectrometry the analysis of multiple samples one
by one takes usually long time and the performance of the instrumentation changes,
it has also been suggested that linear regression normalization that accounts for run
order of the samples is useful [73].

There are extensive reviews inspecting various normalization methods [74; 75;
76; 77]. For example, Bolstad et al. [74] and Choe et al. [75] found no major
differences between the methods, while Callister et al. [78] claimed linear regression
normalization as the best. In these studies the different normalization methods were
evaluated by variance across the replicates, looking at the absolute distance between a
LOESS curve and the x axis of an MA plot, comparing observed fold changes against
known changes, or by applying a t-test between groups of samples and evaluating the
results. Many of these approaches are also used in the present research.
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Large and systematic comparisons of the normalization methods in context of
proteomics have been lacking. Evaluation using multiple data sets and differential
expression analysis has not been systematically performed yet. In addition, the ac-
curacy of logarithmic fold change (LogFC) estimates (i.e. accuracy of difference
in expression level between groups) after normalization has not been systematically
investigated before on proteomics data. To address this, a thorough comparison of
popular normalization methods and their variants was performed in the present study
(Publication I). To thoroughly benchmark the normalization methods, three label-
free proteomics data sets were used. They include known concentrations of specific
spike-in proteins so they are suitable for testing because the differences between
sample groups are known, and therefore one can evaluate the ability of the methods
to find the true signal in the data. In addition, a mouse study was included to reflect
a typical research setting.

Inherently, the various normalization approaches perform differently depending
on the data, making the selection of the most suitable method hard. To help with
that, different tools have been proposed, including SPANS [79] and Normalyzer [12].
They include a large set of different normalization methods together with frequently
used evaluation metrics to aid in the selection. These include the median coefficient
of variation (CV) [78], median standard deviation (SD) [73], pooled estimate of vari-
ance (PEV) [12; 78; 73], pooled coefficient of variation (PCV) [12], and pooled
median absolute deviation (PMAD) [12].

The next subsections outline the ideas of the most popular normalization tech-
niques which were evaluated.

3.2.1 Quantile normalization

Quantile normalization [80] is a crude technique to make statistical properties of two
distributions similar. In the quantile normalization procedure, a reference distribution
is used to change the properties of another distribution of equal length. The process
is based on ranking the values of both distributions, then replacing the original values
with the values of the reference distribution having the same rank. Thus, the highest
ranked value in the data gets the value of the highest ranked value in the reference
distribution, the next highest value the next etc. Overall, the distribution becomes a
permutation of the reference distribution according to ranks. This approach has been
common in microarray studies.

3.2.2 Median normalization

Median normalization assumes that the samples, and more specifically their intensity
values, are separated by a constant. To counteract for this effect, median normaliza-
tion simply scales all the samples to have identical median values. Here, the median

25



Tomi Suomi

normalization was implemented using Normalyzer [12].

3.2.3 Linear regression normalization

The underlying assumption with linear regression normalization is that the bias in the
data is linearly dependent on the protein intensities (i.e. as the intensity increases, so
does the bias) [78]. We explored the robust linear regression (RLR) and its variants
RlrMA and RlrMACyc. The first method uses the median values of each protein as
its reference to which all the samples are normalized against. The RlrMA is similar,
but the data are MA transformed (i.e. converted to fold change vs average -axes)
before normalization. In the RlrMACyc, there is no common reference (such as
median) anymore, but instead the MA transformations and the normalizations are
done pairwise between all pairs of samples in cyclic fashion. The standard RLR
normalization was implemented using Normalyzer [12] and the variants using the R
package MASS [81].

3.2.4 Local regression normalization

The local regression normalization technique extends linear regression normaliza-
tion. Unlike a simple linear regression, it assumes that the relationship between the
intensity and possible bias is not linear [78]. Here, two variants of locally estimated
scatterplot smoothing (LOESS) were explored. The first method utilizes MA trans-
formed data where mean of all samples is used as a reference. The second variant
(LoessCyc) selects only two samples at a time for MA transformation and normal-
ization, but the process is iterated multiple times over all the samples. Both variants
were implemented with the limma R-package [82].

3.2.5 Variance stabilization normalization

The underlying assumption with variance stabilization normalization (VSN) is that
the variance in the data is dependent on the overall mean (i.e. proteins with higher in-
tensity have higher variance). Thus, this approach aims to make the sample variances
independent from their corresponding mean intensities. This is achieved by paramet-
ric transformations and maximum likelihood estimation [83]. Here, the method was
implemented using the Bioconductor R-package Vsn [83].

3.3 Imputation
Mass spectrometry based proteomics commonly suffers from missing values. Es-
sentially, the missing values are a result of peptide peaks that are not recorded in a
sample during MS measurement [13]. Such missing values also propagate to protein-
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level when the values are eventually summarized. Overall, the missing values are
roughly divided to two main categories. They are either abundance-dependent (i.e.
stemming from instrument limitations) or the values are missing completely at ran-
dom.

