18,239 research outputs found

    In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning

    Full text link
    Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.Comment: 36 Pages, 16 Figures, accepted at journal Additive Manufacturin

    Bayesian Reconstruction of Magnetic Resonance Images using Gaussian Processes

    Full text link
    A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Bayesian method to build statistical libraries of magnetic resonance (MR) images in k-space and use these libraries to identify optimal subsampling paths and reconstruction processes. Specifically, we compute a multivariate normal distribution based upon Gaussian processes using a publicly available library of T1-weighted images of healthy brains. We combine this library with physics-informed envelope functions to only retain meaningful correlations in k-space. This covariance function is then used to select a series of ring-shaped subsampling paths using Bayesian optimization such that they optimally explore space while remaining practically realizable in commercial MRI systems. Combining optimized subsampling paths found for a range of images, we compute a generalized sampling path that, when used for novel images, produces superlative structural similarity and error in comparison to previously reported reconstruction processes (i.e. 96.3% structural similarity and <0.003 normalized mean squared error from sampling only 12.5% of the k-space data). Finally, we use this reconstruction process on pathological data without retraining to show that reconstructed images are clinically useful for stroke identification

    XKD: Cross-modal Knowledge Distillation with Domain Alignment for Video Representation Learning

    Full text link
    We present XKD, a novel self-supervised framework to learn meaningful representations from unlabelled video clips. XKD is trained with two pseudo tasks. First, masked data reconstruction is performed to learn individual representations from audio and visual streams. Next, self-supervised cross-modal knowledge distillation is performed between the two modalities through teacher-student setups to learn complementary information. To identify the most effective information to transfer and also to tackle the domain gap between audio and visual modalities which could hinder knowledge transfer, we introduce a domain alignment and feature refinement strategy for effective cross-modal knowledge distillation. Lastly, to develop a general-purpose network capable of handling both audio and visual streams, modality-agnostic variants of our proposed framework are introduced, which use the same backbone for both audio and visual modalities. Our proposed cross-modal knowledge distillation improves linear evaluation top-1 accuracy of video action classification by 8.6% on UCF101, 8.2% on HMDB51, 13.9% on Kinetics-Sound, and 15.7% on Kinetics400. Additionally, our modality-agnostic variant shows promising results in developing a general-purpose network capable of learning both data streams for solving different downstream tasks

    A direct-laser-written heart-on-a-chip platform for generation and stimulation of engineered heart tissues

    Full text link
    In this dissertation, we first develop a versatile microfluidic heart-on-a-chip model to generate 3D-engineered human cardiac microtissues in highly-controlled microenvironments. The platform, which is enabled by direct laser writing (DLW), has tailor-made attachment sites for cardiac microtissues and comes with integrated strain actuators and force sensors. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. After characterization of the responsivity of the transducers, we demonstrate the capabilities of this platform by studying the response of cardiac microtissues to prescribed mechanical loading and pacing. Next, we tune the geometry and mechanical properties of the platform to enable parametric studies on engineered heart tissues. We explore two geometries: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites. The attachment sites are placed symmetrically in the longitudinal direction. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length for both configurations and observe a positive correlation between fiber alignment at the center of the microtissues and tissue length. However, progressive thinning and “necking” is also observed, leading to the failure of longer tissues over time. We use the DLW technique to improve the platform, softening the mechanical environment and optimizing the attachment sites for generation of stable microtissues at each length and geometry. Furthermore, electrical pacing is incorporated into the platform to evaluate the functional dynamics of stable microtissues over the entire range of physiological heart rates. Here, we typically observe a decrease in active force and contraction duration as a function of frequency. Lastly, we use a more traditional ?TUG platform to demonstrate the effects of subthreshold electrical pacing on the rhythm of the spontaneously contracting cardiac microtissues. Here, we observe periodic M:N patterns, in which there are ? cycles of stimulation for every ? tissue contractions. Using electric field amplitude, pacing frequency, and homeostatic beating frequencies of the tissues, we provide an empirical map for predicting the emergence of these rhythms

    Visualisation of Fundamental Movement Skills (FMS): An Iterative Process Using an Overarm Throw

