
 information

Article

AndroShield: Automated Android Applications
Vulnerability Detection, a Hybrid Static and Dynamic
Analysis Approach

Amr Amin 1,†, Amgad Eldessouki 1,†, Menna Tullah Magdy 1,†, Nouran Abdeen 1,†,
Hanan Hindy 1,2,* and Islam Hegazy 1,*

1 Faculty of Computer & Information Sciences, Ain Shams University, Cairo 11566, Egypt;
amr.amin.stdsw@cis.asu.edu.eg (A.A.); amgaddessouki@gmail.com (A.E.);
menna.tullah.magdy731@gmail.com (M.T.M.); nouran.m.abdeen@gmail.com (N.A.)

2 Division of Cyber-Security, Abertay University, Dundee DD1 1HG, UK
* Correspondence: 1704847@abertay.ac.uk (H.H.); islheg@cis.asu.edu.eg (I.H.)
† These authors contributed equally to this work.

Received: 30 July 2019; Accepted: 18 October 2019; Published: 22 October 2019
����������
�������

Abstract: The security of mobile applications has become a major research field which is associated
with a lot of challenges. The high rate of developing mobile applications has resulted in less secure
applications. This is due to what is called the “rush to release” as defined by Ponemon Institute.
Security testing—which is considered one of the main phases of the development life cycle—is
either not performed or given minimal time; hence, there is a need for security testing automation.
One of the techniques used is Automated Vulnerability Detection. Vulnerability detection is one of the
security tests that aims at pinpointing potential security leaks. Fixing those leaks results in protecting
smart-phones and tablet mobile device users against attacks. This paper focuses on building a hybrid
approach of static and dynamic analysis for detecting the vulnerabilities of Android applications.
This approach is capsuled in a usable platform (web application) to make it easy to use for both public
users and professional developers. Static analysis, on one hand, performs code analysis. It does not
require running the application to detect vulnerabilities. Dynamic analysis, on the other hand, detects
the vulnerabilities that are dependent on the run-time behaviour of the application and cannot be
detected using static analysis. The model is evaluated against different applications with different
security vulnerabilities. Compared with other detection platforms, our model detects information
leaks as well as insecure network requests alongside other commonly detected flaws that harm users’
privacy. The code is available through a GitHub repository for public contribution.

Keywords: vulnerability detection; Android applications; static analysis; dynamic analysis; mobile
security; user privacy

1. Introduction

The dependence on mobile applications has increased dramatically over the past decade.
Statista [1] shows that in 2017 there were 178.1 billion Android application downloads which rose
to 205.4 billion in 2018. It is expected to reach 258.2 billion in 2022. Moreover, the number of
available applications on Google Play store escalated from around 2.3 million in the first quarter of
2016 to 3.8 million in 2018. There are—on average—6140 applications released per day. With the
increasing rate of the production of Android applications, the testing phase takes less time and security
testing is sometimes neglected. Android, as one of the most popular mobile open-source operating
systems, suffers more from different vulnerabilities. As a result, Android applications are vulnerable
to malicious users and hackers who may gain access to unauthorised information. In its report

Information 2019, 10, 326; doi:10.3390/info10100326 www.mdpi.com/journal/information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/237029641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-5195-8193
https://orcid.org/0000-0002-1572-463X
http://www.mdpi.com/2078-2489/10/10/326?type=check_update&version=1
http://dx.doi.org/10.3390/info10100326
http://www.mdpi.com/journal/information

Information 2019, 10, 326 2 of 16

about mobile security [2], the Ponemon Institute states that around 33% of mobile applications are
not tested and 38% of those involved in their study do not perform a vulnerability scan for their
mobile applications.

Third-party testing is one of the suggested solutions to overcome the limited time given to the
security testing for any released application; however, third parties cannot cope with the pace of the
released applications. Therefore, there is a need to develop automated tools to detect vulnerabilities.

In this paper, we address the problem by introducing an automated vulnerability detection
model. This model builds both static and dynamic analysis methods. Static analysis detects offline
vulnerabilities (the ones that do not require the application to be running). It is based on application
reverse engineering and code scanning. Dynamic analysis, on the contrary, detects the vulnerabilities
that cannot be detected by static analysis. It is based on the run-time behaviour of the application.
In order to perform dynamic analysis, application simulation runs are performed. After the analysis
is finished, a report is generated consisting of three sections; (a) APK Information, which provides
unique information about the uploaded application. (b) APK Permissions, which provides a list
of the permissions granted to the app. (c) Finally, Vulnerabilities, which explains the detected
vulnerabilities. The proposed system detects the following vulnerabilities: “Information Leaks”,
“Intent Crashes”, “Insecure Network Requests”, “Exported Android Components”, “Enabled Backup
Mode” and “Enabled Debug Mode”. Each vulnerability is associated with a risk level and a description.

The current platform targets Android application vulnerability detection; however, it can be
extended to involve other platforms. Extension to other platforms would involve overriding the
emulator sniffing and code reverse engineering processes. The back-end web application and the
reporting module would not require changes. The model is targeted for professional developers,
on one hand, and daily application users on the other hand. The generated report includes information
that the normal user can understand and can decide whether or not the application he/she is using is
vulnerable. In addition, the professional developers and organisations can benefit from the details in
the generated report to tackle and fix their security flaws.

The rest of the paper is organised as follows. Section 2 defines the important concepts of static
and dynamic analysis. Section 3 discusses the available vulnerability detection tools and how our
work fits in the current research. Section 4 visualises the proposed architecture of the hybrid model as
well as the methodology. Section 5 discusses the experimental results. Finally, Section 6 summarises
the paper stating the conclusion and future work.