Besides proteomics, imputation has gained a lot of attention in single-cell RNA-
sequencing, where the acquired data is even more sparse. An evaluation of 18 impu-
tation methods [84] suggested that scVI [85], DCA [86], and MAGIC [87] perform
well.

While benchmarking the various normalization methods and differential expres-
sion statistics in this study, we have also investigated the effects of imputation in the
context of mass spectrometry proteomics data [88]. The next sections outline the
various imputation methods that were used.

3.3.1 Zero imputation

First, a simplistic method of zero imputation was tested, where all missing values
were replaced with zeros. This is more of a technical operation that allows the statis-
tical methods to calculate differential expression statistic in situations with too many
missing values.

3.3.2 Background imputation

Background imputation is another simple approach that uses the lowest intensity
value of the whole data set to represent the background. This method simulates a
situation where the lowest detected value is the technical limitation of the instrument
and it is used as such to represent all the missing values.

3.3.3 Censored imputation

In censored imputation, only such proteins that have more than one missing value per
sample group are considered as missing because of technical limitations. The lowest
intensity in the whole data is used for imputation, similarly as with the background
imputation. In cases where only a single value is missing, it is considered missing
completely at random, so no imputation is performed.

3.3.4 K-nearest neighbor imputation

The k-nearest neighbor (k-NN) imputation works by finding the k most similar pro-
teins from other samples than the one being imputed for. This is commonly measured
by Euclidean metrics. The average of the k proteins is used to estimate the missing
value. The model can also be weighted so that more similar proteins affect the es-
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timation more [89]. A number of k between 10 and 20 has been suggested to be
appropriate [89].

3.3.5 Bayesian principal component analysis imputation

The Bayesian principal component analysis (BPCA) imputation combines principal
component regression and Bayesian estimation to calculate the expected values for
the missing data [90]. If a standard principal component analysis is performed on
the data, the resulting visualizations should resemble each other before and after the
imputation procedure. Our implementation was based on the pcaMethods R package
[91].

3.3.6 Local least squares imputation

The the local least squares (LLS) imputation uses the standard least squares regres-
sion to estimate the missing values. A set of k most similar proteins from other
samples are used for the regression mode. In most cases a k value of 150 is consid-
ered enough [92; 93]. Our LLS imputation was based on the pcaMethods R package
[91].

3.3.7 Singular value decomposition imputation

Singular value decomposition (SVD) obtains mutually orthogonal expression pat-
terns that allows approximation of all values in the data via linear combinations [94].
These patterns are identical to principal components and called as eigenproteins. The
missing values are estimated by regressing the protein against the k most significant
eigenproteins, then using the coefficients to reconstruct the original values [94]. It
has been observed that k often needs to be only 20 % of all eigenproteins [89], which
was also used in this study. Because singular value decomposition works only with
complete matrices, the missing values are first replaced for example by mean values
and the imputation procedure is repeated until convergence [94].

3.4 Differential expression analysis
Differential expression analysis is performed on the data to find statistical differences
between sample groups. Such analysis is often performed on different omics data,
where the detected features are for example gene or protein expressions. One of the
most common method has been the Student’s t-test, but is not always an optimal
solution [18; 19]. While many alternative methods are available [95; 96; 82], it
seems that different statistics work well in different datasets [97; 98; 99; 100]. New
statistical approaches are constantly being developed but unfortunately there is no
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consensus on how to select an appropriate method a priori. Therefore, currently the
aim is to select a method that is shown to perform consistently well in similar data
as the one being analyzed.

3.4.1 Spectral counting methods

Counting the number of identified peptides (i.e. spectral counting) has been used
as an alternative way to quantify proteins instead of using MS1 intensity. This is
considered easier approach and numerous methods have already been suggested for
differential expression analysis of spectral count data [16; 101; 102; 103; 104; 105;
106; 107; 108]. Some of these have been developed specifically to handle spec-
tral count data, while others are adaptations of previously published microarray data
analysis tools.

Sometimes the spectral counts are additionally normalized by protein lengths
and divided by the sum of all counts in a sample. This produces normalized spectral
abundance factors (NSAF) [109] that are suggested to have similar properties as
microarray data [102]. This allows to directly use many of the methods designed for
microarray data. Other approaches consider directly the properties of spectral counts.
For example, QSpec [16] uses Poisson distribution to model the counts, while others
rely on beta-binomial distribution [103].

Commonly the methods are evaluated using simulated or spike-in data [16] or
relying on specific knowledge about the biology [101]. In Publication II, we also
considered the overall similarity of the spectral counting methods when the same
input data was given.

