3,453 research outputs found

    Quantifying and understanding vegetation change in the conterminous United States using geospatial data

    Get PDF
    Human activities are a pervasive driver of vegetation change either through land-use change or through human-derived climate change. Alterations in climatic conditions that affect plant establishment, growth, and mortality will result in impacts on the distribution and composition of vegetation. Considering that terrestrial vegetation is an essential component of land-atmosphere interactions, alterations in vegetation cover and composition can affect the fluxes of water and energy in the earth system, and thus affect important environmental services for human livelihoods. Therefore, quantifying and understanding vegetation change at relevant spatial and temporal scales is a key step to improve predictions of vegetation response to climate change and to evaluate potential derived impacts on ecosystem function, and vegetation feedbacks to the earth system.In this dissertation, I assessed the changes in vegetation lifeform cover across the conterminous United States (CONUS) from 1986 to 2018 with the ultimate goal of understanding how climate impacts these rates of change. To accomplish this, in my first chapter I demonstrated the benefits of fusing airborne multisensor data with Landsat imagery in machine learning models to construct tree, shrub, and herbaceous fractional cover maps and their spatially-explicit uncertainty. I constructed annual maps of fractional percent cover, with an improved temporal and thematic resolution than other available products of percent cover. The map construction workflow used a simple set of threshold rules for creating the training and validation dataset, and I only constructed one model per lifeform type which avoids seamlines between mapping zones that appear when constructing separate models for different locations. For my second chapter, I further investigated errors in my approach to constructing these maps, as well as related approaches that included ancillary data, by explicitly exploring the spatial accuracy of the products. I found that, regardless of the set of response variables used for map construction, the resulting vegetation maps do not accurately describe the heterogeneity of the true landscape, and that overall accuracy is not strongly connected to spatial accuracy. Finally, I used the maps developed in the first chapter to quantify the rates of change in lifeform cover and to construct maps of climate potential rates of change. Observed vegetation rates of change showed a “greening” CONUS, with net increases in vegetation cover in most of the country over the last three decades, but localized areas with vegetation loss, particularly across the southwest region of the country. I found a large climate potential for vegetation gain for all lifeforms across most of the country, but a comparison between this climate potential and observed change shows that vegetation change across 90% of the land area of CONUS is controlled by non-climatic factors, most likely related to human activities

    Forest Road Detection Using LiDAR Data and Hybrid Classification

    Get PDF
    Knowledge about forest road networks is essential for sustainable forest management and fire management. The aim of this study was to assess the accuracy of a new hierarchical-hybrid classification tool (HyClass) for mapping paved and unpaved forest roads with LiDAR data. Bare-earth and low-lying vegetation were also identified. For this purpose, a rural landscape (area 70 ha) in northwestern Spain was selected for study, and a road network map was extracted from the cadastral maps as the ground truth data. The HyClass tool is based on a decision tree which integrates segmentation processes at local scale with decision rules. The proposed approach yielded an overall accuracy (OA) of 96.5%, with a confidence interval (CI) of 94.0–97.6%, representing an improvement over pixel-based classification (OA = 87.0%, CI = 83.7–89.8%) using Random Forest (RF). In addition, with the HyClass tool, the classification precision varied significantly after reducing the original point density from 8.7 to 1 point/m2. The proposed method can provide accurate road mapping to support forest management as an alternative to pixel-based RF classification when the LiDAR point density is higher than 1 point/m2This research was supported by: (1) the Project “Sistema de ayuda a la decisión para la adaptación al cambio climático a través de la planificación territorial y la gestión de riesgos (CLIMAPLAN) (PID2019-111154RB-I00): Proyectos de I+D+i - RTI”; and (2) “National Programme for the Promotion of Talent and Its Employability” of the Ministry of Economy, Industry, and Competitiveness (Torres-Quevedo program) via a postdoctoral grant (PTQ2018-010043) to Juan Guerra HernándezS

    Forestry and Arboriculture Applications Using High-Resolution Imagery from Unmanned Aerial Vehicles (UAV)

    Get PDF
    Forests cover over one-third of the planet and provide unmeasurable benefits to the ecosystem. Forest managers have collected and processed countless amounts of data for use in studying, planning, and management of these forests. Data collection has evolved from completely manual operations to the incorporation of technology that has increased the efficiency of data collection and decreased overall costs. Many technological advances have been made that can be incorporated into natural resources disciplines. Laser measuring devices, handheld data collectors and more recently, unmanned aerial vehicles, are just a few items that are playing a major role in the way data is managed and collected. Field hardware has also been aided with new and improved mobile and computer software. Over the course of this study, field technology along with computer advancements have been utilized to aid in forestry and arboricultural applications. Three-dimensional point cloud data that represent tree shape and height were extracted and examined for accuracy. Traditional fieldwork collection (tree height, tree diameter and canopy metrics) was derived from remotely sensed data by using new modeling techniques which will result in time and cost savings. Using high resolution aerial photography, individual tree species are classified to support tree inventory development. Point clouds were used to create digital elevation models (DEM) which can further be used in hydrology analysis, slope, aspect, and hillshades. Digital terrain models (DTM) are in geographic information system (GIS), and along with DEMs, used to create canopy height models (CHM). The results of this study can enhance how the data are utilized and prompt further research and new initiatives that will improve and garner new insight for the use of remotely sensed data in forest management

    Two-phase forest inventory using very-high-resolution laser scanning

    Get PDF
    In this study, we compared a two-phase laser-scanning-based forest inventory of stands versus a traditional field inventory using sample plots. The two approaches were used to estimate stem volume (VOL), Lorey's mean height (HL), Lorey's stem diameter (DL), and VOL per tree species in a study area in Sweden. The estimates were compared at the stand level with the harvested reference values obtained using a forest harvester. In the first phase, a helicopter acquired airborne laser scanning (ALS) data with >500 points/m2 along 50-m wide strips across the stands. These strips intersected systematic plots in phase two, where terrestrial laser scanning (TLS) was used to model DL for individual trees. In total, phase two included 99 plots across 10 boreal forest stands in Sweden (lat 62.9 degrees N, long 16.9 degrees E). The single trees were segmented in both the ALS and TLS data and linked to each other. The very-high-resolution ALS data enabled us to directly measure tree heights and also classify tree species using a convolutional neural network. Stem volume was predicted from the predicted DBH and the estimated height, using national models, and aggregated at the stand level. The study demonstrates a workflow to derive forest variables and stand-level statistics that has potential to replace many manual field inventories thanks to its time efficiency and improved accuracy. To evaluate the inventories, we estimated bias, RMSE, and precision, expressed as standard error. The laser-scanning-based inventory provided estimates with an accuracy considerably higher than the field inventory. The RMSE was 17 m3/ha (7.24%), 0.9 m (5.63%), and 16 mm (5.99%) for VOL, HL, and DL respectively. The tree species classification was generally successful and improved the three species-specific VOL estimates by 9% to 74%, compared to field estimates. In conclusion, the demonstrated laser-scanning-based inventory shows potential to replace some future forest inventories, thanks to the increased accuracy demonstrated empirically in the Swedish forest study area

    Forest structure from terrestrial laser scanning – in support of remote sensing calibration/validation and operational inventory

    Get PDF
    Forests are an important part of the natural ecosystem, providing resources such as timber and fuel, performing services such as energy exchange and carbon storage, and presenting risks, such as fire damage and invasive species impacts. Improved characterization of forest structural attributes is desirable, as it could improve our understanding and management of these natural resources. However, the traditional, systematic collection of forest information – dubbed “forest inventory” – is time-consuming, expensive, and coarse when compared to novel 3-D measurement technologies. Remote sensing estimates, on the other hand, provide synoptic coverage, but often fail to capture the fine- scale structural variation of the forest environment. Terrestrial laser scanning (TLS) has demonstrated a potential to address these limitations, but its operational use has remained limited due to unsatisfactory performance characteristics vs. budgetary constraints of many end-users. To address this gap, my dissertation advanced affordable mobile laser scanning capabilities for operational forest structure assessment. We developed geometric reconstruction of forest structure from rapid-scan, low-resolution point cloud data, providing for automatic extraction of standard forest inventory metrics. To augment these results over larger areas, we designed a view-invariant feature descriptor to enable marker-free registration of TLS data pairs, without knowledge of the initial sensor pose. Finally, a graph-theory framework was integrated to perform multi-view registration between a network of disconnected scans, which provided improved assessment of forest inventory variables. This work addresses a major limitation related to the inability of TLS to assess forest structure at an operational scale, and may facilitate improved understanding of the phenomenology of airborne sensing systems, by providing fine-scale reference data with which to interpret the active or passive electromagnetic radiation interactions with forest structure. Outputs are being utilized to provide antecedent science data for NASA’s HyspIRI mission and to support the National Ecological Observatory Network’s (NEON) long-term environmental monitoring initiatives
    • …
    corecore