    Get PDF
    Fundamental Movement Skills (FMS) are precursor gross motor skills to more complex or specialised skills and are recognised as important indicators of physical competence, a key component of physical literacy. FMS are predominantly assessed using pre-defined manual methodologies, most commonly the various iterations of the Test of Gross Motor Development. However, such assessments are time-consuming and often require a minimum basic level of training to conduct. Therefore, the overall aim of this thesis was to utilise accelerometry to develop a visualisation concept as part of a feasibility study to support the learning and assessment of FMS, by reducing subjectivity and the overall time taken to conduct a gross motor skill assessment. The overarm throw, an important fundamental movement skill, was specifically selected for the visualisation development as it is an acyclic movement with a distinct initiation and conclusion. Thirteen children (14.8 ± 0.3 years; 9 boys) wore an ActiGraph GT9X Link Inertial Measurement Unit device on the dominant wrist whilst performing a series of overarm throws. This thesis illustrates how the visualisation concept was developed using raw accelerometer data, which was processed and manipulated using MATLAB 2019b software to obtain and depict key throw performance data, including the trajectory and velocity of the wrist during the throw. Overall, this thesis found that the developed visualisation concept can provide strong indicators of throw competency based on the shape of the throw trajectory. Future research should seek to utilise a larger, more diverse, population, and incorporate machine learning. Finally, further work is required to translate this concept to other gross motor skills

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically

    Multiscale structural optimisation with concurrent coupling between scales

    Get PDF
    A robust three-dimensional multiscale topology optimisation framework with concurrent coupling between scales is presented. Concurrent coupling ensures that only the microscale data required to evaluate the macroscale model during each iteration of optimisation is collected and results in considerable computational savings. This represents the principal novelty of the framework and permits a previously intractable number of design variables to be used in the parametrisation of the microscale geometry, which in turn enables accessibility to a greater range of mechanical point properties during optimisation. Additionally, the microscale data collected during optimisation is stored in a re-usable database, further reducing the computational expense of subsequent iterations or entirely new optimisation problems. Application of this methodology enables structures with precise functionally-graded mechanical properties over two-scales to be derived, which satisfy one or multiple functional objectives. For all applications of the framework presented within this thesis, only a small fraction of the microstructure database is required to derive the optimised multiscale solutions, which demonstrates a significant reduction in the computational expense of optimisation in comparison to contemporary sequential frameworks. The derivation and integration of novel additive manufacturing constraints for open-walled microstructures within the concurrently coupled multiscale topology optimisation framework is also presented. Problematic fabrication features are discouraged through the application of an augmented projection filter and two relaxed binary integral constraints, which prohibit the formation of unsupported members, isolated assemblies of overhanging members and slender members during optimisation. Through the application of these constraints, it is possible to derive self-supporting, hierarchical structures with varying topology, suitable for fabrication through additive manufacturing processes.Open Acces

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Cost-effective non-destructive testing of biomedical components fabricated using additive manufacturing

    Get PDF
    Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of the non-destructive test. Finally, the cone-beam geometry of these scanners makes them susceptible to the adverse effects of scattered radiation, which is another source of artifacts in micro-CT imaging. In this work, we describe the design, fabrication, and implementation of a dedicated, cost-effective micro-CT scanner for NDT of AM-fabricated biomedical components. Our scanner reduces the limitations of costly image-based NDT by optimizing the scanner\u27s geometry and the image acquisition hardware (i.e., X-ray source and detector). Additionally, we describe two novel techniques to reduce image artifacts caused by photon-starvation and scatter radiation in cone-beam micro-CT imaging. Our cost-effective scanner was designed to match the image requirements of medium-size titanium-alloy medical components. We optimized the image acquisition hardware by using an 80 kVp low-cost portable X-ray unit and developing a low-cost lens-coupled X-ray detector. Image artifacts caused by photon-starvation were reduced by implementing dual-exposure high-dynamic-range radiography. For scatter mitigation, we describe the design, manufacturing, and testing of a large-area, highly-focused, two-dimensional, anti-scatter grid. Our results demonstrate that cost-effective NDT using low-cost equipment is feasible for medium-sized, titanium-alloy, AM-fabricated medical components. Our proposed high-dynamic-range strategy improved by 37% the penetration capabilities of an 80 kVp micro-CT imaging system for a total x-ray path length of 19.8 mm. Finally, our novel anti-scatter grid provided a 65% improvement in CT number accuracy and a 48% improvement in low-contrast visualization. Our proposed cost-effective scanner and artifact reduction strategies have the potential to improve patient care by accelerating the widespread use of patient-specific, bio-compatible, AM-manufactured, medical components
    corecore