2. Background

2.1. Vulnerability Detection Techniques

There are two techniques for automating vulnerability detection for mobile applications, static
and dynamic analysis. Static analysis detects vulnerabilities without executing the application while
dynamic analysis detects the vulnerabilities during the run-time of the application. Combining both
techniques gives a more robust output and a higher probability of detecting malicious and
vulnerable applications.

2.1.1. Static Analysis

Static analysis generally involves taking the source code—or object code in some cases—of
a program and examining it without execution. The results are generated by checking the code
structure, the sequences of statements, and how variable values are processed throughout the different
function calls. A typical static analysis process starts by representing the analysed app code as abstract
models (e.g., Call Graph (CG), Control-Flow Graph (CFG), or Unified Modelling Language (UML)
class/sequence diagram) based on the purpose of analysis. The literature discusses many static
analysis techniques, namely:

Information 2019, 10, 326 3 of 16

• Control-Flow Analysis [3–5].
• Data-Flow Analysis [4,6].
• Points-to analysis [4].
• Call-Graph (CG) algorithms.

– Class Hierarchy analysis (CHA) [7].
– Rapid Type analysis (RTA) [8].
– Variable Type Analysis (VTA) [9].
– Andersen [10].
– Steensguard [11].

The advantages of static analysis include: (a) All code and manifest file—a file containing
meta-data about the application—are analysed. (b) It is fast relative to dynamic analysis. (c) It
requires fewer hardware resources relative to dynamic analysis.

A lot of vulnerabilities can be detected using static analysis such as private data leaks,
unauthorised access to protected or private resources and intent injection. It is also used to detect
permission misuse, energy consumption, clone detection and test generation. Finally, it detects code
verification and cryptography implementation issues as well [4].

2.1.2. Dynamic Analysis

Unlike static analysis, dynamic analysis is used to detect vulnerabilities that occur during run-time.
Dynamic analysis is generally considered more complex than static analysis as it requires installing
the applications as well as simulating the user input (i.e., inputs, touches and clicks). The most
common dynamic analysis tests are; Fuzz Testing, Concolic Testing and Search-based Testing [12].
The differences between them include test effectiveness, test generation and vulnerabilities coverage.

Fuzz Testing is defined as “an automated software testing technique that involves providing invalid,
unexpected, or random data as inputs to a computer program.” The program is then monitored for exceptions
such as crashes, or failing built-in code assertions or for finding potential memory leaks [13,14].

Concolic testing is “a hybrid software verification technique that merges both symbolic and concrete
executions.” Symbolic execution treats program variables as symbolic variables, whereas concrete
execution performs testing on particular input paths [15,16].

Search-Based testing uses a meta-heuristic optimising search technique to automate a testing task
such as simulated annealing and genetic algorithms [17].

2.2. Android Sources and Sinks

In order to understand how Android flows are analysed, sources and sinks are discussed in this
section. Android Source APIs are the calls into resource methods returning non-constant values into
the application code. For example, the getDeviceId() resource method is an Android source. It returns
the International Mobile Equipment Identity (IMEI). The IMEI is considered non-constant as the
method returns a different value on every mobile phone which implies that investigating the source
code alone does not reveal this value. In contrast, a function that just reads a fixed constant value from
a database is considered a resource method but, as per the definition, is not an Android source [18].

Android Sinks APIs are the calls into resource methods accepting at least one non-constant data
value from the application code as a parameter, if and only if a new value is written or an existing one
is overwritten on the resource. The sendTextMessage() resource method is an example of an Android
sink as both the message text and the phone number it receives are possibly non-constants [18].

Information 2019, 10, 326 4 of 16

3. Related Work

In this section, the pre-eminent available vulnerability detection tools are summarised. These tools
perform static or dynamic analysis or both. The summary performed below is concerned with
categorising the features of the tools, deciding whether it is static or dynamic. Table 1 lists the features
of those tools. Moreover, the features covered in this work, discussed later in Section 4, are marked in
the last column of the table. The implemented features are discussed in details later in the paper.

Similar to AndroShield, Ostorlab [19] has the same goal, which is to be a platform used by
mobile developers to check for vulnerabilities in applications via static and dynamic analysis. The free
version of Ostorlab does not provide any dynamic analysis features. Although providing APIs
and documentation on how to use Ostorlab platform, it lacks providing the source code, modules
or architecture. Looking at the tools at Table 1, QARK [20], for example, is a static analysis tool.
It is capable of finding common security vulnerabilities in Android applications. QARK detects
vulnerabilities like: Improperly Protected Exported Components detection, Enable Backups Feature
detection, Debuggable App Mode detection, and Exported Activities and Services detection alongside
the ones detected by the static analysis of Androshield. The main advantage of Androshield over
QARK is that Androshield de-compiles the APK file to Jimple, while QARK decompiles it to Java
bytecode. Jimple is an intermediate representation of a Java program designed to be easier to optimize
than Java bytecode. It is typed, has a concrete syntax and is based on three-address code. It includes
only 15 different operations, thus simplifying flow analysis. By contrast, Java bytecode includes over
200 different operations [21].

For dynamic analysis, one of the tools that compare to Androshield is Inspeckage [22] which
also offers analyzing network traffic and information gathering. Information gathering includes
requested permissions, app permissions, shared libraries, checking whether the app is debuggable or
not, and exported components. What makes Androshield different from Inspeckage is that Inspeckage
offers dynamic analysis only and requires Xposed Framework [23] to be installed as a prerequisite while
Androshield offers both static and dynamic analyses without the need for prerequisite frameworks.

All vulnerabilities covered by AndroShield are written in bold in Table 1, underlining the ones
covered only by AndroShield.

Information 2019, 10, 326 5 of 16

Table 1. Vulnerability Detection Tools Features (Specifying the ones covered in this work).

Feature Tool(s) Type Covered

Reverse APK File and Flatten Classes APKtool [24]/backsmali [25]/DroidLegacy [26] Static Yes
Detect Potential Leaks of Sensitive Information on Inter-Component and Intra-Component Data Flow FlowDroid [27]/IccTA [28]/JAADAS [29] Static Yes

Improperly Protected Exported Components detection QARK [20] Static Yes
Enable Backups Feature detection QARK Static Yes
Debuggable App Mode detection QARK Static Yes

Exported Activities and Services detection QARK Static Yes
Information Gathering Androguard [30]/Inspckage [22] Static/Dynamic Yes

Detect Native SSL Bypass MobSF [31] Static
Detect Web-view SSL Bypass MobSF Static

Detect Remote Web-view Debugging/Execution (Java Script) MobSF/QARK Static
Detect Hard Coded Secrets MobSF Static

Detect Root Detection MobSF Static
Extracts the Permission Specification from Android OS PSCout [32] Static

Comparing CFG Signatures to the Control Flow Graphs of Android Methods (For Detecting Malware) CFGScanDroid [33] Static
Taming Reflection DroidRA [34] Static

Extract “Actionable” Data from Android Malware Madrolyzer [35] Static
Compute a Risk Value Based on Apps’ permissions RiskInDroid [36] Static

API Misuse analysis JAADAS Static
Local-Denial-of-Service analysis JAADAS/Androwarn [37] Static

Bound Service Vulnerability detection QARK Static
Content Provider Vulnerability detection QARK Static

Static Tapjacking Mitigation detection QARK Static
Improper SSL x.509 Certificate detection/validation QARK Static

Notifying the Use of Sticky Intents QARK Static
Weak/Improper Cryptography Use detection QARK Static

Private Keys Embedded in the Source Code detection QARK Static
Insecure Broadcast Intents detection QARK Static

Insecurely Created Pending Intents detection QARK Static
Outdated API Versions detection QARK Static

Creation of World-Readable or World-Writeable Files detection QARK Static
Fuzz Testing AppsPlayGround [38] Dynamic Yes

Event Triggering AppsPlayGround Dynamic Yes
Analyze Network Traffic Inspckage Dynamic Yes

Insecure Network Requests (HTTP Requests) detection - Dynamic Yes
Intent Crash detection - Dynamic Yes

Method Hooking/Replacing XposedBridge [39] Dynamic
Malware Sandboxing cuckooDroid [40]/cuckoo sandbox [41] Dynamic

Track Privacy-Sensitive Information Leakage AppsPlayGround Dynamic

Information 2019, 10, 326 6 of 16

Table 1. Cont.

Feature Tool(s) Type Covered

Sensitive API monitoring AppsPlayGround Dynamic
Intelligent UI execution AppsPlayGround Dynamic

Prevent Sandbox detection AppsPlayGround/cuckooDroid Dynamic
Kernel Level monitoring AppsPlayGround Dynamic

Perform a Combination of Symoblic and Concrete Execution on the Application ConDroid Dynamic

Information 2019, 10, 326 7 of 16

4. Methodology and Architecture

This section discusses the proposed architecture along with how static and dynamic analysis are
applied to detect Android vulnerabilities.

4.1. Proposed Architecture

As shown in Figure 1, the architecture is a three-tier architecture divided into Presentation,
Application and Data layers.

Figure 1. ANDROSHIELD Proposed Architecture.

4.1.1. Application Layer

This layer is considered the core of the business logic execution. It is divided into six modules,
with each one being responsible for a single task:

(a) Web App API module which is responsible for handling the transfer of data between the
presentation layer and the core logic.

(b) Once the user uploads the APK file, the Reverse Engineering module handles it. The reverse
engineering process is crucial to proceed to vulnerability detection. The Jimple—simplified Java
language with a fewer number of instructions—and Manifest files are extracted in this phase.

(c) Once the files are extracted, the Static Analysis module performs Manifest File Analysis
and Source Code Scanning on the Jimple and the Manifest files to find the vulnerabilities.
The found vulnerabilities (i.e., Information leaks, APK Information and permissions) are sent to
the Reporting module.

(d) Before performing Dynamic Analysis, Emulator and Input Generator module has to simulate the
user actions. The log file along with the captured APIs are sent to the Dynamic Analysis module.

(e) The Dynamic Analysis module performs security analysis using dynamic analysis which
includes API Calls Analysis and Intent Crash Analysis. The resulting insecure internet request(s) and
intent crashes are then sent to the Reporting module.

(f) Finally, the Reporting module compiles all the received information into a single report.

4.1.2. Presentation Layer

The Presentation layer is where the user interaction happens and it is divided into three modules
that send and receive data from the application layer. The three modules are Registration and Login,
APK Upload and Analysis Report, and Old Reports modules. The Registration and Login module is
responsible for handling user permissions and account management. The APK Upload and Analysis
Report module is responsible for sending the APK file to the Web App API and then display the APK

Information 2019, 10, 326 8 of 16

report it receives. Finally, The Old Reports module handles the repository of previously generated
reports by the use.

4.1.3. Data Layer

The Data layer is where user data, vulnerabilities, and APK info are stored. Old reports associated
with each user are stored as well.

4.2. Methodology

• APK Reverse Engineering: The first step after the APK file is submitted is to de-compile (reverse
engineer) it. The aim of this stage is to get the code and the manifest file of the submitted APK
file. ApkAnalyzer [42]—an Android SDK command-line tool—was used to perform the reverse
engineering task with the help of Soot [21]—a Java optimization framework. It is important to
note here that before any application is zipped into the final APK file, the Android program (the
Java source code) is compiled into a single DEX (Dalvik Executable) file. Alternatively, it will
be compiled into multiple DEX files if the app and the libraries it references exceed 64KB. Then,
the DEX file(s) are reversed and then transformed into JAR files—which are compiled Java files.
ApkAnalyzer handles this process, it extracts the DEX files from the APK file, then transforms
them into Jimple files directly by soot framework that can be used for performing the analysis.
The output of this phase includes the code as well as the extracted binary manifest file.

