176 research outputs found

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Efficient Reversible Watermarking Technique with Contrast Enhancement for Color Images

    Get PDF
    In this paper histogram bin shifting based reversible data hiding algorithm for color images has been proposed. In this technique binary bits are embedded directly by addition and subtraction in two highest bin chosen and this process is repeated in modified histogram. A location map is generated by pre -processing to prevent the unnecessary overflow and underflow. All other pixels except two highest bins are also manipulated for contrast enhancement. Embedding of binary secret data is done on the each color component (Red, Green, and Blue) of color images. Secret Binary data bits are embedded in random permutation manner to secure the data from unauthorized receiver. Extraction of embedded binary bits is done by inverse algorithm of embedding process and original image is recovered by reverse manipulation embedding process. This proposed algorithm provide high embedding capacity with low distortion of original quality of image which may be used in different medical, military and satellite application. DOI: 10.17762/ijritcc2321-8169.15062

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Steganalytic Methods for the Detection of Histogram Shifting Data Hiding Schemes

    Get PDF
    Peer-reviewedIn this paper, several steganalytic techniques designed to detect the existence of hidden messages using histogram shifting schemes are presented. Firstly, three techniques to identify specific histogram shifting data hiding schemes, based on detectable visible alterations on the histogram or abnormal statistical distributions, are suggested. Afterwards, a general technique capable of detecting all the analyzed histogram shifting data hiding methods is suggested. This technique is based on the effect of histogram shifting methods on the ¿volatility¿ of the histogram of the difference image. The different behavior of volatility whenever new data are hidden makes it possible to identify stego and cover images

    A steganalytic algorithm for 3D polygonal meshes

    Get PDF
    We propose a steganalytic algorithm for watermarks embedded by Cho et al.'s mean-based algorithm [1]. The main observation is that while in a clean model the means of Cho et al.'s normalized histogram bins are expected to follow a Gaussian distribution, in a marked model their distribution will be bimodal. The proposed algorithm estimates the number of bins through an exhaustive search and then the presence of a watermark is decided by a tailor made normality test. We also propose a modification of Cho et al.'s algorithm which is more resistant to the steganalytic attack and offers an improved robustness/capacity trade-off

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely
    corecore