3.4.2 ROTS

The main idea of reproducibility-optimized test statistic (ROTS) is to robustly se-
lect a dataset specific statistic. This is achieved by performing a range of modi-
fied t-statistics and selecting the one that produces highest overlap of top features
over group-preserving permuted datasets. The method has been applied in vari-
ous contexts, including microarrays [110], mass spectrometry proteomics [20], bulk
RNA-seq [111], as well as single-cell RNA-seq [100]. While the performance of the
method has found to be good, it is also practical to select a statistic that optimizes the
top ranked features. After all, it is often the case that only a few of the top candidates
are selected for further validation.

In Publication III we introduced an R package to perform ROTS analysis and
demonstrated its usage using three different case studies. At the same time, multiple
visualization options (Figure 6) were included to the package for convenience. Fi-
nally, the method has been published in Bioconductor where it has remained around
the top 20 % of most downloaded packages since.
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Figure 6. Visualizations provided by the ROTS R-package include (a) volcano plot, (b) MA plot, (c)
reproducibility plot, (d) histogram of p-values. (e) PCA plot, and (f) heatmap of differentially
expressed features.
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Data analysis

3.4.3 PECA

In bottom-up proteomics the measurements are made at the peptide-level, but in most
cases proteins are the desired units to quantify and, for example, measure differen-
tial expression. Thus, intensities are eventually combined to protein-level using for
example mean [112], sum [113], or linear models (e.g. [114; 115; 116]). Overall, es-
timation of protein abundances and differential expression analysis are challenging
because even peptides that originate from the same protein can behave differently.
However, some peptide-centric methods have been proposed [117].

In Publication IV we propose a peptide-level expression change averaging method
(PECA) to determine differential protein expression using directly the peptide-level
measurements. By combining multiple statistics from the same protein (i.e. pep-
tides), we are able to improve the differential expression analysis in MS-based pro-
teomics studies. Briefly, the differential expression statistic is calculated for each
measured peptide and the p-value of median peptide-level statistic is used for scor-
ing. Because under the null hypothesis p-values follow uniform distribution U(0, 1)
and the order statistics from it follow a beta distribution, the overall significance of
the ith peptide (here median) can be estimated via beta distribution’s probability den-
sity function [118]. This method is completely different from tools like InfernoRDN,
which only provide different roll-up methods to summarize peptide abundances be-
fore statistical testing. [119].

The method tailored for mass spectrometry proteomics was implemented as part
of an R package and published in the Bioconductor repository.

3.4.4 ROPECA

In Publication V, we develop the idea even further, and introduce a new reproducibility-
optimized peptide change averaging method (ROPECA) to perform differential ex-
pression analysis on mass spectrometry proteomics data. This method is made pos-
sible by the emerging data-independent acquisition (DIA) proteomics technology,
which in a way combines both shotgun proteomics and targeted proteomics [30; 31;
32].

In data-independent acquisition the MS/MS scans are gathered systematically
throughout the process, but it happens without clear association between the precur-
sor and its fragments. This makes the identification of the peptides more difficult,
and has made the processing much more challenging. Methods and other software
for data-independent acquisition data have only recently been published; most of the
progress has been in pre-processing of the data and quantification of the proteins
[120; 35; 36]. For statistical analysis of the data obtained using DIA, there has not
been many improvements. While there are few exceptions, including MSstats [37]
and mapDIA [38], the data analysis methods are quite limited and there is still room
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for improvement.
The new method uses all peptide measurements in estimating the overall protein-

level changes, much like the previously developed PECA approach. However, it also
considers the reproducibility of the top ranked features in a way ROTS does. Com-
bining two of the best performing approaches is made possible by DIA proteomics,
where systematic data collection produces much less missing values on the peptide-
level. While the method can also be used with traditional shotgun proteomics data,
its performance might suffer from missing values.

The method has been included as part of R package PECA, which has been pub-
lished in the Bioconductor repository.
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4 Datasets

Advances in high-throughput technologies such as mass spectrometry proteomics,
has led to a massive accumulation of data. Today, most of the mass spectrometry
proteomics datasets are publicly available from repositories such as PeptideAtlas
[121] or PRIDE [122]. This opens up the possibility of mining and reusing the data
[123]. The following sections describe the datasets used in this Thesis.

4.1 Technical datasets
The UPS1 data we use for benchmarking, was originally published as part of our
comparison study [20], where a number of statistical methods were assessed in the
context of mass spectrometry proteomics. The data includes 48 proteins of the uni-
versal proteomics standard set (UPS1) that are spiked into a yeast proteome in differ-
ent amounts. Concentrations of 2, 4, 10, 25 and 50fmol/µL were created in three
technical replicates. The data is publicly available from the PRIDE Archive (id
PXD002099) and it has been used in Publications I, II, and IV.

