755 research outputs found

    Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage Regulator

    Get PDF
    abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required. The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking. The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Dual-frequency single-inductor multiple-output (DF-SIMO) power converter topology for SoC applications

    Get PDF
    Modern mixed-signal SoCs integrate a large number of sub-systems in a single nanometer CMOS chip. Each sub-system typically requires its own independent and well-isolated power supply. However, to build these power supplies requires many large off-chip passive components, and thus the bill of material, the package pin count, and the printed circuit board area and complexity increase dramatically, leading to higher overall cost. Conventional (single-frequency) Single-Inductor Multiple-Output (SIMO) power converter topology can be employed to reduce the burden of off-chip inductors while producing a large number of outputs. However, this strategy requires even larger off-chip output capacitors than single-output converters due to time multiplexing between the multiple outputs, and thus many of them suffer from cross coupling issues that limit the isolation between the outputs. In this thesis, a Dual-Frequency SIMO (DF-SIMO) buck converter topology is proposed. Unlike conventional SIMO topologies, the DF-SIMO decouples the rate of power conversion at the input stage from the rate of power distribution at the output stage. Switching the input stage at low frequency (~2 MHz) simplifies its design in nanometer CMOS, especially with input voltages higher than 1.2 V, while switching the output stage at higher frequency enables faster output dynamic response, better cross-regulation, and smaller output capacitors without the efficiency and design complexity penalty of switching both the input and output stages at high frequency. Moreover, for output switching frequency higher than 100 MHz, the output capacitors can be small enough to be integrated on-chip. A 5-output 2-MHz/120-MHz design in 45-nm CMOS with 1.8-V input targeting low-power microcontrollers is presented as an application. The outputs vary from 0.6 to 1.6 V, with 4 outputs providing up to 15 mA and one output providing up to 50 mA. The design uses single 10-uH off-chip inductor, 2-nF on-chip capacitor for each 15-mA output and 4.5-nF for the 50-mA output. The peak efficiency is 73%, Dynamic Voltage Scaling (DVS) is 0.6 V/80 ns, and settling time is 30 ns for half-to-full load steps with no observable overshoot/undershoot or cross-coupling transients. The DF-SIMO topology enables realizing multiple efficient power supplies with faster dynamic response, better cross-regulation, and lower overall cost compared to conventional SIMO topologies

    High Efficiency LED Drivers: A Review

    Full text link
    Recently various soft switching techniques have been developed for various DC-DC based LED drivers. Typical driver circuits in the market have efficiency between 80% - 95% with majority having efficiency between 80% - 90%. Various topologies and strategies are available to obtain the best performance. A comparison and discussion of different buck and floating buck topologies used as driver in LED lighting application are presented in this paper

    Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control

    Get PDF
    abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ±1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ±1.1% voltage regulation accuracy. Maximum current-sharing error of ±3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    An Inductor Emulator Approach to Peak Current-mode Control in a 4-Phase Buck Regulator

    Get PDF
    abstract: High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies. Ability to supply large output current with improved efficiency, reduction in the size of filter components, improved transient response make multi-phase topologies a preferred choice for low voltage-high current applications. Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme. This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level implementation is in close agreement with the results obtained from the PLECS model.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    A Novel Boost Converter Based LED Driver Chip Targeting Mobile Applications

    Get PDF
    abstract: A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system. In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented. In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore