7,118 research outputs found

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    AndroShield:automated Android applications vulnerability detection, a hybrid static and dynamic analysis approach

    Get PDF
    The security of mobile applications has become a major research field which is associated with a lot of challenges. The high rate of developing mobile applications has resulted in less secure applications. This is due to what is called the “rush to release” as defined by Ponemon Institute. Security testing—which is considered one of the main phases of the development life cycle—is either not performed or given minimal time; hence, there is a need for security testing automation. One of the techniques used is Automated Vulnerability Detection. Vulnerability detection is one of the security tests that aims at pinpointing potential security leaks. Fixing those leaks results in protecting smart-phones and tablet mobile device users against attacks. This paper focuses on building a hybrid approach of static and dynamic analysis for detecting the vulnerabilities of Android applications. This approach is capsuled in a usable platform (web application) to make it easy to use for both public users and professional developers. Static analysis, on one hand, performs code analysis. It does not require running the application to detect vulnerabilities. Dynamic analysis, on the other hand, detects the vulnerabilities that are dependent on the run-time behaviour of the application and cannot be detected using static analysis. The model is evaluated against different applications with different security vulnerabilities. Compared with other detection platforms, our model detects information leaks as well as insecure network requests alongside other commonly detected flaws that harm users’ privacy. The code is available through a GitHub repository for public contribution

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    Adaptable Service Oriented Infrastructure Provisioning with Lightweight Containers Virtualization Technology

    Get PDF
    Modern computing infrastructures should enable realization of converged provisioning and governance operations on virtualized computing, storage and network resources used on behalf of users' workloads. These workloads must have ensured sufficient access to the resources to satisfy required QoS. This requires flexible platforms providing functionality for construction, activation and governance of Runtime Infrastructure which can be realized according to Service Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management framework requires definition of flexible architecture and utilization of advanced software engineering and policy-based techniques. The paper presents an Adaptable SOI Provisioning Platform which supports adaptable SOI provisioning with lightweight virtualization, compliant with the structured process model suitable for construction, activation and governance of IT environments. The requirements, architecture and implementation of the platform are all discussed. Practical usage of the platform is presented on the basis of a complex case study for provisioning JEE middleware on top of the Solaris 10 lightweight virtualization platform

    Mobile Agent Based Cloud Computing

    Get PDF
    Cloud Computing is becoming a revolutionizing computing paradigm. It offers various types of services and applications that are being delivered in the internet cloud. The services aim at providing reliable, fault tolerant dynamic computing environment to the user and offers computing resources as per demand. Skype, Dropbox, and Yahoo mail are some of the cloud services that have major impact in our lives. Several measures are taken to maintain the quality of its service in the cloud and to make IT infrastructure available with low cost. This paper presents various aspects of Cloud Computing, its implementation features, challenges and also explores the potential scope for research. The major section of this paper includes surveys of studies related to the possibilities of integrating Mobile Agents in Cloud Computing, since these technologies appear to be promising and marketable. Thus, the paper focuses on resolving challenges and bolstering services of Cloud Computing by utilizing Mobile Agent technology in various aspects of Cloud Computing

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term
    • …
    corecore