• Decoding Manifest File: The output manifest file is in binary format. At this step, the manifest
file is transformed from binary format to XML format.

• Extracting Meta-data: Having the XML version of the manifest file, the following information
is extracted:

1. Package Name
2. Version Name
3. Version Code
4. Minimum SDK Version
5. Target SDK Version
6. Debug Mode (Yes/No)
7. Backup Mode (Yes/No)
8. Test Only Flag (Yes/No)

They are then displayed in the report and some are used as well for Static Analysis phase.
• Performing Static Analysis: In this phase, the static analysis uses the reverse engineered code to

trace vulnerabilities. During static analysis, the code is analyzed without executing the application.
Details of the static analysis are discussed in Section 4.2.1.

• Performing Dynamic Analysis: Dynamic analysis focuses on tracing vulnerabilities while the
application is running. Vulnerabilities, in this case, are not detected by analyzing the code in the
static phase. Details of the dynamic analysis are discussed in Section 4.2.2.

• Generating the Report: The final phase is to combine all the information gathered and visualize
them in a user-friendly report format.

4.2.1. Static Analysis

Static Analysis is performed by passing through two stages: (a) Manifest File Analysis and
(b) Source Code Scanning.

Information 2019, 10, 326 9 of 16

Manifest File Analysis

This phase aims to match vulnerabilities’ attribute names. The following list shows the top
attributes and when to consider each one vulnerable.

• Backup Flag is considered vulnerable if its value is true. Backup is done by copying the
application data (for example, application database and files) to the SD card. Application
information on the SD card is less secure than on the mobile phone memory. This is because it is
easier to grant write permission on SD cards. Vulnerability risk of enabling backup is estimated
Low as the information that is backed up may not have sensitive information to be fully risky.

• Debug Flag is considered vulnerable if its value is true. Android application developers use
debug mode to be able to log important fields and verify whether or not they are correct.
Unfortunately, forgetting to change the application to be in release mode enables hackers to
easily sniff on the application. Vulnerability risk of enabling debug mode is estimated High as a
lot of information can be revealed while the application is in debug mode.

• Exported Components (activities and services) are considered vulnerable if they exist. Leaving
more components opened to other applications and services requires more interfaces to secure
against attacks. A malicious user can fuzz on the interfaces until finding a way to break an
interface. Vulnerability risk of exported components is estimated Low as the getaways may be
secured and may be the components are exported on purpose not by mistake, so it is not as risky
as other vulnerabilities.

• Test Only Flag which is not vulnerable but is used for the dynamic analysis phase indicating that
APK will not applicable to execute as it is just part of the application, not the whole application.

Source Code Scanning

Before discussing source code scanning to detect information leaks, sources and sinks APIs need
to be specified. SuSi framework [43] provides an SVM trained model and the used model results
are based on Android 4.2 version APIs. It classifies a given Android API to be a source or a sink.
Working on Android 4.2 may sound deprecated but the collected APIs are not only from Android SDK
libraries—which don’t include runtime APIs—instead, they are included in real Android phones or
Android emulators. As a result, SuSi framework provides a good base and with some hand annotation
for the results fits the old and new Android APIs. SuSi provides sources and sinks of Android APIs in
RIFL format—a common specification language for information-flow requirements. Next, a dummy
entry point is constructed as it does not exist in Android code to be able to construct Call-Graph (CG).

This dummy entry point is constructed by FlowDroid that emulates the application life-cycle [44].
This is done such that all components (activities, services, etc.) inside an application can run in an
arbitrary sequential order (including repetition). FlowDroid bases its analysis on IFDS [45], an analysis
framework which is not path sensitive. Instead, it joins analysis results immediately at any control-flow
merge point. It can thus generate and analyze a dummy main method in which every order of
individual component life-cycles and callbacks is possible.

By scanning each source code function forward and then backwards, APIs and user-defined
methods can be represented as nodes in CG and the direction of arrows in the graph shows the
direction of the calls. Next comes the extraction of paths from sink APIs’ nodes to source APIs’ nodes.
This is done by traversing the constructed CG using Depth-First Search (DFS) algorithm. Those paths
from source to sink APIs are considered a tainted and a vulnerable path. They are tainted because
the source API contains sensitive information about the user’s Android mobile, like location, IMEI,
and contacts. They are vulnerable because this sensitive information is sent outside the Android
mobile by sink API like sending SMS, uploading to a remote server, and passing to another Bluetooth
or NFC device. The information leak vulnerability risk is estimated Medium as some of the code does
not indeed invoke at run time, so it may give a false positive result. Android Sources and Sinks of
Android APIs are summarised in Table 2.

Information 2019, 10, 326 10 of 16

Throughout this work, we contributed to FlowDroid [27]—an open-source framework. It is
responsible for matching the source and sinks APIs and identifying the tainted paths. However, it
doesn’t accept RIFL file format [46] correctly. This should be contained by Android sources and sink
APIs. Therefore, we added this feature and provided an XML output file which contains the tainted
paths (information leaks vulnerabilities) and its categories as shown in Table 2.

Table 2. Android APIs Sources and Sinks Categories.

Sources APIs Categories Sinks APIs Categories

NETWORK_INFORMATION NETWORK
LOCATION_INFORMATION SMS

UNIQUE_IDENTIFIER LOG
MICROPHONE FILE

BLUETOOTH_INFORMATION APPLICATION
FILE_INFORMATION

CALENDAR_INFORMATION
BROWSER_INFORMATION
ACCOUNT_INFORMATION

SYSTEM_SETTINGS
APPLICATION

4.2.2. Dynamic Analysis

There are vulnerabilities that static analysis is not able to detect. Vulnerabilities that depend
on the run-time behaviour and the interaction with the application. Dealing only with reverse
engineered code and code paths are not enough. To overcome this limitation, dynamic analysis is used.
Dynamic analysis works on running the application and running different scenarios using randomly
generated user input then monitors the running behaviour. Examples of detected behaviour are Intent
Crashing and Insecure Network Connections (especially HTTP requests).