The CPTAC data [124; 125; 126] also contains 48 universal proteomics standard
set (UPS1) proteins that are spiked into a yeast proteome in varying amounts. It has
spike-in concentrations of 0.25, 0.74, 2.2, 6.7 and 20fmol/µL with three technical
replicates. Originally, the data was sent to multiple laboratories for independent
analysis to assess the current state-of-the-art protocols. All data are available from
the CPTAC-portal, from where we processed the mass spectrometry data acquired at
one of the anonymized test sites (Orbitrap instrument located at site 86). The data
has been used in Publications I and III.

The shotgun standard data (SGSD) of Bruderer et al. [25] has 12 spike-in pro-
teins that have been added to a human cell line background for benchmarking pur-
poses. In total, it has eight sample groups with different spike-in concentrations, each
with three technical replicates. One of the eight sample groups has a large relative
spike-in concentration compared to the background. Because we have previously
observed that this might lead to issues at least with DDA data [20], we decided to
exclude the sample group from our analysis. The data are publicly available from
PeptideAtlas (id PASS00589) and has been used in Publication I. The same bench-
mark data, but acquired in data-independent acquisition mode and processed using
Spectronaut [127], was used in Publication V.
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4.2 Biological datasets
The mouse data of Vehmas et al. [128] contains liver samples of five transgenic mice
and seven wild-type mice. It is publicly available from the the PRIDE Archive (id
PXD002025) and it was used in Publication I to assess the similarity of normaliza-
tion methods in biological context.

To test the similarity of spectral counting methods in Publication II, three dif-
ferent biological datasets were used. A rat data containing brain tissues of three
epileptogenic and three control rats, wound healing data from six pigs, and finally, a
yeast data of Pavelka et al. [102] containing eight samples from different phases of
cell growth.

A hybrid proteome data from Kuharev et al. [129], originally used for testing
different quantification tools, is used here to asses differential expression analysis.
The data is a mixture of three different organisms (human, yeast and E. coli) and it
has been prepared in such a way that there are two different sample groups, each with
five technical replicates. The proportion of human proteome is kept constant while
yeast and E. coli change between the groups. Roughly 35 % of the total proteins are
differentially expressed, which should reflect actual biological samples more than
spike-in data [129]. The data are publicly available from the the PRIDE Archive (id
PXD001240) and it was used in Publication V.

A longitudinal human twin study by Liu et al. [130] contains data from 72
monozygotic and 44 dizygotic twins from two different time points. It has plasma
proteins quantified in data-independent acquisition mode using the SWATH tech-
nique [131]. The data is publicly available from the the PRIDE Archive (id PXD001064)
and is used in Publication V to evaluate our new method using biological data.
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5 Results

5.1 Benchmark of existing methods
The overall proteomics workflow includes multiple steps starting from peptide iden-
tification and their quantification, both having a number of competing algorithms
and methods. To this end, we have evaluated a number common of software work-
flows that perform these tasks [88]. Briefly, we benchmarked the freely available
MaxQuant, OpenMS, Proteios, and the commercially available Peaks and Progene-
sis softwares. We found Progenesis to perform well both in terms of differential ex-
pression analysis results and the amount of missing values [88]. The commonly used
MaxQuant software performed best in estimating the fold changes and the differen-
tial expression analysis, but only after filtering the data [88]. Overall, the missing
values produced by the different workflows reduced their performance, but we found
that imputation or filtering could be used to mitigate the issue [88].

Subsequent steps of the proteomics workflow include normalization of the data
and statistical analysis. The following sections summarize the comparisons of exist-
ing normalization methods, and differential expression statistics (Publications I and
II).

5.1.1 Comparison of normalization methods

In addition to the different software, the effects of various normalization methods
were explored. We found that normalization decreased variation between technical
replicates with all the tested data (Figure 7). Especially the variace stabilization nor-
malization (Vsn) decreased pooled median absolute deviation (PMAD) more than
other methods (Wilcoxon signed rank test p < 0.05), except EigenMS in the CP-
TAC data. Other measures were the pooled coefficient of variation (PCV) and the
pooled estimate of variance (PEV), both leading to the same conclusion. Similar-
ity of technical replicates using Pearson correlation was also highest with Vsn in all
tested spike-in datasets (Figure 8).

Besides the differential expression analysis, the accuracy of the fold change es-
timates of the protein intensities were evaluated. There were differences in the
accuracy of the fold changes by the different software workflows, but MaxQuant
consistently produced low mean squared errors (MSE) between observed and the
expected changes. A detailed investigation was performed on the different normal-
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Figure 7. The effect of normalization methods on intragroup variation (pooled median absolute
deviation, PMAD) between technical replicates in UPS1, CPTAC and the SGSD data
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Figure 8. The effect of normalization methods on intragroup variation (Pearson correlation
coefficient) between technical replicates in UPS1, CPTAC and the SGSD data
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Figure 9. The log2 fold changes of the spike-in proteins (white box plots) and the background
proteins (grey box plots) in (a) 10 fmol vs 25 fmol comparison of UPS1 data and (b) 0.74 fmol vs
2.2 fmol comparison of CPTAC data. The real fold changes of the spike-in proteins are
represented by dashed lines.

ization methods (Figure 9). The fold changes of the spike-in proteins were typically
underestimated for both normalized and log2-transformed data. The variance stabi-
lization normalization (Vsn) sometimes resulted in smaller fold changes compared
to other methods, e.g. in 0.74 fmol vs 2.2 fmol comparison of the CPTAC data
(Wilcoxon signed rank test p < 0.01). In the UPS1 data, the fold changes of the
spike-in proteins were generally closer to the theoretical changes after normalization
regardless of the method, than in the un-normalized log2-transformed data.

