2,489 research outputs found

    Multiverse: Mobility pattern understanding improves localization accuracy

    Get PDF
    Department of Computer Science and EngineeringThis paper presents the design and implementation of Multiverse, a practical indoor localization system that can be deployed on top of already existing WiFi infrastructure. Although the existing WiFi-based positioning techniques achieve acceptable accuracy levels, we find that existing solutions are not practical for use in buildings due to a requirement of installing sophisticated access point (AP) hardware or special application on client devices to aid the system with extra information. Multiverse achieves sub-room precision estimates, while utilizing only received signal strength indication (RSSI) readings available to most of today's buildings through their installed APs, along with the assumption that most users would walk at the normal speed. This level of simplicity would promote ubiquity of indoor localization in the era of smartphones.ope

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine

    Get PDF
    Indoor positioning system (IPS) has become one of the most attractive research fields due to the increasing demands on location-based services (LBSs) in indoor environments. Various IPSs have been developed under different circumstances, and most of them adopt the fingerprinting technique to mitigate pervasive indoor multipath effects. However, the performance of the fingerprinting technique severely suffers from device heterogeneity existing across commercial off-the-shelf mobile devices (e.g., smart phones, tablet computers, etc.) and indoor environmental changes (e.g., the number, distribution and activities of people, the placement of furniture, etc.). In this paper, we transform the received signal strength (RSS) to a standardized location fingerprint based on the Procrustes analysis, and introduce a similarity metric, termed signal tendency index (STI), for matching standardized fingerprints. An analysis of the capability of the proposed STI to handle device heterogeneity and environmental changes is presented. We further develop a robust and precise IPS by integrating the merits of both the STI and weighted extreme learning machine (WELM). Finally, extensive experiments are carried out and a performance comparison with existing solutions verifies the superiority of the proposed IPS in terms of robustness to device heterogeneity
    corecore