Intent Crashing could be seen as a signal for a vulnerability. The reason behind this is that it
indicates (a) an open door for code injection that would run in the privileged context of the attacked
application, (b) Distributed Denial of Service (DDoS) attack [47]. When malicious code is injected
that is trying to access a restricted resource (i.e., camera, location, etc.), a security exception will be
thrown that is not handled by the application [48] and (c) Detecting an unexpected use of an exported
component [49].

Another reason for using Dynamic Analysis is that it could detect run-time anomalies regardless
of the coding language being Java (native) or the developer changes to Kotlin or C++.

To be able to run an Android application, a robust Android emulator is needed, so we used and
configured Android SDK emulator API 26 version (Oreo) and communicated with it through ADB [50];
a command-line utility included in the Android SDK. However, there are many architectures that the
APK can support, this project supports only x86 architecture in the phase of dynamic analysis due to
performance degradation for the other architectures. After running the Android emulator, the desired
APK is installed and the application is opened on the main screen (activity). If the application is
labelled as “test only”, the dynamic analysis process gets aborted. The “test only” flag is set by the
compiler during the compilation process. This is done to speed the process while testing/running
the application by compiling only a part of the application. This is considered as a limitation to the
dynamic analysis process.

Next comes extracting the current views on the screen and its states i.e., clickable and non-clickable
buttons. We only extract the views that the user can deal with its states in real-time like the clickable,
long press and scroll-able states. Next, we loop across all the extracted states and its views and send
the corresponding signal to the emulator. We used Droidbot [51] as the Android emulator and the user
behaviour was generated based on the extracted states of the views. The goal of simulation is to cover
the different available screens and views’ states regardless of the data entered in editable text fields.

Information 2019, 10, 326 11 of 16

Intent Crash Analysis

While the simulation of the Android application is running on the Android emulator, information
about actions, running applications, and background processes are logged. The log file from the
emulator is extracted after completing the simulation and analysis by finding “FATAL EXCEPTION”
word accompanied by the package name of the simulated application. The intent crash vulnerability
risk is estimated High as crashing the application may enable a hacker to gain the application’s
permissions and cause some destruction.

API Calls Analysis

It focuses on analysing network API calls which is mainly about detecting HTTP requests.
Strace [52]; a Linux API monitoring tool, is hooked to the emulator to listen to HTTP requests.
The results of listening are filtered giving the URL and its source and destination hosts. The HTTP
request vulnerability risk is estimated High as the connection is not encrypted and the user’s
information may be sensitive to being sniffed.

To this end, the architecture is modularized to allow it to be both extendable and adaptable to
other mobile development platforms. As aforementioned, adapting to other platforms would require
adjusting the reverse engineering and choosing the suitable emulator. All the required modifications
are limited to the Application Layer (Section 4.1.1).

5. Experiments and Results

As mentioned above, this work performs both static and dynamic analysis on an uploaded APK.
Table 3 summarises the vulnerabilities and their risk levels. Each vulnerability is ranked based on
two metrics; (a) the associated security risk and (b) the impact on the user. Then, an overall risk is
calculated based on these two values. For example, the “Insecure Network Request” has a high security
risk and a medium impact on the user with an overall high risk, compared to setting the “Back-up” flag
which has a low impact on the user and a medium risk resulting in a low overall risk.

Table 3. Vulnerability Risks Levels.

Vulnerability Vulnerability Security Risk Impact on User/App Overall

Insecure Network Request High Medium High
Information Leak Low Medium Medium

Intent Crashes High High High
Debug Flag High Medium High

Exported Components Low Low Low
Back-up Flag Medium Low Low

To evaluate the proposed model, we used application APKs from DroidBench [53] benchmark.
Moreover, we developed applications with predefined vulnerabilities to evaluate the correctness of
the model. After the correctness phase, real applications are evaluated as well, such as Ampere,
Brevent and GoIV Calculator.

The model is evaluated against 70 applications from DroidBench. These applications contain
93 information leaks. The model was able to detect 79 of the information leaks, resulting in 84%
accuracy compared to DroidBench. Below are samples of the evaluated applications. It is important
that Intent Crashes and Insecure Network Requests are fully covered in the proposed model, however,
accuracy comparison is not possible since they are not included in other models/platforms.

1. httpRequest_crash application: This is a developed application aimed to evaluate HTTP requests
and intent crashes detection.
Overall App risk: Medium
The detected vulnerabilities are:

Information 2019, 10, 326 12 of 16

• Static: Exported Components, Debug Mode Enabled, Backup Mode Enabled
• Dynamic: Http Requests, Intent Crashes

2. TestOnlyFlag: This is a developed application aimed to evaluate static analysis only. Dynamic
analysis won’t execute because the application is flagged as Test Only.
Overall App risk: Medium
The detected vulnerabilities are:

• Static: Exported Components, Debug Mode Enabled, Backup Mode Enabled

3. Ampere: This is one of the applications on the Google Play store. It is used for battery usage and
voltage calculation.
Overall App risk: Medium
The detected vulnerabilities are:

• Static: Exported Components, Information Leaks

4. Brevent: This is one of the applications on the Google Play store. It is used to control other
applications that are in the background.
Overall App risk: Low
The detected vulnerabilities are:

• Static: Exported Components

5. GoIV: This is one of the applications on the Google Play store. It is used alongside Pokemon
Go game.
Overall App risk: Low
The detected vulnerabilities are:

• Static: Exported Components, Information Leaks

The output of the model is an analysis report which consists of three sections. The first section is
the APK information section. It contains unique information that describes the APK including the APK
version, package name, minimum SDK version, target SDK version, the architectures supported by the
application, whether the backup and debug modes are enabled or not, and whether the application
is for testing only or not. The second section is the permissions granted to the application by the
operating system. The third and final section in the report contains the vulnerabilities detected in the
APK file. The vulnerabilities are represented in a table consisting of four columns: risk level, category,
type, and description. The risk level indicates how severe the vulnerability is on a scale from low
to high. The category indicates what the vulnerability is (e.g., exported component). The type of
vulnerability specifies whether it resulted from static or dynamic analysis. Finally, the description
explains the vulnerability in details.

