410,703 research outputs found

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    Experimental investigation on micromilling of oxygen-free, high-conductivity copper using tungsten carbide, chemistry vapour deposition and single-crystal diamond micro tools

    Get PDF
    Insufficient experimental data from various micro tools limit industrial application of the micromilling process. This paper presents an experimental comparative investigation into micromilling of oxygen-free, high-conductivity copper using tungsten carbide (WC), chemistry vapour deposition (CVD) diamond, and single-crystal diamond micromilling tools at a uniform 0.4mm diameter. The experiments were carried out on an ultra-precision micromilling machine that features high dynamic accurate performance, so that the dynamic effect of the machine tool itself on the cutting process can be reduced to a minimum. Micromachined surface roughness and burr height were characterized using white light interferometry, a scanning electron microscope (SEM), and a precision surface profiler. The influence of variation of cutting parameters, including cutting speeds, feedrate, and axial depth of cut, on surface roughness and burr formation were analysed. The experimental results show that there exists an optimum feedrate at which best surface roughness can be achieved. Optical quality surface roughness can be achieved with CVD and natural diamond tools by carefully selecting machining conditions, and surface roughness, Ra, of the order of 10nm can also be obtained when using micromilling using WC tools on the precision micromilling machine.EU FP6 MASMICRO projec

    Physics at TESLA

    Get PDF
    The physics at a 500-800 GeV electron positron linear collider, TESLA, is reviewed. The machine parameters that impact directly on the physics are discussed and a few key performance goals for a detector at TESLA are given. Emphasis is placed on precision measurements in the Higgs and top sectors and on extrapolation to high energy scales in the supersymmetric scenario.Comment: Talk presented at Lake Louise Winter Institute 2001. 7 pages, 2 figure

    Using Contexts and Constraints for Improved Geotagging of Human Trafficking Webpages

    Full text link
    Extracting geographical tags from webpages is a well-motivated application in many domains. In illicit domains with unusual language models, like human trafficking, extracting geotags with both high precision and recall is a challenging problem. In this paper, we describe a geotag extraction framework in which context, constraints and the openly available Geonames knowledge base work in tandem in an Integer Linear Programming (ILP) model to achieve good performance. In preliminary empirical investigations, the framework improves precision by 28.57% and F-measure by 36.9% on a difficult human trafficking geotagging task compared to a machine learning-based baseline. The method is already being integrated into an existing knowledge base construction system widely used by US law enforcement agencies to combat human trafficking.Comment: 6 pages, GeoRich 2017 workshop at ACM SIGMOD conferenc

    Capturing translational divergences with a statistical tree-to-tree aligner

    Get PDF
    Parallel treebanks, which comprise paired source-target parse trees aligned at sub-sentential level, could be useful for many applications, particularly data-driven machine translation. In this paper, we focus on how translational divergences are captured within a parallel treebank using a fully automatic statistical tree-to-tree aligner. We observe that while the algorithm performs well at the phrase level, performance on lexical-level alignments is compromised by an inappropriate bias towards coverage rather than precision. This preference for high precision rather than broad coverage in terms of expressing translational divergences through tree-alignment stands in direct opposition to the situation for SMT word-alignment models. We suggest that this has implications not only for tree-alignment itself but also for the broader area of induction of syntaxaware models for SMT
    corecore