3 research outputs found

    High Speed and Low Pedestal Error Bootstrapped CMOS Sample and Hold Circuit

    Get PDF
    A new high speed, low pedestal error bootstrapped CMOS sample and hold (S/H) circuit is proposed for high speed analog-to-digital converter (ADC). The proposed circuit is made up of CMOS transmission gate (TG) switch and two new bootstrap circuits for each transistor in TG switch. Both TG switch and bootstrap circuits are used to decrease channel charge injection and on-resistance input signal dependency. In result, distortion can be reduced. The decrease of channel charge injection input signal dependency also makes the minimizing of pedestal error by adjusting the width of NMOS and PMOS of TG switch possible. The performance of the proposed circuit was evaluated using HSPICE 0.18-m CMOS process. For 50 MHz sinusoidal 1 V peak-to-peak differential input signal with a 1 GHz sampling clock, the proposed circuit achieves 2.75 mV maximum pedestal error, 0.542 mW power consumption, 90.87 dB SNR, 73.50 SINAD which is equal to 11.92 bits ENOB, -73.58 dB THD, and 73.95 dB SFDR

    A Simple Transistors Width Adjustment Method on CMOS Transmission Gate Switch to Reduce Hold Error of S/H Circuit

    Get PDF
    Sample and Hold (S/H) circuit is one of the most important circuits in analog and mixed signal integrated circuit. This circuit is the main block of many applications, such as switched capacitor circuit, analog to digital converter (ADC), etc. The majority of S/H circuits are implemented using MOS technology because the high input impedance of MOS devices performs excellent holding functions. Ideal characteristics of the S/H circuit are low hold error, low On-resistance and constant On-resistance in all voltage levels. There are some techniques to reduce the hold error and achieve low On-resistance. However, these techniques need additional compensation circuit. For this reason, a simple transistors width adjustment method on CMOS transmission gate (TG) switch to reduce hold error of S/H circuit without additional circuit that can be implemented in the actual design process is proposed in this paper. The basic idea of the proposed method is balancing hold error caused by N-type and P-type MOS transistor in CMOS switch that is used in S/H circuit. The performance of the proposed method is evaluated using HSPICE with 0.6 µm CMOS standard process. As a result, using 1.5 V constant input in the PMOS transistor width WP range of 3 to 35 µm the average WN/WP ratio given by this proposed method is 0.928 with the average absolute hold error is 0.427 mV and maximum absolute hold error is 0.8 mV

    An Ultra-Low-Power Track-and-Hold Amplifier

    Get PDF
    The future of electronics is the Internet of Things (IoT) paradigm, where always-on devices and sensors monitor and transform everyday life. A plethora of applications (such as navigating drivers past road hazards or monitoring bridge and building stresses) employ this technology. These unattended ground-sensor applications require decade(s)-long operational life-times without battery changes. Such electronics demand stringent performance specifications with only nano-Watt power levels.This thesis presents an ultra-low-power track-and-hold amplifier for such systems. It serves as the front-end of a SAR-ADC or the building block for equalizers or filters. This amplifier\u27s design attains exceptional hold times by mitigating switch subthreshold leakage and bulk leakage. Its novel transmission-gate topology achieves wide-swing performance. Though only consuming 100 pico-Watts, it achieves a precision of 7.6 effective number of bits (ENOB). The track-and-hold amplifier was designed in 130-nm CMOS
    corecore