Figure 2 shows the generated vulnerability report. Figure 2a shows a Low Risk report while
Figure 2b shows a High Risk one. The three sections are highlighted. As aforementioned, the detailed
description is rendered there for the use of a professional developer, however, the normal user can rely
on the general information in the report which he/she can understand.

Information 2019, 10, 326 13 of 16

(a) Low Risk (b) High Risk

Figure 2. Sample Vulnerabilities Report.

6. Conclusions and Future Work

The world has become very dependent on mobile applications in all aspects. With this increase in
demand, the rate of releasing mobile applications has also increased to meet the continuously changing
demands of the users and to keep up with competitors on the market. This has caused applications
testing time to decrease and for third-party testing to become harder to perform as it requires more
time and resources. The shortening of the testing phase of the released applications has caused these
apps to become vulnerable to malicious users and hackers who may gain unauthorised access to
private information. Throughout this paper, we proposed a usable Android vulnerability detection
framework. The framework can be used by both developers and normal users. A web application
is built to make it easy to use. The framework analyzes any uploaded APK file by two methods:
static analysis and dynamic analysis and generates an analysis report. The types of vulnerabilities
that we detected in our project were Information Leaks, Intent Crashes, Insecure Network Requests
(Http Requests), Exported Android Components, Enabled Backup Mode, and Enabled Debug Mode.
The framework is available on (https://github.com/AmrAshraf/AndroShield).

Future work includes improving the model by detecting more vulnerabilities. For example,
detecting deprecated and vulnerable libraries used in the source code and adding support for static
analysis to analyse kotlin code and not only Java code. It also involves analysing native libraries to
detect malware that may cause security vulnerabilities protecting Android applications and supporting
ARM architecture for APKs in the dynamic analysis since there are numerous Android mobiles and
applications based on that architecture. Finally, it constitutes assessing the severity of information
leaks based on linking static analysis outputs with dynamic analysis ones.

Author Contributions: Investigation, A.A., A.E., M.T.M., N.A., H.H. and I.H.; Methodology, A.A., A.E., M.T.M.
and N.A.; Project administration, H.H. and I.H.; Software, A.A., A.E., M.T.M. and N.A.; Supervision, H.H. and I.H.;
Visualization, A.A., A.E., M.T.M. and N.A.; Writing—original draft, A.A., A.E., M.T.M. and N.A.; Writing—review
& editing, H.H. and I.H.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/AmrAshraf/AndroShield

Information 2019, 10, 326 14 of 16

References

1. Clement, J. Annual number of mobile app downloads worldwide 2018 | Statista. Available online: https://
www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/ (accessed on
12 October 2019).

2. Ponemon Institute, LLC. The State of Mobile Application Insecurity; Technical Report; Ponemon Institute,
Sponsored by IBM: Great Lakes, MI, USA, 2015.

3. Wang, X.; Zhu, S.; Zhou, D.; Yang, Y. Droid-AntiRM: Taming Control Flow Anti-analysis to Support
Automated Dynamic Analysis of Android Malware. In Proceedings of the 33rd Annual Computer Security
Applications Conference, Orlando, FL, USA, 4–8 December 2017; pp. 350–361.

4. Li, L.; Bissyandé, T.F.; Papadakis, M.; Rasthofer, S.; Bartel, A.; Octeau, D.; Klein, J.; Traon, L. Static analysis of
android apps: A systematic literature review. Inf. Softw. Technol. 2017, 88, 67–95. [CrossRef]

5. Meng, Z.; Xiong, Y.; Huang, W.; Miao, F.; Jung, T.; Huang, J. Divide and Conquer: Recovering
Contextual Information of Behaviors in Android Apps around Limited-quantity Audit Logs. arXiv 2018,
arXiv:1809.07036.

6. Wei, F.; Roy, S.; Ou, X. Amandroid: A precise and general inter-component data flow analysis framework for
security vetting of Android apps. ACM Trans. Priv. Secur. (TOPS) 2018, 21, 14. [CrossRef]

7. Dean, J.; Grove, D.; Chambers, C. Optimization of object-oriented programs using static class hierarchy
analysis. In Proceedings of the European Conference on Object-Oriented Programming, Åarhus, Denmark,
7–11 August 1995; pp. 77–101.

8. Bacon, D.F.; Sweeney, P.F. Fast static analysis of C++ virtual function calls. ACM Sigplan Not. 1996,
31, 324–341. [CrossRef]

9. Sundaresan, V.; Hendren, L.; Razafimahefa, C.; Vallée-Rai, R.; Lam, P.; Gagnon, E.; Godin, C. Practical Virtual
Method Call Resolution for Java; ACM: New York, NY, USA, 2000; Volume 35.

10. Andersen, L.O. Program Analysis and Specialization for the C Programming Language. Ph.D. Thesis,
University of Cophenhagen, Copenhagen, Denmark, 1994.

11. Steensgaard, B. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, St. Petersburg Beach, FL, USA, 21–24 January 1996;
pp. 32–41.