5.1.2 Comparison of spectral counting methods

We evaluated the performance of multiple spectral counting methods and their vari-
ants (PLGEM, PepC, QSpec, Beta Binomial) in detecting differential expression.
Proteins were ranked based on the statistical significance of their differential ex-
pression. Sums of absolute rank differences for all proteins were calculated for all
pairwise comparisons and for randomly permuted ranks to determine statistical sig-
nificance of the differences. Overall, the observed differences were smaller than what
would be expected by random change (p = 0.05). In addition, the spectral counting
methods were assessed by calculating overall correlations of protein ranks. In the
UPS spike-in data, the correlation between PLGEM SC and Beta Binomial, but also
between PLGEM SC and PepC, was exceptionally poor.

In addition to calculating the overall correlations between the spectral counting
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Figure 10. Number of proteins reported by at least n methods in their lists of top 25 differentially
expressed proteins in (a) rat, (b) pig and (c) yeast data. Number of unique proteins reported by the
different methods in their top 25 lists were 57 in rat data, 68 in pig data, and 69 in yeast data.
Similarly, only four, three, and nine proteins were reported as differentially expressed by all six
methods in rat, pig, and yeast data, respectively.

methods, we also considered only the top ranking proteins. For this purpose, com-
bined top lists of the different analysis methods were constructed, and the number of
methods reporting such proteins in their top lists were calculated (Figure 10). In all
data sets, most proteins reaching top 25 by the differential expression statistics, were
assigned by only one method. Furthermore, only a handful of proteins were reported
by all the tested methods.

Finally, the overall performance of the spectral counting methods to detect dif-
ferentially expressed proteins was assessed using receiver operating characteristic
(ROC) curves (Figure 11). The un-normalized version of QSpec deviated most from
others in the 25 fmol vs 50 fmol comparison highlighting the need for normalization.
The overall best performance in terms of sensitivity and specificity (i.e. highest area
under the ROC curve) was achieved by PLGEM NSAF.

5.2 New methods
The following sections summarize the proposed methods for differential expression
analysis and their comparisons to existing tools (Publications III, IV, and V).

5.2.1 Peptide-level expression change averaging

Performance of the proposed peptide-level expression change averaging method (PECA)
was evaluated using receiver operating characteristic (ROC) curves. Figure 12 shows
the curves and their area under the curve (AUC) values for 2 vs 4 fmol and the 25 vs
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Figure 11. Receiver operating characteristic (ROC) curves for spectral counting methods in UPS
spike-in data. The comparisons are from (a) 2 fmol vs 4 fmol and (b) 25 fmol vs 50 fmol setting.

50 fmol comparisons with different options for differential expression and summary
statistic. Same statistical tests were used with both the pre-summed protein values
and the corresponding peptide-level values. PECA with modified t-test and median
as the aggregation method produced the best results. The overall performance is
also significantly better than the others in all the tested comparisons (DeLong’s test
p < 0.01).

Differentially expressed UPS proteins detected by PECA (p < 0.05) from the
2 fmol vs 4 fmol comparison are shown in Figure 13. The summarized protein-
level values (black) have higher intensity in the 4 fmol sample, but because similar
changes can be detected in the yeast proteins (i.e. false positives), many of them
would not be detected as differentially expressed. The peptide-level values (grey)
show a systematic change while the yeast proteins have on average equal number of
up and down-regulated peptides. This means that by utilizing the peptide-level mea-
surements, the UPS proteins can more easily be detected as differentially expressed.
In total, with the proposed peptide-level approach, there are 38 proteins detected as
differentially expressed (p < 0.05), out of which 16 are UPS proteins. Similarly,
when using a protein-level approach, there are a total of 55 proteins detected as dif-
ferentially expressed out of which only one is a UPS protein. This clearly shows the
improved ability of the PECA method to detect correct signal from noisy data.