12. Mohanty, H.; Mohanty, J.; Balakrishnan, A. Trends in Software Testing; Springer: Berlin/Heidelberg,
Germany, 2017.

13. Mahmood, R.; Esfahani, N.; Kacem, T.; Mirzaei, N.; Malek, S.; Stavrou, A. A whitebox approach for
automated security testing of Android applications on the cloud. In Proceedings of the 7th International
Workshop on Automation of Software Test, Zurich, Switzerland, 2–3 June 2012; pp. 22–28.

14. Godefroid, P.; Kiezun, A.; Levin, M.Y. Grammar-based Whitebox Fuzzing. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Tucson, AZ, USA, 7–13 June;
ACM: New York, NY, USA, 2008; pp. 206–215. [CrossRef]

15. Edalat, E.; Sadeghiyan, B.; Ghassemi, F. ConsiDroid: A Concolic-based Tool for Detecting SQL Injection
Vulnerability in Android Apps. arXiv 2018, arXiv:1811.10448.

16. Majumdar, R.; Sen, K. Hybrid Concolic Testing. In Proceedings of the 29th International Conference on Software
Engineering; IEEE Computer Society: Washington, DC, USA, 2007; pp. 416–426. [CrossRef]

17. McMinn, P. Search-Based Software Testing: Past, Present and Future. In Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation Workshops, Berlin, Germany, 21–25 March
2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 153–163. [CrossRef]

18. Rasthofer, S.; Arzt, S.; Bodden, E. A Machine-Learning Approach for Classifying and Categorizing Android
Sources and Sinks. In Proceedings of the 2014 Network and Distributed System Security (NDSS) Symposium,
NDSS 2014, San Diego, CA, USA, 23–26 February 2014.

19. Ostorlab. Ostorlab - Continuous Mobile Application Security Testing. Available online: https://www.ostorl
ab.co/ (accessed on 12 October 2019).

20. LinkedIn. Tool to Look for Several Security Related Android Application Vulnerabilities. Available online:
https://github.com/linkedin/qark (accessed on 6 December 2018).

21. Group, S.R. Soot—A Java Optimization Framework. Available online: https://github.com/Sable/soot
(accessed on 20 November 2018).

https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
http://dx.doi.org/10.1016/j.infsof.2017.04.001
http://dx.doi.org/10.1145/3183575
http://dx.doi.org/10.1145/236338.236371
http://dx.doi.org/10.1145/1375581.1375607
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSTW.2011.100
https://www.ostorlab.co/
https://www.ostorlab.co/
https://github.com/linkedin/qark
https://github.com/Sable/soot

Information 2019, 10, 326 15 of 16

22. Acpm. Inspeckage: Android Package Inspector—Dynamic Analysis with Api Hooks, Start Unexported
Activities and More. (Xposed Module). Available online: https://github.com/ac-pm/Inspeckage
(accessed on 6 December 2018).

23. Tungstwenty; Rovo89. Xposed Module Repository. 2014. Available online: https://repo.xposed.info/mod
ule/de.robv.android.xposed.installer (accessed on 12 October 2019).

24. Tumbleson, C.; Wiśniewski, R. Apktool—A Tool for Reverse Engineering 3rd Party, Closed, Binary Android
Apps. Available online: https://ibotpeaches.github.io/Apktool/ (accessed on 6 December 2018).

25. Gruver, B. Smali: Smali/Baksmali. Available online: https://github.com/JesusFreke/smali (accessed on 6
December 2018).

26. Deshotels, L.; Notani, V.; Lakhotia, A. DroidLegacy: Automated Familial Classification of Android Malware.
In Proceedings of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop, San Diego, CA, USA,
22–24 January 2014; ACM: New York, NY, USA, 2014; pp. 3:1–3:12. [CrossRef]

27. Group, S.S.E. FlowDroid: FlowDroid Static Data Flow Tracker. Available online: https://github.com/secur
e-software-engineering/FlowDroid (accessed on 20 November 2018).

28. Li, L. Soot-Infoflow-Android-Iccta: Inter-Component Communication Taint Analysis for Android.
Available online: https://github.com/lilicoding/soot-infoflow-android-iccta (accessed on 6 December
2018).

29. Flankerhqd. JAADAS: Joint Advanced Defect Assesment for Android Applications. Available online:
https://github.com/flankerhqd/JAADAS (accessed on 6 December 2018).

30. Androguard. Reverse Engineering, Malware and Goodware Analysis of Android Applications . . . and More
(ninja !). Available online: https://github.com/androguard/androguard (accessed on 6 December 2018).

31. Framework, M.S. MobSF. Available online: https://github.com/MobSF/Mobile-Security-Framework-Mob
SF (accessed on 6 December 2018).

32. Au, K.W.Y.; Zhou, Y.F.; Huang, Z.; Lie, D. Pscout: Analyzing the android permission specification.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh, NC, USA,
16–18 October 2012; pp. 217–228.

33. TACIXAT. CFGScanDroid: Control Flow Graph Scanning for Android. Available online: https://github.c
om/TACIXAT/CFGScanDroid (accessed on 6 December 2018).

34. Li, L.; Bissyandé, T.F.; Octeau, D.; Klein, J. DroidRA: Taming Reflection to Support Whole-Program Analysis
of Android Apps. In Proceedings of the The 2016 International Symposium on Software Testing and
Analysis (ISSTA 2016), Saarbrücken, Germany, 18–20 July 2016.

35. Maldroid. Maldrolyzer: Simple Framework to Extract “Actionable” Data from Android Malware (C&Cs,
Phone Numbers etc.). Available online: https://github.com/maldroid/maldrolyzer (accessed on 6
December 2018).