The proposed PECA method was also benchmarked against similar methods us-
ing the un-summarized peptide-level data for differential expression analysis. Fig-
ure 14 shows the results for comparison on the 2 vs 4 fmol and on the 25 vs 50
fmol datasets. Because of internal filtering mechanisms of these methods, only such
proteins that were common between the results were used in the benchmarking (947
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Figure 12. Receiver operating characteristic (ROC) curves and their area under the curve (AUC)
for peptide-based PECA and the corresponding protein-level analysis in (a) 2 vs 4 fmol and (b) 25
vs 50 fmol comparisons of the USP spike-in data.

out of 1387 proteins). With InfernoRDN, three different rollup methods were tested.
In all comparisons the PECA method outperformed the other tested methods.

5.2.2 Reproducibility-optimized peptide-level expression change
averaging

The ROPECA method was benchmarked using DIA data, which contains a con-
stant background proteome and 12 spike-in proteins in eight different concentrations.
Performance of ROPECA, MSstats, and mapDIA, together with a commonly used
protein-level t-test, were compared using ROC curves (Figure 15a). The results
were merged from all possible pairwise comparisons from the tested sample groups.
Because in some cases the overall differences were small and we wanted to focus
on the most significant findings, we calculated only partial area under the curves
(pAUC) for specificity above 0.9. Overall, ROPECA detected more true positives
and less false positives than other methods. When comparing to previous PECA and
ROTS methods, the new approach had the ability of PECA to detect true positives
accurately from peptide-level data, while also the ability of ROTS to report less false
positives.

The ROPECA method was also tested using a hybrid proteome data, where
human, yeast, and E. coli are mixed together to create benchmarking samples. A
data set with a larger proportion of up or down-regulated proteins could be consid-
ered more accurately to reflect biological changes than benchmarks with just a few
spike-in proteins. Performance of the methods was investigated using ROC curves
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Figure 13. Visualization of peptide intensities (grey) and their corresponding protein-level values
(black) of differentially expressed UPS proteins by PECA in the 2 vs 4 fmol comparison of UPS
spike-in data. For each protein, the 2 fmol abundance is on the left and 4 fmol on the right.
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Figure 14. Receiver operating characteristic (ROC) curves of peptide-centric methods using (a) 2
vs 4 fmol and (b) 25 vs 50 fmol setting of the USP spike-in data.
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Figure 15. Receiver operating characteristic (ROC) curves for (a) the DIA profiling standard data
and (b) the hybrid proteome benchmark data.

(Figure 15b). ROPECA produced significantly higher pAUC (0.916) than the other
methods (bootstrap test p < 0.01). When comparing to previously introduced PECA
and ROTS methods, ROPECA outperformed them in terms of true and false positives

In addition to the benchmark datasets, a publicly available twin study data set
was used in order to test the methods in a clinical setting. From all the available
data (n = 116), 14 individuals diagnosed with type 2 diabetes mellitus (T2D) were
selected as the test group and the rest of the population as the control group. Differ-
ential expression analysis was performed between the selected groups and to test the
reproducibility of the detections, the results (FDR < 0.05) from the full dataset we
compared against randomly sampled subsets. Figure 16 shows the overlaps of the
ROPECA method and the commonly used t-test from 100 randomly sampled sub-
sets. With the different subsets ROPECA produced more common detections than
standard t-test (Wilcoxon signed rank test p <0.01).
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Figure 16. Violin plots showing the reproducibility in clinical twin study. Overlap of differentially
expressed proteins (FDR < 0.05) between full data and 100 sampled subsets using (a) ROPECA
and (b) t-test with varying number of samples.

43



6 Discussion

In this Thesis, I have tackled the different aspects of MS proteomics data analysis
and demonstrated how different choices made during the analysis may affect the final
results. I have compared popular normalization and spectral counting methods and
found that there are clear differences in their performance. I have also proposed new
peptide-level methods for differential expression analysis and shown that the new
methods perform well. After all, it is desirable to find the best protein candidates
for further validation, even if the data is noisy. Therefore, understanding both the
limitations and the possibilities of the underlying technology is critical.

Normalization makes the samples comparable for statistical testing and forms
the foundation for differential expression analysis. In the benchmark study of Pub-
lication I, the variance stabilization normalization (VSN) consistently performed
well in reducing variation between replicates and resulted in high AUCs with the
differential expression analysis, which eventually ranked it as the top performing
normalization method. This observation is in line with other studies as well [12; 73].

Previous studies have suggested the linear or local regression normalization to
perform well in reducing intragroup variation [12; 73; 78], and the same was ob-
served also in the present study. However, it turned out that their performance de-
pends on the data. The local regression normalization performed well in the UPS1
dataset while the linear regression normalization performed well in the CPTAC and
SGSD datasets, which indicates that there is a different kind of bias in the datasets.

The UPS1 dataset has much larger variation of total protein abundances than the
other datasets. This could stem from a number of reasons, including different labora-
tory protocols and instrumentation. It should be noted, however, that such sample to
sample variation is typical in real experimental settings too. Therefore, the normal-
ization methods should not be too sensitive to the underlying characteristics of the
data. More importantly, even if there is a high quality dataset with fairly equal total
intensities between the samples to begin with, it cannot be deduced whether a simple
logarithmic transformation without any normalization is sufficient. An interesting
future possibility could be to algorithmically select the most suitable normalization
method based on a given data.

More generally, it can be argued that ideally one should not make any assump-
tions on the bias, unless the method is used for some specific purpose. One such case
would be the normalization of phosphoproteomics samples, where the samples un-
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dergo an enrichment step before quantification. To tackle such a specific scenario, we
have published a tool that normalizes enriched samples using non-enriched controls
as a reference [132].

The overall importance of normalization is highlighted by the fact that our bench-
marking efforts were also featured on News in Proteomics Research, which is ar-
guably the most popular blog in the field 1.

In addition to normalization, we have also benchmarked the different workflows
for protein quantification and found that the commercial Progenesis software per-
formed systematically well [88]. However, after filtering and LLS imputation, the
open source MaxQuant had the overall best performance [88]. We also showed that
MaxQuant produced the most accurate estimates of fold changes for the spike-in
proteins (true positives), while other tools estimated accurately only the background
proteins (true negatives) of the benchmark data [88]. This supports the general use
of MaxQuant for protein quantification. Regarding differential expression analy-
sis, we have previously also shown that the reproducibility-optimized statistical test-
ing performs generally better than other tested methods with proteomics data [20].
Therefore, MaxQuant together with VSN and ROTS forms the basic recommended
combination for the analysis of proteomics data.

It is obvious that different software parameters or different algorithms can af-
fect the final outcome of the study. This is especially true for modular workflows,
for which different algorithms can be separately selected for each processing step.
Arguably, an experienced user could be able to optimise the performance of these
customisable software workflows by selecting a proper combination of algorithms
together with their parameters based on prior expert knowledge and the data at hand.
It would be tempting to systematically benchmark all possible combinations of the
different processing steps, including normalizations and statistical methods, using
extensive set of benchmarking datasets. However, the number of possible combi-
nations quickly becomes unfeasible to test, even using high-performance computing
(HPC) clusters.

Spectral counting is an intriguing and much simpler method for quantifying
proteins than the traditional MS1 based approach. For differential expression analy-
sis, it requires methods that are tailored for such data. I studied the utility of spectral
counting methods in Publication II. Each algorithm produced a significance metric
for each protein and the final rankings were used to evaluate the level of agreement
between the results. While the similarity of the results was not as good as desired,
a number of proteins were differentially expressed with high confidence by multiple
methods. While the potential of the spectral counting methods has been recognized
[15], their inadequate performance has also been documented [133]. In contrast to
our results suggesting that PLGEM performed the best, others have found QSpec to

1http://proteomicsnews.blogspot.com/2019/07/an-incredibly-comprehensive-evaluation.html
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perform better [133]. Thus, no general conclusions could be made regarding the rel-
ative performance of the methods. Overall, our study supported the idea that spectral
counting in general is not as reliable as the more traditional MS1 based quantifica-
tion. A reasonable approach to spectral counting workflows could be a voting type
approach, where results of multiple methods are summarised to generate a final con-
sensus list of differentially expressed proteins.

All spectral counting methods reported a number of background proteins of the
test data to be significantly differentially expressed between sample groups (i.e. false
positives). Perhaps increasing the amount of spike-in proteins inherently affects
the proportion of all other material in the sample. This likely affects especially
the spectral counting approach, where the peptides are competing for detection by
LC-MS/MS system.

Differential expression analysis is an important part of a quantitative proteomics
experiment. It provides candidate proteins for further downstream analysis or targets
for validation. This is particularly important with the commonly used label-free ap-
proach, which only allows relative quantification between samples. In Publication
III, I implemented the reproducibility-optimized test statistic as an R package ROTS.
Besides showing that it performs well, I have put emphasis that it is easy to use and
well maintained to promote its wide use. These factors have likely played a role in
keeping the software consistently in top 20 % of the most downloaded R packages
in Bioconductor. It has also led to being included in comparative studies by third
parties in high-impact journals [134], where it has performed well.

Finally, I showed in Publications IV and V that differential expression analysis
using peptide-level data is a viable method for proteomics. Both of the proposed
methods (PECA and ROPECA) worked better than the other tested methods. Both
methods allow to utilize the full potential of MS data by considering directly the
peptide measurements. Others have also shown the benefits of peptide-based models
[117]. This is different from most state-of-the-art approaches where the peptide-level
signal is still commonly summarized in various ways before performing statistical
testing [135]. I published both methods as an easy-to-use R package. Perhaps this is
one of the reasons why our effort was featured on the official blog of ThermoFischer
Scientific, one of the manufacturers of mass spectrometry instruments 2.