36. Merlo, A.; Georgiu, G.C. RiskInDroid: Machine Learning-Based Risk Analysis on Android. In Proceedings of
the ICT Systems Security and Privacy Protection: 32nd IFIP TC 11 International Conference, SEC 2017, Rome, Italy,
29–31 May 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 538–552._36. [CrossRef]

37. Debize, T. Androwarn: Yet Another Static Code Analyzer for Malicious Android Applications.
Available online: https://github.com/maaaaz/androwarn (accessed on 6 December 2018).

38. Rastogi, V.; Chen, Y.; Enck, W. AppsPlayground: Automatic security analysis of smartphone applications.
In Proceedings of the third ACM conference on Data and Application Security and Privacy, San Antonio, TX,
USA, 18–20 February 2013; pp. 209–220.

39. XposedBridge. The Java Part of the Xposed Framework. Available online: https://github.com/rovo89/Xp
osedBridge (accessed on 6 December 2018).

40. Idanr. CuckooDroid—Automated Android Malware Analysis with Cuckoo Sandbox. Available online:
https://github.com/idanr1986/cuckoo-droid (accessed on 6 December 2018).

41. Sandbox, C. Automated Malware Analysis. Available online: https://cuckoosandbox.org/ (accessed on
6 December 2018).

42. Developers, A. Apkanalyzer. Available online: https://developer.android.com/studio/command-line/ap
kanalyzer (accessed on 20 November 2018).

43. Group, S.S.E. SuSi: SuSi—Our Tool to Automatically Discover Sources and Sinks in the Android Framework.
Available online: https://github.com/secure-software-engineering/SuSi (accessed on 20 November 2018).

https://github.com/ac-pm/Inspeckage
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
http://dx.doi.org/10.1145/2556464.2556467
https://github.com/secure-software-engineering/FlowDroid
https://github.com/secure-software-engineering/FlowDroid
https://github.com/lilicoding/soot-infoflow-android-iccta
https://github.com/flankerhqd/JAADAS
https://github.com/androguard/androguard
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/TACIXAT/CFGScanDroid
https://github.com/TACIXAT/CFGScanDroid
https://github.com/maldroid/maldrolyzer
http://dx.doi.org/10.1007/978-3-319-58469-0_36
https://github.com/maaaaz/androwarn
https://github.com/rovo89/XposedBridge
https://github.com/rovo89/XposedBridge
https://github.com/idanr1986/cuckoo-droid
https://cuckoosandbox.org/
https://developer.android.com/studio/command-line/apkanalyzer
https://developer.android.com/studio/command-line/apkanalyzer
https://github.com/secure-software-engineering/SuSi

Information 2019, 10, 326 16 of 16

44. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.; Octeau, D.; McDaniel, P.
Flowdroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps;
ACM Sigplan Notices; ACM: New York, NY, USA, 2014; Volume 49, pp. 259–269.

45. Reps, T.; Horwitz, S.; Sagiv, M. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, CA, USA, 23–25 January 1995; pp. 49–61.

46. Bauereiß, T.; Greiner, S.; Herda, M.; Kirsten, M.; Li, X.; Mantel, H.; Mohr, M.; Perner, M.; Schneider, D.; Tasch,
M. RIFL 1.1: A Common Specification Language for Information-Flow Requirements; Technical Report, Technical
report TUD-CS-2017-0225; TU Darmstadt: Darmstadt, Germany, 2017.

47. Gu, J.; Shen, S. CVE-2017-0780: Denial-of-Service Vulnerability Can Crash Android Messages
App—TrendLabs Security Intelligence Blog, Mobile Threat Response Team. 2017. Available online:
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2017-0780-denial-service-vulnerability
-android-messages-app/ (accessed on 9 October 2019).

48. HackingLoops. Android Exploitation Bypassing Android Permission Model. Available online: http
s://www.hackingloops.com/android-exploitation-bypassing-android-permission-model/ (accessed on
12 October 2019).

49. Melamed, T. Hacking Android Apps Through Exposed Components. 2017. Available online: https://ww
w.linkedin.com/pulse/hacking-android-apps-through-exposed-components-tal-melamed/ (accessed on
10 October 2019).

50. Developers, A. Android Debug Bridge (adb). Available online: https://developer.android.com/studio/c
ommand-line/adb (accessed on 20 November 2018).

51. Project, T.H. Droidbot: A Lightweight Test Input Generator for Android. Similar to Monkey, But with More
Intelligence and Cool Features! Available online: https://github.com/honeynet/droidbot (accessed on
20 November 2018).

52. Wikipedia. Strace. Available online: https://en.wikipedia.org/wiki/Strace (accessed on 20 November 2018).
53. Fritz, C.; Arzt, S.; Rasthofer, S. DroidBench: A micro-Benchmark Suite to Assess the Stability of Taint-Analysis

Tools for Android. Secure Software Engineering Group at Paderborn University and Fraunhofer
IEM. Available online: https://github.com/secure-software-engineering/DroidBench (accessed on
8 October 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2017-0780-denial-service-vulnerability-android-messages-app/
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2017-0780-denial-service-vulnerability-android-messages-app/
https://www.hackingloops.com/android-exploitation-bypassing-android-permission-model/
https://www.hackingloops.com/android-exploitation-bypassing-android-permission-model/
https://www.linkedin.com/pulse/hacking-android-apps-through-exposed-components-tal-melamed/
https://www.linkedin.com/pulse/hacking-android-apps-through-exposed-components-tal-melamed/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/honeynet/droidbot
https://en.wikipedia.org/wiki/Strace
https://github.com/secure-software-engineering/DroidBench
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Vulnerability Detection Techniques
	Static Analysis
	Dynamic Analysis

	Android Sources and Sinks

	Related Work
	Methodology and Architecture
	Proposed Architecture
	Application Layer
	Presentation Layer
	Data Layer

	Methodology
	Static Analysis
	Dynamic Analysis

	Experiments and Results
	Conclusions and Future Work
	References