It was observed that sometimes a single peptide can have a strong opposite fold
change compared to the other peptides of the same protein. This is a major issue with
the protein-level summarization approach, because such peptides would effectively
level out the summarized signal. This suggests that all the available data should be
utilized for statistical testing. Interestingly, our benchmarks showed the biggest im-
provements in the most difficult test cases, where the differences between the tested

2https://www.thermofisher.com/blog/proteomics/differential-protein-quantitation-at-the-peptide-
level/
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groups were smallest. On the other hand, it is likely that with high enough con-
centration levels, the peptide-level approach no longer brings any benefits compared
to protein-level analysis. However, the tested concentrations and fold changes fall
within a range that is commonly encountered in real samples. More importantly, the
smaller differences can be detected reliably, the better.

The improved peptide-level expression change averaging method for DIA pro-
teomics data was evaluated not only by the different spike-in benchmark data, but
also using a clinical twin study to asses the biomedical relevance of the findings.
Many of the reported proteins were supported by the literature, but not detected as
differentially expressed by conventional methods. This essentially means that apply-
ing novel methods to exiting data has the potential to reveal completely new infor-
mation from the accumulating publicly available data.

Overall, the data-independent acquisition technique shows great promise as new
methods and algorithms are constantly being published. One interesting avenue is the
application of the technique in the context of metaproteomics, where peptide identi-
fication is extremely challenging because of trace amounts and overlapping peptide
sequences between the different species. To this end, we have developed a software
workflow for DIA metaproteomics [136] that includes the new differential expres-
sion analysis tools, and applied it successfully in the context of complex human gut
microbiota [137].

To conclude, mass spectrometry proteomics offers great opportunities for bio-
logical and biomedical studies. However, interpretation of the data requires careful
attention and cross-disciplinary expertise. In this Thesis, contributions to the field
were made by systematically investigating many of the challenges in the data analy-
sis in order to help interpretation of the data.
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7 Summary of publications

I: A systematic evaluation of normalization methods in quantita-
tive label-free proteomics

In this work, a set of widely used normalization methods were tested. They rep-
resent the various strategies that are commonly used to normalize high-throughput
omics data. Several datasets that had spike-in proteins representing the ground truth
were used to evaluate the methods. They were evaluated by their ability to reduce
variation between the replicates, accuracy of fold changes between sample groups,
and more importantly, the accuracy of differential expression analysis by a statisti-
cal test. In this study, the variance stabilization normalization (VSN) was found to
perform overall best, outperforming the other methods especially when examining
differential expression analysis results.

II: Cross-Correlation of Spectral Count Ranking to Validate Quan-
titative Proteome Measurements

In this work, we studied various differential expression methods targeted especially
for spectral counts of label-free mass spectrometry proteomics. The methods were
evaluated using a dataset containing different concentrations of spike-in proteins rep-
resenting the ground truth. It was found out that power law global error model had
superior performance compared to the other tested methods in ranking the spike-in
proteins as differentially expressed between sample groups. In addition, we studied
the overall similarities of the methods by using three biological datasets. Generally,
the methods had considerable differences when looking at the overall ranking of all
proteins in the sample.

III: ROTS: An R package for reproducibility-optimized statistical
testing

This work focuses on the reproducibility-optimized test statistic (ROTS) that works
by adjusting a t-statistic based on the underlying data. Over the years the method has
been applied to various omics studies with great success. Here, a publicly available
R package was implemented and published in Bioconductor repository. Convenient
features were included to the package and its performance was illustrated using three
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case studies, including not only proteomics but also bulk and single cell RNA-seq
data.

IV: Using Peptide-Level Proteomics Data for Detecting Differen-
tially Expressed Proteins
In mass spectrometry proteomics peptides are identified and quantified before sum-
marizing them to protein level. In this work, we introduced a differential expression
analysis method (PECA) that utilizes all the peptide-level measurements when es-
timating the final protein-level statistic. Similarly as before, we used a controlled
spike-in experiment that has additional proteins with known changes between the
sample groups. It was shown that this kind of approach produces more accurate dif-
ferential expression estimates than other methods. More importantly, the benefits
of using such approach became more clear if the differences between the sample
groups were small, which is often the case in real experiments. The method itself
was published as an R package in Bioconductor.

V: Enhanced differential expression statistics for data-independent
acquisition proteomics
In this work, we made a new reproducibility optimized method (ROPECA) that uti-
lizes the underlying peptide-level measurements of mass spectrometry proteomics
data. It has the benefits of both previously introduced methods ROTS and PECA.
This was made possible by using the newly emerging data-independent acquisition
(DIA) mass spectrometry data, where there is much less missing peptide measure-
ments. The new method was benchmarked against other similar tools using a spike-in
gold standard data with known concentration changes and a hybrid proteome data,
where proteomes of multiple species are mixed together to produce known changes
between sample groups. It was shown that our new method performed better than
any of the previous approaches. Besides artificially generated data, the improved
accuracy of the new method was explored by applying it to a clinical twin study.
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